
Emily Riehl

Johns Hopkins University

Can machines think logically?

DSAI and KSAS Symposium Series: The Science of AI



Can machines think?
In a famous 1950 paper entitled
“Computing machinery and intelligence,”
British mathematician Alan Turing opens
with the question

“Can machines think?”

Sidestepping the task of giving precise
meaning to the term “think,” Turing instead
describes what he calls “the imitation game”
and asks whether an interrogator in another
room would be able to distinguish between
a man and machine impersonating a man by
asking a series of typewritten questions.a

aActually, the imitation game is much queerer
than this: Turing asks whether a machine would do
better than a man at impersonating a woman.



The Turing test

Turing predicted that in 50 years time, machines would be able to pass what is now
known as the Turing test.

This is unequivocally the case for today’s large language models.

But I want to ask a different question:

“Can machines think logically?”

In realms, such as mathematics, where logical reasoning can distinguish what is true
from what is false, can generative AI reliably give us the correct answer?



A question from my practice final in Math 201: Linear Algebra



Do orthogonal matrices form a subspace?
My student asked Gemini:

“Does the set of orthogonal matrices define a subspace
of the vector space of all square matrices?”

In the 2 × 2 case, orthogonal matrices have the form

[𝑠 −𝑡
𝑡 𝑠 ] or [𝑠 𝑡

𝑡 −𝑠] with 𝑠2 + 𝑡2 = 1,

while square matrices have the form [𝑎 𝑏
𝑐 𝑑] for any real numbers 𝑎, 𝑏, 𝑐, and 𝑑.

The set of 2 × 2 matrices forms a vector space because you can add them and multiply
them by a real number to get another 2 × 2 matrix.

This question asks whether the sum or scalar multiple of orthogonal matrices
is again orthogonal and whether the zero matrix is an orthogonal matrix.



Gemini’s illogical “thinking”
“Does the set of orthogonal matrices define a subspace

of the vector space of all square matrices?”

Gemini answered “Yes” with the following explanation:
• “If you add two orthogonal matrices, the resulting matrix will also be orthogonal,

satisfying the closure property for addition in a subspace.”
This is incorrect.

• “Multiplying an orthogonal matrix by a scalar preserves the orthogonality condition,
meaning the set is closed under scalar multiplication.”

This is incorrect.
• “The zero matrix is considered an orthogonal matrix, ensuring the zero vector is

included in the set.”
This is incorrect.

Despite the fact that Gemini gave correct definitions of subspace and of orthogonal
matrices (as those matrices whose transpose is the inverse), it answered wrong.



Gemini’s illogical “thinking”



Can machines think logically? — Not yet

In realms where correctness of an answer is provable and accuracy is required, generative
AI is not yet reliable — but it could be in the future.

Currently existing software programs called computer proof assistants can
• certify the correctness of a mathematical proof (computer formalization) or
• verify that a software program satisfies a desired specification (formal methods).

In principle, a generative AI could be designed to output text in a format that it could
be checked by a computer proof assistant — a process known as autoformalization.

With such a protocol, AI-generated outputs in certain domains can be formally verified
before being put into public use.



What are computer proof assistants?

A computer proof assistant or interactive theorem prover — such as Agda, HOL Light,
Isabelle, Lean, Mizar, or Rocq (née Coq) — is a computer program that:

• knows the rules of a logical formal system (e.g., a foundation for mathematics),
which a trusted core program (the kernel) uses to check the correctness of proofs

• is programmed (via the elaborator) to interpret statements written in an expressive
formal language (the vernacular) in which a user writes their definitions, theorems,
and proofs.

To a human user of an interactive theorem prover, writing a formal proof feels like
writing code in a programming language, but with useful real-time feedback:

• typos may be pointed out by “type-checking errors”
• the proof assistant often communicates the standing assumptions and yet-to-be

proven objectives midway through a complex proof.



A formalized proof of a true theorem
To illustrate, we give a formal proof in Lean that symmetric matrices define a subspace.

A matrix 𝐴 = [𝐴11 𝐴12
𝐴21 𝐴22

] is symmetric if 𝐴12 = 𝐴21.

More generally, an 𝑛 × 𝑛 matrix 𝐴 is symmetric if 𝐴𝑖𝑗 = 𝐴𝑗𝑖 for all indices 𝑖 and 𝑗.



A formalized proof of a true theorem
Lean’s Infoview keeps track of assumptions and objectives at each stage of a proof.

Lean automatically generates the proof obligations. To complete the proof, we must
replace each “sorry” with code that satisfies Lean’s proof checker.



A formalized proof of a true theorem
By filling in the carrier, we tell Lean that the elements of the subspace are the
symmetric matrices.

Lean tells us that to prove closure under addition,
we must show that if 𝐴 and 𝐵 are symmetric, then 𝐴 + 𝐵 is symmetric.



A formalized proof of a true theorem
Lean tells us that to prove closure under addition,

we must show that if 𝐴 and 𝐵 are symmetric, then 𝐴 + 𝐵 is symmetric.

Thus for symmetric matrices 𝐴 and 𝐵 and indices 𝑖 and 𝑗,
we must show that (𝐴 + 𝐵)𝑖𝑗 = (𝐴 + 𝐵)𝑗𝑖.



A formalized proof of a true theorem
By definition of matrix addition, (𝐴 + 𝐵)𝑖𝑗 = 𝐴𝑖𝑗 + 𝐵𝑖𝑗 and (𝐴 + 𝐵)𝑗𝑖 = 𝐴𝑗𝑖 + 𝐵𝑗𝑖.

Thus for symmetric matrices 𝐴 and 𝐵 and indices 𝑖 and 𝑗,

we must show that 𝐴𝑖𝑗 + 𝐵𝑖𝑗 = 𝐴𝑗𝑖 + 𝐵𝑗𝑖.



A formalized proof of a true theorem
Since 𝐴 and 𝐵 are symmetric, 𝐴𝑖𝑗 = 𝐴𝑗𝑖 and 𝐵𝑖𝑗 = 𝐵𝑗𝑖 so this equation holds:

Now Lean tells us that there are no goals!
So we may move on to the remaining proof obligations …



A formalized proof of a true theorem



Recent advances in autoformalization
While archives of formal proofs are much smaller than usual training data sets, there are
recent advancements in autoformalization using generative AI:

• Autoformalization with Large Language Models: in 2022, a team from Google,
Stanford, and Cambridge demonstrate that LLMs do reasonably well in translating
natural language mathematics to formal theorem statements in Isabelle/HOL.

• Baldur: Whole-Proof Generation and Repair with Large Language Models: in 2023,
a team from UMass Amherst, UIUC, and Google build a prototype capable of whole
proof generation and proof repair in Isabelle/HOL.

• Solving olympiad geometry without human demonstrations: in 2024, Deep Mind
debuted AlphaGeometry, a neuro-symbolic system made up of a neural language
model and a symbolic deduction engine. In a benchmarking test of 30 International
Mathematical Olympiad geometry problems, AlphaGeometry solved 25 within the
standard Olympiad time limit.

Despite these advances, it will likely take some time before AIs can discover their own
theorems that are mathematically interesting or relevant to the real world.



Applications on the horizon?
If fully automated theorem proving is a long way off, human/computer collaborations in
machine-assisted proof are on the horizon.
I will close with a few predictions about near future:

• Generative AI will dramatically improve the experience of interactive theorem
proving in a computer proof assistant, revolutionizing mathematical practice.

• Humans will drive advances in formal methods, by developing domain-specific
formal systems that can be used to specify desired behavior.

• Generative AI will then accelerate the process of writing formally verifiable software
and proof certificates that it matches the specification.

For example, in Formally Verified Software in the Real World, a team from UNSW and
Melbourne explain how formally verified software can be used to design autonomous
flight systems that are highly robust against cyber attacks.

What other applications are possible when machines can be trusted to “think” logically?


