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Preface

The viewpoint taken by William Thurston’s essay—that mathematical progress is
made by advancing human understanding of mathematics and not only through the proof
of new theorems—succinctly describes the character and focus of the course that produced
these lecture notes. While certain results appearing below may surprise working homotopy
theorists, the mathematical content of this text is not substantially new. Instead, the central
value of this account derives from the more qualitative insights provided by its perspective.
The theorems and topics discussed here illustrate how categorical formalisms can be used
to organize and clarify a wealth of homotopical ideas.

The central project of homotopy theory, broadly defined, is to study the objects of
a category up to a specified notion of “weak equivalence.” These weak equivalences are
morphisms that satisfy a certain closure property vis-à-vis composition and cancelation
that is also satisfied by the isomorphisms in any category—but weak equivalences are not
generally invertible. In experience, it is inconvenient to work directly in the homotopy
category, constructed by formally inverting these maps. Instead, over the years homo-
topy theorists have produced various axiomatizations that guarantee that certain “point-set
level” constructions respect weak equivalences and have developed models in which weak
constructions behave like strict ones. By design, this patchwork of mathematical structures
can be used to solve a wide variety of problems, but they can be rather complicated for the
novice to navigate. The goal of this book is to use category theory to illuminate abstract ho-
motopy theory and in particular to distinguish the formal aspects of the theory, principally
having to do with enrichments, from techniques specific to the homotopical context.

The ordering of topics demands a few words of explanation. Rather than force the
reader to persevere on good faith through pages of prerequisites, we wanted to tell one of
the most compelling stories right away. Following [DHKS04], we introduce a framework
for constructing derived functors between categories equipped with a reasonable notion of
weak equivalence that captures all the essential features of, but is much more general than,
their construction in model category theory.

Why bother with this generalization? Two reasons: Firstly, it exhibits the truth to the
slogan that the weak equivalences are all that matter in abstract homotopy theory, showing
that particular notions of cofibrations/fibrations and cofibrant/fibrant objects are irrelevant
to the construction of derived functors—any notion will do. Secondly, and perhaps most
importantly, this method for producing derived functors extends to settings, such as cate-
gories of diagrams of a generic shape, where appropriate model structures do not necessar-
ily exist. In the culmination of the first part of this book, we apply this theory to present a
uniform general construction of homotopy limits and colimits which satisfies both a local
universal property (representing homotopy coherent cones) and a global one (forming a
derived functor).

A further advantage of this approach, which employs the familiar two-sided (co)bar
construction, is that it generalizes seamlessly to the enriched context. Any discussion of
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homotopy colimits necessarily encounters enriched category theory; some sort of topology
on the ambient hom-sets is needed to encode the local universal property. These notes
devote a fair amount of isolated attention to enriched category theory because this prepara-
tion greatly simplifies a number of later proofs. In general, we find it clarifying to separate
the categorical aspects of homotopy theory from the homotopical ones. For instance, cer-
tain comparisons between models of homotopy colimits actually assert an isomorphism
between the representing objects, not just the homotopy types. It is equally interesting to
know when this is not the case.

Classical definitions of homotopy colimits, as in [BK72], are as weighted colimits.
An ordinary colimit is an object that represents cones under a fixed diagram, while a homo-
topy colimit is an object representing “homotopy coherent” cones. The functor that takes
an object in the diagram to the appropriately shaped homotopy coherent cone above it is
called the weight. We believe that weighted limits and colimits provide a useful conceptual
simplification for many areas of mathematics and thus begin the second part of this book
with a thorough introduction, starting with the Set-enriched case which already contains a
number of important ideas. As we expect this topic to be unfamiliar, our approach is quite
leisurely.

Our facility with enriched category theory allows us to be quite explicit about the role
enrichment plays in homotopy theory. For instance, it is well known that the homotopy
category of a simplicial model category is enriched over the homotopy category of spaces.
Following [Shu09], we present a general framework that detects when derived functors
and more exotic structures, such as weighted homotopy colimits, admit compatible enrich-
ments. Enrichment over the homotopy category of spaces provides a good indication that
these definitions are “homotopically correct.” Our formalism also allows us to prove that in
an appropriate general context, total derived functors of left adjoints, themselves enriched
over the homotopy category of spaces, preserve homotopy colimits.

We conclude this part with an interesting observation due to Michael Shulman: in the
setting for these derived enrichment results, the weak equivalences can be productively
compared with another notion of “homotopy equivalence” arising directly from the enrich-
ment. Here we are using “homotopy” very loosely; for instance, we do not require an inter-
val object. Nonetheless, in close analogy with classical homotopy theory, the localization
at the weak equivalences factors through the localization at the homotopy equivalences.
Furthermore, the former homotopy category is equivalent to a restriction of the latter to the
“fibrant-cofibrant” objects, between which these two notions of weak equivalence coincide.

After telling this story, we turn in the third part of these notes, perhaps rather belat-
edly, to the model categories of Daniel Quillen. Our purpose here is not to give a full
account—this theory is well-documented elsewhere—but rather to emphasize the clarify-
ing perspective provided by weak factorization systems, the constituent parts in a model
structure that are in some sense orthogonal to the underlying homotopical structure vis-
ible to the [DHKS04] axiomatization. Many arguments in simplicial homotopy theory
and in the development of the theory of quasi-categories take place on the level of weak
factorization systems and are better understood in this context.

The highlight of this section is the presentation of a new variant of Quillen’s small
object argument due to Richard Garner [Gar09] that, at essentially no cost, produces func-
torial factorizations in cofibrantly generated model categories with significantly better cat-
egorical properties. In particular, we show that a cofibrantly generated simplicial model
category admits a fibrant replacement monad and a cofibrant replacement monad that are
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simplicially enriched. Related observations have been made elsewhere, but we do not sus-
pect that this precise statement appears in the literature.

The proofs of these results introduce ideas with broader applicability. A main theme
is that the functorial factorizations produced by Garner’s construction have a much closer
relationship to the lifting properties that characterize the cofibrations and fibrations in a
model structure. Indeed, observations related to this “algebraic” perspective on the cofi-
brations and fibrations can be used to produce functorial factorizations for non-cofibrantly
generated model structures [BR13].

Our construction of enriched functorial factorizations is complemented by a discussion
of enriched lifting properties. There are notions of enriched weak factorization systems and
enriched cofibrant generation and these behave similarly to the familiar unenriched case.
In the model structure context, this leads to a notion of an enriched model category that is
reminiscent of but neither implies nor is implied by the usual axioms. This theory, which
we believe is not found in the literature (the nLab aside), illuminates the distinction be-
tween the (classical) Quillen-type and Hurewicz-type model structures on the category of
chain complexes over a commutative ring: the latter is an enrichment of the former. In-
deed, the same sets of generating cofibrations and trivial cofibrations produce both model
structures! We find it particularly interesting to note that the Hurewicz-type model struc-
ture, which is not cofibrantly generated in the traditional sense, is cofibrantly generated
when this notion is enriched in the category of modules over the commutative ring; see
[BMR13].

The section on model categories concludes with a brief exposition of Reedy cate-
gory theory, which makes use of weighted limits and colimits to simplify foundational
definitions. This chapter contains some immediate applications, proving that familiar pro-
cedures for computing homotopy limits and colimits in certain special cases have the same
homotopy type as the general formulae introduced in Part I. Further applications of Reedy
category theory follow later in our explorations of various “geometric” underpinnings of
quasi-category theory.

In the final part of this book, we give an elementary introduction to quasi-categories
seeking, wherever possible, to avoid repeating things that are clearly explained in [Lur09].
After some preliminaries, we use a discussion of homotopy coherent diagrams to moti-
vate a translation between quasi-categories and simplicial categories, which are by now
more familiar. Returning our attention to simplicial sets, we study isomorphisms within
and equivalences between quasi-categories, with a particular focus on inverting edges in
diagrams. The last chapter describes geometrical and 2-categorical motivations for defi-
nitions encoding the category theory of quasi-categories, presenting a number of not-yet-
published insights of Dominic Verity. This perspective will be developed much more fully
in [RV13b, RV13a]. A reader interested principally in quasi-categories would do well
to read Chapters 7, 11, and 14 first. Without this preparation, many of our proofs would
become considerably more difficult.

Finally, the very first topic is the author’s personal favorite: Kan extensions. Part of
this choice has to do with Harvard’s unique course structure. The first week of each term
is “shopping period,” during which students pop in and out of a number of courses prior to
making their official selections. Anticipating a number of students who might not return,
it seemed sensible to discuss a topic that is reasonably self-contained and of the broadest
interest—indeed, significant applications appear throughout this text.
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Prerequisites

An ideal student might have passing acquaintance with some of the literature on this
subject: simplicial homotopy theory via [GJ99, May67]; homotopy (co)limits via [BK72];
model categories via one of [Qui67, DS95, Hov99, Hir03, MP12]; quasi-categories via
[Joy02, Lur09]. Rather than present material that one could easily read elsewhere, we
chart a less-familiar course that should complement the insights of the experienced and
provide context for the naı̈ve student who might later read the classical accounts of this
theory. The one prerequisite we insist upon is an acquaintance with and affinity for the
basic concepts of category theory: functors and natural transformations; representability
and the Yoneda lemma; limits and colimits; adjunctions; and (co)monads. Indeed, we
hope that a careful reader with sufficient categorical background might emerge from this
manuscript confident that he or she fully understands each of the topics discussed here.

While the categorical prerequisites are essential, acquaintance with specific topics in
homotopy theory is merely desired and not strictly necessary. Starting from Chapter 2,
we occasionally use the language of model category theory to suggest the right context
and intuition to those readers who have some familiarity with it, but these remarks are
inessential. For particular examples appearing below, some acquaintance with simplicial
sets in homotopy theory would also be helpful. Because these combinatorial details are
essential for quasi-category theory, we give a brief overview in Chapter 15, which could
be positioned earlier, were it not for our preference to delay boring those for whom this is
second nature.

Dual results are rarely mentioned explicitly, except in cases where there are some
subtleties involved in converting to the dual statement. In Chapters 1 and 2 we make ca-
sual mention of 2-categories before their formal definition—categories enriched in Cat—is
given in Chapter 3. Note all 2-categories that appear are strict. Interestingly for a mono-
graph devoted to the study of a weakened notion of equivalence between objects, we have
no need for the weaker variants of 2-category theory.

Notational Conventions

We use boldface for technical terms that are currently being or will soon be defined
and scare quotes for non-technical usages meant to suggest particular intuition. Italics are
for emphasis.

We write ∅ and ∗ for initial and terminal objects in a category. In a symmetric monoidal
category, we also use ∗ to denote the unit object, whether or not the unit is terminal. We
use 1,2, . . . for ordinal categories; e.g., 2 is the category • → • of the “walking arrow.”
Familiar categories of sets, pointed sets, abelian groups, k-vector spaces, categories, and
so on are denoted by Set, Set∗, Ab, Vectk, Cat, etc; Top should be a convenient category
of spaces, as treated in section 6.1. Generally, the objects of the category so-denoted are
suggested by a boldface abbreviation, and the morphisms are left unmentioned assuming
the intention is the obvious one.

We generally label the composite of named morphisms through elision but may use a
‘·’ when the result would be either ambiguous or excessively ugly. The hom-set between
objects x and y in a category C is most commonly denoted by C(x, y), although hom(x, y)
is also used on occasion. An underline, e.g. C(x, y) or hom(x, y), signals that extra struc-
ture is present; the form this structure takes depends on what sort of enrichment is being
discussed. In the case where the enrichment is over the ambient category itself, we fre-
quently use exponential notion yx for the internal hom object. For instance, DC denotes
the category of functors C → D.
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Natural transformations are most commonly denoted with a double arrow ‘⇒’ rather
than a single arrow. This usage continues in a special case: a natural transformation f ⇒ g
between diagrams of shape 2, i.e., between morphisms f and g, is simply a commutative
square with f and g as opposing faces. The symbol ‘⇒’ is used to suggest a parallel pair of
morphisms, with common domain and codomain. Given a pair of functors F : C⇄ D : G,
use of a reversed turnstile F ⊣ G indicates that F is left adjoint to G.

Displayed diagrams should be assumed to commute unless explicitly stated otherwise.
The use of dotted arrows signals an assertion or hypothesis that a particular map exists.
Commutative squares decorated with a ‘⌜’ or a ‘⌟’ are pushouts or pullbacks, respectively.
We sometimes use ‘∼’ to decorate weak equivalences. The symbol ‘�’ is reserved for
isomorphisms, sometimes simply denoted with an equality. The symbol ‘≃’ signals that the
abutting objects are equivalent in whatever sense is appropriate, e.g., homotopy equivalent
or equivalent as quasi-categories.

Certain simplicial sets are given the following names: ∆n is the standard (represented)
n-simplex; ∂∆n is its boundary, the subset generated by non-degenerate simplices in degree
less than n; Λn

k is the subset with the k-th codimension-one face also omitted. We follow the
conventions of [GJ99] and write di and s j for the elementary simplicial operators (maps
in ∆ between [n] and [n − 1]). The contrasting variance of the corresponding maps in a
simplicial set is indicated by the use of lower subscripts—di and s j—though whenever
practical, we prefer instead to describe these morphisms as right actions by the simplicial
operators di and s j. This convention is in harmony with the Yoneda lemma: the map di

acts on an n-simplex x of X, represented by a morphism x : ∆n → X, by precomposing
with di : ∆n−1 → ∆n.
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CHAPTER 1

All concepts are Kan extensions

Given a pair of functors K : C → D, F : C → E, it may or may not be possible to
extend F along K. Obstructions can take several forms: two arrows in C with distinct
images in E might be identified in D, or two objects might have empty hom-sets in C
and E but not in D. In general, it is more reasonable to ask for a best approximation to
an extension taking the form of a universal natural transformation pointing either from or
to F. The resulting categorical notion, quite simple to define, is surprisingly ubiquitous
throughout mathematics, as we shall soon discover.

1.1. Kan extensions

Definition 1.1.1. Given functors F : C → E, K : C → D, a left Kan extension of
F along K is a functor LanK F : D → E together with a natural transformation η : F ⇒
LanK F · K such that for any other such pair (G : D → E, γ : F ⇒ GK), γ factors uniquely
through η as illustrated.1

C
F //

K ��?
??

??
??

⇓η

E

D

LanK F

??�
�

�
�

C
F //

K ��?
??

??
??

⇓γ

E

=

C
F //

K ��?
??

??
??

⇓η
∃!u
??

??
?

???
?

E

D

G

??�������
D

LanK F
66

G

MM

Dually, a right Kan extension of F along K is a functor RanK F : D → E together with a
natural transformation ϵ : RanK F · K ⇒ F such that for any (G : D → E, δ : GK ⇒ F), δ
factors uniquely through ϵ as illustrated.

C
F //

K ��?
??

??
??

⇑ϵ

E

D

RanK F

??�
�

�
�

C
F //

K ��?
??

??
??

⇑δ

E

=

C
F //

K ��?
??

??
??

⇑ϵ
∃!v

E

D

G

??�������
D

RanK F
66

G

MM

Remark 1.1.2. This definition makes sense in any 2-category, but for simplicity this
discussion will be relegated to the 2-category Cat of categories, functors, and natural trans-
formations.

The intuition is clearest when the functor K of Definition 1.1.1 is an inclusion; assum-
ing certain (co)limits exist, when K is fully faithful, the left and right Kan extensions do in
fact extend the functor F along K; see 1.4.5. However:

Exercise 1.1.3. Construct a toy example to illustrate that if F factors through K along
some functor H, it is not necessarily the case that (H, 1F) is the left Kan extension of F
along K.

1Writing α for the natural transformation LanK F ⇒ G, the right-hand pasting diagrams express the equal-

ity γ = αK · η, i.e., that γ factors as F
η +3 LanK F · K

αK +3 GK .

3
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Remark 1.1.4. In unenriched category theory, a universal property is encoded as a
representation for an appropriate Set-valued functor. A left Kan extension of F : C → E
along K : C → D is a representation for the functor

EC(F,− ◦ K) : ED → Set

that sends a functor D → E to the set of natural transformations from F to its restriction
along K. By the Yoneda lemma, any pair (G, γ) as in Definition 1.1.1 defines a natural
transformation

ED(G,−)
γ +3 EC(F,− ◦ K).

The universal property of the pair (LanK F, η) is equivalent to the assertion that the corre-
sponding map

ED(LanK F,−)
η +3 EC(F,− ◦ K)

is a natural isomorphism, i.e., that (LanK F, η) represents this functor.

Extending this discussion it follows that if, for fixed K, the left and right Kan exten-
sions of any functor C → E exist, then these define left and right adjoints to the precompo-
sition functor K∗ : ED → EC.
(1.1.5)

ED(LanK F,G) � EC(F,GK) EC

LanK

��

RanK

DD
⊥

⊥

EDK∗oo EC(GK, F) � ED(G,RanK F)

The 2-cells η are the components of the unit for LanK ⊣ K∗ and the 2-cells ϵ are the
components of the counit for K∗ ⊣ RanK . The universal properties of Definition 1.1.1 are
precisely those required to define the value at a particular object F ∈ EC of a left and right
adjoint to a specified functor, in this case K∗.

Conversely, by uniqueness of adjoints, the objects in the image of any left or right
adjoint to a precomposition functor are Kan extensions. This observation leads to several
immediate examples.

Example 1.1.6. A small category with a single object and only invertible arrows is pre-
cisely a (discrete) group. The objects of the functor category VectG

k are G-representations
over a fixed field k; arrows are G-equivariant linear maps. If H is a subgroup of G, restric-
tion VectG

k → VectH
k of a G-representation to an H-representation is simply precomposition

by the inclusion functor i : H ↪→ G. This functor has a left adjoint, induction, which is left
Kan extension along i. The right adjoint, coinduction, is right Kan extension along i.

(1.1.7) VectG
k res // VectH

k

coinG
H

``

indG
H

~~

⊥

⊥

The reader unfamiliar with the construction of induced representations need not remain in
suspense for very long; see Theorem 1.2.1 and Example 1.2.9. Similar remarks apply for
G-sets, G-spaces, based G-spaces, or indeed G-objects in any category—although in the
general case these adjoints might not exist.
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Remark 1.1.8. This example can be enriched (cf. 7.6.9): extension of scalars, taking
an R-module M to the S -module M ⊗R S , is the Ab-enriched left Kan extension along
an Ab-functor R → S between one-object Ab-categories, more commonly called a ring
homomorphism.

Example 1.1.9. Let ∆ be the category of finite non-empty ordinals [0], [1], . . . and
order preserving maps. Set-valued presheaves on ∆ are called simplicial sets. Write ∆≤n

for the full subcategory on the objects [0], . . . , [n]. Restriction along the inclusion functor
in : ∆≤n ↪→ ∆ is called n-truncation. This functor has both left and right Kan extensions:

Set∆op
i∗n // Set∆op

≤n

Ranin

^^

Lanin

~~

⊥

⊥

The composite comonad on Set∆op
is skn, the functor that maps a simplicial set to its n-

skeleton. The composite monad on Set∆op
is coskn, the functor that maps a simplicial set

to its n-coskeleton. Furthermore, skn is left adjoint to coskn, as is the case for any comonad
and monad arising in this way.

Example 1.1.10. The category ∆ is a full subcategory containing all but the initial
object [−1] of the category ∆+ of finite ordinals and order preserving maps. Presheaves
on ∆+ are called augmented simplicial sets. Left Kan extension defines a left adjoint to
restriction

Set∆op
+ res //

⊥

⊥

Set∆op

π0

}}

triv

^^

that augments a simplicial set X with its set π0X of path components. Right Kan extension
assigns a simplicial set the trivial augmentation built from the one-point set.

A final broad class of examples has a rather different flavor.

Example 1.1.11. In good situations, the composite of a functor F : C → D between
categories equipped with a subcategory of “weak equivalences” and the localization func-
torD → HoD admits a right or left Kan extension along the localization functorC → HoC,
called the total left derived functor or total right derived functor, respectively. This is
the subject of Chapter 2.

1.2. A formula

Importantly, if the target category E has certain limits and colimits, then right and
left Kan extensions for any pair of functors exist and furthermore can be computed by a
particular (co)limit formula. Recall, a category is small if it has a mere set of morphisms
and locally small if it has a mere set of morphisms between any fixed pair of objects.

Theorem 1.2.1 ([ML98, X.4.1-2]). When C is small, D is locally small, and E is
cocomplete, the left Kan extension of any functor F : C → E along any functor K : C → D
is computed at d ∈ D by the colimit

(1.2.2) LanK F(d) =
∫ c∈C

D(Kc, d) · Fc
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and in particular necessarily exists.

Some explanation is in order. The “·” is called a copower or a tensor: if S is a set
and e ∈ E then S · e is the S -indexed coproduct of copies of e. Assuming these coproducts
exist in E, the copower defines a bifunctor Set × E → E.

The integral
∫ C

, called a coend, is the colimit of a particular diagram constructed
from a functor that is both covariant and contravariant in C. Given H : Cop × C → E, the
coend

∫ C
H is an object of E equipped with arrows H(c, c)→

∫ C
H for each c ∈ C that are

collectively universal with the property that the diagram

(1.2.3) H(c′, c)
f∗ //

f ∗

��

H(c′, c′)

��

H(c, c) //
∫ C

H

commutes for each f : c→ c′ in C. Equivalently,
∫ C

H is the coequalizer of the diagram

(1.2.4)
∐

f∈arrC
H(cod f , dom f )

f ∗ //
f∗
//

∐
c∈obC

H(c, c) //___
∫ C

H

Remark 1.2.5. If H : Cop×C → E is constant in the first variable, i.e., if H is a functor
C → E, then the coequalizer (1.2.4) defines the usual colimit of H.

Remark 1.2.6. Assuming these colimits exist, the coend (1.2.2) is isomorphic to the

colimit of the composite K/d
U
−→ C

F
−→ E of F with a certain forgetful functor. The

domain of U is the slice category, a special kind of comma category, whose objects are
pairs (c ∈ C,Kc → d ∈ D) and whose morphisms are arrows in C making the obvious
triangle in D commute. Both formulas encode a particular weighted colimit of F in a
sense that will be made precise in Chapter 7. In particular, we prove that these formulas
agree in 7.1.11.

Exercise 1.2.7. Let C be a small category and write C▷ for the category obtained by
adjoining a terminal object to C. Give three proofs that a left Kan extension of a functor
F : C → E along the natural inclusion C → C▷ defines a colimit cone under F: one using
the defining universal property, one using Theorem 1.2.1, and one using the formula of
1.2.6.

Dually, the power or cotensor eS of e ∈ E by a set S is the S -indexed product of
copies of e, defining a bifunctor Setop × E → E that is contravariant in the indexing set.
For H : Cop × C → E, an end

∫
C

H is an object in E together with morphisms satisfying
diagrams dual to (1.2.3) and universal with this property.

Exercise 1.2.8. Let F,G : C ⇒ E, with C small and E locally small. Show that the
end over C of the bifunctor E(F−,G−) : Cop×C → Set is the set of natural transformations
from F to G.

Example 1.2.9. Let us return to Example 1.1.6. In the category Vectk, finite products
and finite coproducts coincide: these are just direct sums of vector spaces. If V is an H-
representation and H is a finite index subgroup of G, then the end and coend formulas of
Theorem 1.2.1 and its dual both produce the direct sum of copies of V indexed by left
cosets of H in G. Thus, for finite index subgroups, the left and right adjoints of (1.1.7)
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are the same; i.e., induction from a finite index subgroup is both left and right adjoint to
restriction.

Example 1.2.10. We can use Theorem 1.2.1 to understand the functors skn and coskn

of Example 1.1.9. If m > n and k ≤ n, each map in ∆op([k], [m]) = ∆([m], [k]) factors
uniquely as a non-identity epimorphism followed by a monomorphism.2 It follows that
every simplex in sknX above dimension m is degenerate; indeed sknX is obtained from the
n-truncation of X by freely adding back the necessary degenerate simplices.

Now we use the adjunction skn ⊣ coskn to build some intuition for the n-coskeleton.
Suppose X � cosknX. By adjunction an (n + 1)-simplex corresponds to a map skn∆

n+1 =

∂∆n+1 → X. In words, each (n + 1)-sphere in an n-coskeletal simplicial set has a unique
filler. Indeed, any m-sphere in an n-coskeletal simplicial set, with m > n, has a unique filler.
More precisely, an m-simplex is uniquely determined by the data of its faces of dimension
n and below.

Exercise 1.2.11. Directed graphs are functors from the category with two objects E,V
and a pair of maps s, t : E ⇒ V to Set. A natural transformation between two such functors
is a graph morphism. The forgetful functor DirGph → Set that maps a graph to its set of
vertices is given by restricting along the functor from the terminal category 1 that picks out
the object V . Use Theorem 1.2.1 to compute left and right adjoints to this forgetful functor.

1.3. Pointwise Kan extensions

A functor L : E → F preserves (LanK F, η) if the whiskered composite (LLanK F, Lη)
is the left Kan extension of LF along K.

C
F //

K ��?
??

??
??

⇓η

E
L // F

�

C
LF //

K ��?
??

??
??

⇓η′

F

D

LanK F

??�������
D

LanK LF

??~~~~~~~

Example 1.3.1. The forgetful functor U : Top → Set has both left and right adjoints,
and hence preserves both limits and colimits. It follows from Theorem 1.2.1 and that U
preserves the left and right Kan extensions of Example 1.1.6.

Example 1.3.2. The forgetful functor U : Vectk → Set preserves limits but not colimits
because the underlying set of a direct sum is not simply the coproduct of the underlying
sets of vectors. Hence, it follows from 1.2.1 and 1.1.6 that the underlying set of a G-
representation induced from an H-representation is not equal to the G-set induced from the
underlying H-set.

Even when we cannot appeal to the formula presented in 1.2.1:

Lemma 1.3.3. Left adjoints preserve left Kan extensions.

Proof. Suppose given a left Kan extension (LanK F, η) with codomain E and suppose
further that L : E → F has a right adjoint R with unit ι and counit ν. Then given H : D → F
there are natural isomorphisms

F D(LLanK F,H) � ED(LanK F,RH) � EC(F,RHK) � F C(LF,HK).

2This is the content of the Eilenberg-Zilber lemma [GZ67, II.3.1, pp. 26-27]; cf. Lemma 14.3.7.
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Taking H = LLanK F, these isomorphisms act on the identity natural transformation as
follows:

1LLanK F 7→ ιLanK F 7→ ιLanK F·K · η 7→ νLLanK F·K · LιLanK F·K · Lη = Lη.

Hence (LLanK F, Lη) is a left Kan extension of LF along K. □

Unusually for a mathematical object defined by a universal property, generic Kan ex-
tensions are rather poorly behaved. We will see specific examples of this insufficiency in
Chapter 2, but for now we have to rely on expert opinion. For instance, Max Kelly reserves
the name “Kan extension” for pairs satisfying the condition we will presently introduce,
calling those of our Definition 1.1.1 “weak” and writing “Our present choice of nomencla-
ture is based on our failure to find a single instance where a weak Kan extension plays any
mathematical role whatsoever” [Kel82, §4]. By the categorical community’s consensus,
the important Kan extensions are pointwise Kan extensions.

Definition 1.3.4. When E is locally small, a right Kan extension is a pointwise right
Kan extension3 if it is preserved by all representable functors E(e,−).

Because covariant representables preserve all limits, it is clear that if a right Kan exten-
sion is given by the formula of Theorem 1.2.1, then that Kan extension is pointwise; dually,
left Kan extensions computed in this way are pointwise. The surprise is that the converse
also holds. This characterization justifies the terminology: a pointwise Kan extension can
be computed pointwise as a limit in E.

Theorem 1.3.5 ([ML98, X.5.3]). A right Kan extension of F along K is pointwise if
and only if it can be computed by

RanK F(d) = lim
(
d/K

U
−→ C

F
−→ E

)
in which case, in particular, this limit exists.

Proof. If RanK F is pointwise, then by the Yoneda lemma and the defining universal
property of right Kan extensions

E(e,RanK F(d)) � SetD(D(d,−),E(e,RanK F)) � SetC(D(d,K−),E(e, F−)).

The right-hand set is naturally isomorphic to the set of cones under e over the functor FU;
hence, this bijection exhibits RanK F(d) as the limit of FU. □

Remark 1.3.6. Most commonly, pointwise Kan extensions are found whenever the
codomain category is cocomplete (for left Kan extensions) or complete (for right), but this
is not the only case. In Chapter 2, we will see that the most common construction of the
total derived functors defined in 1.1.11 produces pointwise Kan extensions, even though
homotopy categories have notoriously few limits and colimits (see Proposition 2.2.13).

3A functor K : C → D is equally a functor K : Cop → Dop but the process of replacing each category by its
opposite reverses the direction of any natural transformations; succinctly, “op” is a 2-functor (−)op : Catco → Cat.
A left Kan extension is pointwise, as we are in the process of defining, if the corresponding right Kan extension
in the image of this 2-functor is pointwise.
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1.4. All concepts

The following examples justify Saunders Mac Lane’s famous assertion that “The no-
tion of Kan extensions subsumes all the other fundamental concepts of category theory”
[ML98, §X.7].

Example 1.4.1. Consider Kan extensions along the unique functor K : C → 1 to the
terminal category. A functor G : 1 → E picks out an object of E; precomposing with K
yields the constant functor C → E at this object. Hence, the universal property (1.1.5)
specifies that LanK F represents the set of natural transformations from F : C → E to a
constant functor, i.e., that LanK F represents cones under F, i.e., that LanK F is the colimit
of F. Dually RanK F is the limit. In the pointwise case, this can be deduced directly from
1.2.1 and 1.2.5.

Example 1.4.2. If F : C ⇄ D : G is an adjunction with unit η : 1 ⇒ GF and counit
ϵ : FG ⇒ 1, then (G, η) is a left Kan extension of the identity functor at C along F and
(F, ϵ) is a right Kan extension of the identity functor at D along G. Conversely, if (G, η)
is a left Kan extension of the identity along F and if F preserves this Kan extension, then
F ⊣ G with unit η.

Exercise 1.4.3. Prove these assertions by writing down the appropriate diagram chase.
As a hint, note an adjunction F ⊣ G induces an adjunction

EC
G∗ //
⊥ ED

F∗
oo

i.e., for any H : C → E, K : D → E, ED(HG,K) � EC(H,KF).

Example 1.4.4. From the defining universal property, the right Kan extension of a
functor F along the identity is (isomorphic to) F. In the case F : C → Set, we can apply
Theorem 1.2.1 and Example 1.2.8 to deduce that

Fc � Ran1CF(c) �
∫

x∈C
FxC(c,x) �

∫
x∈C

Set(C(c, x), Fx) � SetC(C(c,−), F)

the right-hand side being the set of natural transformations from the functor represented by
c to F. This is the Yoneda lemma.

Corollary 1.4.5. If E is complete and K is fully faithful, then RanK F · K � F.

Proof. [ML98, X.3.3] proves a more precise version: that the counit of the right Kan
extension gives the asserted isomorphism. When K is fully faithful, C(c, x) � D(Kc,Kx)
for each pair c, x ∈ C. By Theorem 1.2.1 and the Yoneda lemma

RanK F(Kc) �
∫

x∈C
FxD(Kc,Kx) �

∫
x∈C

FxC(c,x) � Fc. □

Example 1.4.6. Equally, Lan1CF � F, from which we deduce the coYoneda lemma:

(1.4.7) Fc �
∫ x∈C

C(x, c) · Fx.

More precise analysis shows that the canonical cone under the coend diagram is a colimit
cone. In the case F : C → Set, the copower “·” is symmetric and so the coend (1.4.7)
is isomorphic to one with the sets Fx and C(x, c) swapped. Letting c vary, we conclude
that F is canonically a colimit of representable functors, a fact that is frequently called the
density theorem. We will describe this colimit more precisely in 7.2.7.
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Exercise 1.4.8. Use Theorem 1.2.1, the Yoneda lemma, and the coYoneda lemma to
deduce another form of the density theorem: that the left Kan extension of the Yoneda
embedding C → SetC

op
along itself is the identity functor. This says that the representable

functors form a dense subcategory of the presheaf category SetC
op

.

1.5. Adjunctions involving simplicial sets

We close this chapter with a homotopical application of the theory of Kan extensions.
We will show that all adjoint pairs of functors whose left adjoint has the category of sim-
plicial sets as its domain arise in the same way. Succinctly this is the case because the
Yoneda embedding establishes the functor category Set∆op

, henceforth denoted by sSet, as
the free colimit completion of ∆.4

Construction 1.5.1. Let E be any cocomplete, locally small category and let ∆• : ∆→
E be any covariant functor. We write ∆n for the image of [n]; similarly, for X ∈ sSet, we
write Xn for the set of n-simplices and X• : ∆op → Set when we wish to emphasize its role
as a functor. Define L : sSet → E to be the left Kan extension of ∆• along the Yoneda
embedding.

sSet
L

!!C
C

C
C

∆
∆•

//

=={{{{{{{{
⇑�

E

Because E is assumed to be cocomplete, the functor L is defined on objects by the coend
(1.5.2)

LX :=
∫ n∈∆

sSet(∆n, X) · ∆n �

∫ n∈∆

Xn · ∆
n � coeq

 ∐
[n]→[m]∈∆

Xm · ∆
n ⇒

∐
[n]∈∆

Xn · ∆
n


The left-most ∆n in (1.5.2) is the representable functor ∆(−, [n]) : ∆op → Set; the first
congruence is by the Yoneda lemma, which establishes a bijection between maps ∆n → X
of simplicial sets and n-simplices of X. The functor L is defined on arrows by the universal
properties of these colimits. Uniqueness of the universal property will imply that L is
functorial, as is always the case when one uses a colimit construction to define a functor.
By Corollary 1.4.5, L∆n � ∆n, somewhat justifying this abuse of notation.

Because L is defined by a colimit and colimits commute with each other, L preserves
colimits. Hence, your favorite adjoint functor theorem implies that L has a right adjoint
R : E → sSet. From the desired adjoint correspondence and the Yoneda lemma, for any
e ∈ E

(Re)n � sSet(∆n,Re) � E(L∆n, e) � E(∆n, e)

Thus, we define the n-simplices of Re to be the maps in E from ∆n to e. The face and
degeneracy maps for this simplicial set are given by precomposition by the appropriate
maps in the cosimplicial object ∆•. Levelwise postcomposition defines a map of simplicial
sets for each e→ e′ ∈ E and makes R a functor.

Example 1.5.3. There is a natural functor ∆ → Top such that the nth space ∆n is
the standard topological n-simplex ∆n = {(x0, . . . , xn) ∈ Rn+1 | xi ≥ 0,

∑
i xi = 1}. The

associated right adjoint S : Top → sSet is called the total singular complex functor.

4None of this analysis depends on the nature of ∆; any small category would suffice.
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Following the above prescription, its left adjoint |− | : sSet→ Top is defined at a simplicial
set X by5

|X| =
∫ n

Xn × ∆
n = colim

 ∐
f : [n]→[m]

Xm × ∆
n

f∗ //
f ∗
//
∐
[n]

Xn × ∆
n


and is called its geometric realization.

Here again Corollary 1.4.5, also applicable in each of the examples to follow, implies
that |∆n| = ∆n, somewhat justifying this notational conflation.

Exercise 1.5.4. Prove that geometric realization is left adjoint to the total singular
complex functor by demonstrating this fact for any adjunction arising from the construction
of 1.5.1.

Example 1.5.5. Let ∆• : ∆→ Cat be the functor that sends [n] to the ordinal category

0→ 1→ · · · → n

with n+ 1 objects and n generating non-identity arrows together with their composites and
the requisite identities. Each order-preserving map in ∆ defines the object function of a
unique functor between categories of this type, and all functors arise this way. Thus, ∆• is
a full embedding ∆ ↪→ Cat. The right adjoint is the nerve functor N : Cat → sSet. By
1.5.1, an n-simplex in NC is a functor [n] → C, i.e., a string of n composable arrows in C.
The ith degeneracy map inserts the appropriate identity arrow at the ith place, and the ith
face map leaves off an outside arrow if i is 0 or n and composes the ith and (i+ 1)th arrows
otherwise.

The left adjoint h : sSet → Cat maps a simplicial set to its homotopy category. Inter-
preting the formula (1.5.2) in Cat yields the following explicit description of the category
hX. Its objects are the 0-simplices, also called vertices, of X. Its arrows are freely gen-
erated from the 1-simplices—any “composable path” of 1-simplices oriented in correct
direction represents a morphism in hX—subject to relations witnessed by 2-simplices: if
there is a 2-simplex in X with 0th face k, 1st face ℓ, and 2nd face j, then ℓ = k j in hX. We
will see in Chapter 15, that there is a simpler description of this functor on the subcategory
of quasi-categories.

Example 1.5.6. Construction 1.5.1 shows that sSet is cartesian closed, i.e., for every
simplicial set Y , the functor − × Y : sSet → sSet has a right adjoint, which we refer to as
the internal hom. Indeed every category of Set-valued presheaves is cartesian closed, and
the construction of the right adjoint given here is the usual one.

We desire an adjunction

sSet(X × Y,Z) � sSet(X,ZY ).

Taking X to be representable and applying the Yoneda lemma this becomes

sSet(∆n × Y,Z) � sSet(∆n,ZY ) � (ZY )n,

so we define the set of n-simplices of the internal hom ZY to be the set of maps ∆n×Y → Z.
The full adjunction is a consequence of the density theorem, or of 1.5.4, which amounts to
the same thing.

5The copower Xn ·∆
n in topological spaces is isomorphic to the cartesian product Xn ×∆

n where the set Xn
is given the discrete topology (compare with Remark 4.0.1).
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Example 1.5.7. The subdivision sd∆n of the nth represented simplicial set is defined
to be the simplicial set formed by taking the nerve of the poset of inclusions of non-empty
subsets of [n]. To illustrate, sd∆2 has the following vertices and non-degenerate 1-simplices

{1}

��5
55
55
55
5

��		
		
		
		

��
{0, 1}

##HH
H {1, 2}

{{vvv

{0, 1, 2}

{0}

DD								
//

55kkkkkkkk
{0, 2}

OO

{2}

ZZ55555555
oo

iiSSSSSSSS

together with six non-degenerate 2-simplices filling the evident triangles. Left Kan exten-
sion defines a subdivision functor that has a right adjoint called extension

sd : sSet
//

⊥ sSet : exoo

The “last vertex” map sd∆n → ∆n defines a natural transformation from the cosimplicial
simplicial set defining the subdivision to the Yoneda embedding. It follows that there is a
natural transformation sd ⇒ id between the left Kan extensions. Write η : id ⇒ ex for the
adjunct natural transformation. The colimit of the sequence of natural transformations ηexn

defines a functor called ex∞ which has a number of applications in simplicial homotopy
theory; cf., e.g., [GJ99, III.4.8].

Example 1.5.8. Write sCat for the category of small categories and functors enriched
over sSet in a sense we will make precise in Chapter 3. A particular cosimplicial object
in sCat, which can be regarded as a simplicial thickening or cofibrant replacement of the
discrete simplicial categories [n], is used to define an adjunction

C : sSet
//

⊥ sCat : Noo

whose right adjoint is the homotopy coherent nerve. See Chapter 16 for a considerably
more detailed description of this adjunction.



CHAPTER 2

Derived functors via deformations

In common parlance, a construction is homotopical if it is invariant under weak equiv-
alence. A generic functor frequently does not have this property. In certain cases the
functor can be approximated by a derived functor, a notion first introduced in homologi-
cal algebra, which is a universal homotopical approximation either to or from the original
functor.

The definition of a total derived functor is simple enough: it is a Kan extension, whose
handedness unfortunately contradicts that of the derived functor, along the appropriate
localization (see Example 1.1.11). But, unusually for constructions characterized by a uni-
versal property, generic total derived functors are poorly behaved: for instance, the com-
posite of the total left derived functors of a pair of composable functors is not necessarily a
total left derived functor for the composite. The problem with the standard definition is that
total derived functors are not typically required to be pointwise Kan extensions. In light of
Theorem 1.3.5, this seems reasonable because homotopy categories are seldom complete
or cocomplete.

One of the selling points of Daniel Quillen’s theory of model categories is that they
highlight classes of functors—the left or right Quillen functors—whose left or right derived
functors can be constructed in a uniform way making the passage to total derived functors
pseudofunctorial. However, it turns out a full model structure is not necessary for this
construction, as suggested by the slogan that “all that matters are the weak equivalences.”

In this chapter, following [DHKS04], we consider functors between homotopical
categories which are equipped with some reasonable collection of arrows called “weak
equivalences.” We define left or right deformations associated to a particular functor and
describe an analogous construction of point-set level left or right derived functors whose
homotopical universal property is independent of the deformation used. The total derived
functors produced in this manner are pointwise and indeed absolute Kan extensions, ex-
plaining why derived functors obtained in this manner behave better than generic ones
satisfying a weaker universal property.

A major benefit to producing well-behaved derived functors without a model structure
is the application to colimit and limit functors of generic shapes. The corresponding di-
agram categories frequently lack an appropriate model structure. We end this chapter by
previewing a result, proven in Chapter 5, that constructs homotopy colimit and homotopy
limit functors of any shape in the general setting of a simplicial model category.

2.1. Homotopical categories and derived functors

The ideas that follow were first introduced in [DHKS04] though, for aesthetic rea-
sons, we have departed slightly from their terminology. A good summary can be found in
[Shu09, §§2-4].

13
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Definition 2.1.1. A homotopical category is a category M equipped with a wide1

subcategoryW such that for any composable triple of arrows

(2.1.2)

·
f //

W∋g f

$$H
HH

HH
HH

HH
HH

HH
HH

TTTT
TTTT

TTTT
T

hg f
TTT

))TTT
TTTT

TT

·

hg∈W

$$H
HH

HH
HH

HH
HH

HH
HH

g

��
·

h
// ·

⇒ f , g, h, hg f ∈ W

if hg and g f are inW so are f , g, h, and hg f .

The arrows in W are called weak equivalences; the condition (2.1.2) is called the
2-of-6 property.

Remark 2.1.3. The 2-of-6 property implies, but is stronger than, the usual 2-of-3 prop-
erty: if any two of f , g, and g f are inW so is the third. Nonetheless, by Remark 2.1.9 and
Lemma 2.1.10, the weak equivalences of any model category satisfy the 2-of-6 property.
Hence, any model category has an underlying homotopical category (cf. Definition 11.3.1).

Examples include spaces with homotopy equivalences or weak homotopy equiva-
lences; chain complexes with chain homotopy equivalences or quasi-isomorphisms; sim-
plicial sets with simplicial homotopy equivalences, weak homotopy equivalences, or equiv-
alences of quasi-categories; categories or groupoids with equivalences; and many others.

Example 2.1.4. Any category can be regarded as a minimal homotopical category
taking the weak equivalences to be the isomorphisms. To justify this, we must show that the
class of isomorphisms in any category satisfies the 2-of-6 property. Consider a composable
triple f , g, h such that g f and hg are isomorphisms. The map g has left inverse f (g f )−1.
Because hg is an isomorphism, g is monic, so this left inverse is also a right inverse. Hence,
g and therefore also f , h, and hg f are isomorphisms.

If there is no other obvious notion of weak equivalence, we use this choice as the
default.

Digression 2.1.5 (homotopy equivalences are weak homotopy equivalences). The fact
that the isomorphisms in any category satisfy the 2-of-6 property is used to prove that
the maps forming a homotopy equivalence f : X ⇄ Y : g of spaces are weak homotopy
equivalences. Because g f ≃ 1 and f g ≃ 1 and πn is homotopy invariant, the horizontal
group homomorphisms

πn(X, x)

f∗ &&LL
LLL

LLL
LL

YYYYYYY
YYYYYYY

YYYY

( f g f )∗
,,YYYYYY

YYYYYYY
YYYYY

(g f )∗ // πn(X, g f (x))
f∗

''PP
PPP

PPP
PPP

P

πn(Y, f (x))
( f g)∗

//

g∗
77ooooooooooo

πn(Y, f g f (x))

are isomorphisms. By the 2-of-6 property, it follows that the left-hand map is also an
isomorphism.

Definition 2.1.6. The homotopy category HoM of a homotopical category (M,W)
is the formal localization ofM at the subcategoryW.

1Wide means containing all the objects; some prefer the term “lluf.” This condition is a cheeky way to say
that all identities and hence, by the 2-of-6 property, all isomorphisms are inW.
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The following explicit construction is due to Pierre Gabriel and Michel Zisman [GZ67,
1.1]. The category HoM has the same objects as M. Its morphisms are equivalences
classes of finite zig-zags of morphisms inM, with only those arrows inW permitted to go
backwards, subject to the following relations:

• adjacent arrows pointing in the same direction may be composed
• adjacent pairs

w
←−

w
−→ or

w
−→

w
←− with w ∈ W may be removed

• identities pointing either forwards or backwards may be removed
There is a canonical identity-on-objects localization functor

M
γ // HoM

characterized by the following universal property: precomposition with γ induces a bijec-
tive correspondence between functors HoM → N and functorsM → N that send weak
equivalences to isomorphisms.

Example 2.1.7. The homotopy category of a minimal homotopical category is isomor-
phic to that category.

Example 2.1.8. The homotopy category of the homotopical category of topologi-
cal spaces and weak homotopy equivalences is equivalent to the homotopy category of
spaces, i.e., to the category of CW complexes and homotopy classes of maps. Quillen
generalized this result to characterize the homotopy category of any model category; see
11.3.13. A further generalization will be given in Theorem 10.5.1.

Remark 2.1.9. It is not generally the case that all arrows ofM which become isomor-
phisms in HoM are weak equivalences. When this is true, the homotopical categoryM is
called saturated. Quillen shows that all model categories are saturated [Qui67, Proposi-
tion 5.1].

Lemma 2.1.10. LetM be a category equipped with any collection of arrowsW. If the
localization, constructed as above, is saturated, thenW satisfies the 2-of-6 property.

Proof. Saturation means that the weak equivalences inM are created by the isomor-
phisms in HoM, which satisfy the 2-of-6 property by the discussion in Example 2.1.4. □

A major obstacle to understanding the category HoM is that it is not necessarily lo-
cally small: one could easily imagine non-equivalent zig-zags from x to y in M snaking
through each object of M. Quillen proves that homotopy categories associated to model
categories are locally small, but even so it is often preferable to try to avoid working in
the homotopy category at all and seek instead to understand which point-set level con-
structions are homotopically meaningful, i.e., descend to functors between the appropriate
homotopy categories.

To be precise, we say a functor between homotopical categories is homotopical if
it preserves weak equivalences. By the universal property of localization, a homotopical
functor F induces a unique functor

M
F //

γ

��

N

δ

��
HoM

F
//___ HoN

commuting with the localizations. We now have sufficient terminology to discuss an im-
portant subtle point.
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Remark 2.1.11. The universal property of the localization functor γ : M→ HoM is 2-
categorical: natural transformations between homotopical functorsM→ N taking values
in a minimal homotopical category N correspond bijectively to natural transformations
between the associated functors HoM → N . But if N is not a minimal homotopical
category, we must distinguish between functors taking values inN and in HoN . A natural
transformation α : F ⇒ F′ between functorsM→ N descends to a unique transformation
δα between functors HoM → HoN . Conversely, a “downstairs” natural transformation
corresponds to a unique map between functorsM→ HoN but it might not be possible to
lift this natural transformation along δ : N → HoN .

Let us now describe a few examples.

Example 2.1.12. Familiar “homotopy invariants” such as homotopy groups πn, homol-
ogy groups Hn, or cohomology rings H∗ are homotopical functors from the homotopical
category of spaces with homotopy equivalences to the appropriate minimal homotopical
category of groups, rings, or the appropriate algebraic gadget. Tautologically, the functor
π∗ that takes a space to its N-indexed family of higher homotopy groups is a homotopical
functor from the homotopical category of spaces and weak homotopy equivalences to the
minimal homotopical category of graded groups (or graded sets).

Example 2.1.13. Any functor F equipped with a natural weak equivalence to or from
the identity functor is homotopical by the 2-of-3 property. For instance, the functor that
maps a space X to the cylinder X×I, where I = [0, 1] is the standard interval, is homotopical
because the canonical projection X × I

∼
−→ X is a natural weak equivalence. Another

example is the path space functor, mapping a space to the space XI of continuous functions
from I to X with the compact-open topology, is homotopical on account of the natural weak
equivalence X

∼
−→ XI that picks out the subspace of constant paths.

Example 2.1.14. An additive functor between abelian categories gives rise to a functor
between the respective categories of chain complexes. If the original functor is exact, the
induced functor preserves quasi-isomorphisms, and is therefore homotopical in this sense.

Example 2.1.15. Let F : A → B be a not necessarily exact additive functor between
abelian categories. Write Ch≥0(A) and Ch≥0(B) for the categories of chain complexes
in A and B concentrated in non-negative degrees. The induced functor F• : Ch≥0(A) →
Ch≥0(B) is homotopical when we take the weak equivalences to be the chain homotopy
equivalences but not necessarily homotopical when we instead take the weak equivalences
to be the quasi-isomorphisms. For a counterexample, take A = B = Ab and consider the
quasi-isomorphism

A•

f•
��

· · · // Z/2 �
� //

��

Z/4 0 //

����

Z/2 �
� //

��

Z/4

����

// 0

B• · · · // 0 // Z/2 // 0 // Z/2 // 0

Applying the functor homZ(Z/2,−) pointwise yields

homZ(Z/2, A)•

homZ(Z/2, f )•
��

· · · // Z/2 � //

��

Z/2 0 //

0
��

Z/2 � //

��

Z/2

0
��

// 0

homZ(Z/2, B)• · · · // 0 // Z/2 // 0 // Z/2 // 0

which is not a quasi-isomorphism; indeed, these chain complexes are not quasi-isomorphic.
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Example 2.1.16. LetD be the category • ←− • −→ •. Consider Top as a homotopical
category with the weak homotopy equivalences and TopD as a homotopical category with
weak equivalences defined pointwise,2 i.e., weak equivalences are natural transformations
between diagrams whose components are weak equivalences of spaces.

The category Top has pushouts, defining a functor TopD → Top. Consider the natural
weak equivalences whose components are displayed vertically.

Dn

∼

��

S n−1 � � //? _oo

1
��

Dn

∼

��
∗ S n−1oo // ∗

Here the top maps are the boundary inclusions. The pushout along the top is S n, which
has non-trivial nth homology, in contrast with the one-point space ∗, the pushout along the
bottom. This shows that the functor colim: MD →M is not homotopical.

Indeed, many interesting functors between homotopical categories are not themselves
homotopical. Derived functors are defined to be the closest homotopical approximation
in some sense. Because the associated comparison natural transformations point in one
direction or another, we obtain dual left- and right-handed notions. Of course, a given
functor might have neither left nor right derived functors. In practice, a functor seldom has
both.

Recall the definition of a total derived functor from Example 1.1.11:

Definition 2.1.17. A total left derived functor LF of a functor F between homotopi-
cal categoriesM and N is a right Kan extension RanγδF

(2.1.18) M
F //

γ

��

N

δ

��
HoM

LF
//___

⇑

HoN

where γ and δ are the localization functors forM and N .

Dually, a total right derived functor RF is a left Kan extension LanγδF. By the uni-
versal property of γ, LF is equivalently a homotopical functor LF : M→ HoN , which is
often called the “left derived functor” of F. Here we will reserve this terminology for a
particular case: sometimes, though by no means always, there exists a lift of a left derived
functor along δ; cf. 2.1.11. [Shu09] appropriately calls these lifts “point-set derived func-
tors” but we call them simply derived functors because they will be the focus of much of
what is to follow.

Definition 2.1.19. A left derived functor of F : M → N is a homotopical functor
LF : M→ N equipped with a natural transformation λ : LF ⇒ F such that δλ : δ · LF ⇒
δ · F is a total left derived functor of F.

2Unfortunately, this terminology has no relation to pointwise Kan extensions. Synonyms in this context
include “objectwise,” which, while more precise, is a tad clunky, and “levelwise,” which we have decided has no
meaning outside of special cases such asD = ∆.
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2.2. Derived functors via deformations

There is a common setting in which derived functors exist and admit a simple con-
struction. Such categories have a collection of “good” objects on wfhich the functor of
interest becomes homotopical and a functorial reflection into this full subcategory. The
details are encoded in the following axiomatization due to [DHKS04].

Definition 2.2.1. A left deformation on a homotopical category M consists of an
endofunctor Q together with a natural weak equivalence q : Q

∼
⇒ 1.

Remark 2.2.2. As in 2.1.13, the functor Q is necessarily homotopical. LetMQ be any
full subcategory of M containing the image of Q. The inclusion MQ → M and the left
deformation Q : M→MQ induce an equivalence between HoM and HoMQ.

The notation is meant to evoke the following class of examples.

Example 2.2.3. IfM is a model category with a functorial cofibration–trivial fibration
factorization, then the action of this factorization on arrows of the form ∅ → x produces a
functor Q whose image lands in the subcategory of cofibrant objects together with a natural
weak equivalence qx : Qx

∼
−→ x.

In [Shu09], the subcategory MQ is called a “left deformation retract.” We prefer
to refer to it as the subcategory of cofibrant objects, trusting the reader to understand
that since we have not specified any model structures, Quillen’s technical definition is not
what we mean. We like this term for aesthetic reasons and because it conjures the correct
intuition in common examples.

Definition 2.2.4. A left deformation for a functor F : M→ N between homotopical
categories consists of a left deformation forM such that F is homotopical on an associated
subcategory of cofibrant objects. When F admits a left deformation, we say that F is left
deformable.

Example 2.2.5. The geometric realization functor | − | : Top∆op
→ Top fails to pre-

serve pointwise homotopy equivalences. In [Seg74, Appendix A], Graeme Segal describes
three left deformations for geometric realization into the subcategory of “good” simpli-
cial spaces, in which the inclusions corresponding to the degeneracy maps are closed
(Hurewicz) cofibrations.

In the context of model categories, Ken Brown’s lemma (proven in 11.3.14) shows
that any left Quillen functor is left deformable with respect to the subcategory of cofibrant
objects (meant here in the technical sense).

Lemma 2.2.6 (Ken Brown’s lemma). A left Quillen functor (i.e., a functor that pre-
serves cofibrations, trivial cofibrations, and colimits, or at least the initial object) preserves
weak equivalences between cofibrant objects.

Remark 2.2.7. To state certain results below, it is necessary to associate a chosen
subcategory of cofibrant objects to a left deformation on a homotopical category. To that
end, we observe that any left deformable functor has a maximal subcategory on which it
is homotopical [DHKS04, 40.4]; the proof of this fact makes explicit use of the 2-of-6
property.

Henceforth, when we say thatM has a specified left deformation, we tacitly choose
a subcategory of cofibrant objects as well, but we do not insist upon the maximal choice,
which is frequently not the most convenient.



2.2. DERIVED FUNCTORS VIA DEFORMATIONS 19

Our first main result proves that left deformations can be used to construct left derived
functors.

Theorem 2.2.8 ([DHKS04, 41.2-5]). If F : M→ N has a left deformation q : Q
∼
⇒ 1,

then LF = FQ is a left derived functor of F.

Proof. Write δ : N → HoN for the localization. We must show that the functor δFQ
and natural transformation δFq : δFQ ⇒ δF satisfy the appropriate universal property in
HoNHoM, or equivalently, by 2.1.11 above, in the full subcategory of HoNM spanned by
the homotopical functors. Suppose G : M → HoN is homotopical and consider γ : G ⇒
δF. Because G is homotopical and q : Q⇒ 1 is a natural weak equivalence, Gq : GQ⇒ G
is a natural isomorphism. Using naturality of γ, it follows that γ factors through δFQ as

G
(Gq)−1
+3 GQ

γQ +3 δFQ
δFq +3 δF

To prove uniqueness, suppose γ factors as

G
γ′ +3 δFQ

δFq +3 δF

Note that γ′Q is uniquely determined: qQ is a natural weak equivalence between objects in
MQ. Since F is homotopical onMQ, this means that FqQ is a natural weak equivalence
and thus δFqQ is an isomorphism. Uniqueness of γ′ now follows by naturality:

GQ
γ′Q +3

Gq

��

δFQ2

δFQq

��
G

γ′
+3 δFQ

Because q is a natural weak equivalence and the functors G and δFQ are homotopical, the
vertical arrows are natural isomorphisms. □

Write LDef for the 2-category whose objects are homotopical categories equipped
with specified left deformations and subcategories of cofibrant objects, whose morphisms
(M,Q) → (M′,Q′) are functors that restrict to homotopical functors MQ → M

′
Q′ , and

whose 2-cells are arbitrary natural transformations between parallel functors. In the termi-
nology introduced above, a 1-cell in LDef is a left deformable functor with respect to the
specified left deformations that preserves cofibrant objects.

Theorem 2.2.9. There is a pseudofunctor

L : LDef → Cat
that sends a homotopical category to its homotopy category, a left deformable functor to
its total left derived functor, and a natural transformation to its derived natural transfor-
mation.

Proof. The details are exactly as in [Hov99, 1.3.7-9], which proves the analogous
statement for model categories and left Quillen functors. The main point is that there are
natural weak equivalences

LG · LF = GQ′ · FQ
Gq′ +3 GFQ = L(GF) L1M = Q

q +3 1M

that descend to natural isomorphisms LG · LF � L(GF) and L1M � 1HoM. Note the
first map is a weak equivalence only because we assumed that F maps MQ into M′Q′ , a
subcategory on which G is homotopical. □
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Remark 2.2.10. The proof of the previous theorem, which fixes a defect mentioned in
the introduction to this chapter, depends on our particular construction of total left derived
functors. Indeed, it is not true in general that the composite of two total left derived functors
is a total left derived functor for the composite.

There are obvious dual notions of right deformation r : 1
∼
⇒ R and right derived

functor. Here the notation is meant to suggest fibrant replacement. As before, we refer to
a full subcategoryMR containing the image of R as the subcategory of fibrant objects and
trust the reader to remember that we are not presuming that these are the fibrant objects in
any model structure. By Ken Brown’s lemma, if F is right Quillen, then F preserves weak
equivalences between fibrant objects and hence RF = FR is a right derived functor.

Left and right Quillen functors frequently occur in adjoint pairs, in which case their
total left and right derived functors form an adjunction between the appropriate homotopy
categories. An analogous result is true for deformable functors. An adjoint pair F ⊣ G
with F left deformable and G right deformable is called a deformable adjunction.

Theorem 2.2.11 ([DHKS04, 44.2]). If F : M
//

⊥ N : Goo is a deformable adjunc-
tion, then the total derived functors form an adjunction

LF : HoM
//

⊥ HoN : RGoo

Furthermore, the total derived adjunction LF ⊣ RG is the unique adjunction compatible
with the localizations in the sense that the diagram of hom-sets

N(Fm, n) �M(m,Gn)
δ �� γ��

HoN(Fm, n) HoM(m,Gn)
Fq∗ �� Gr∗��

HoN(LFm, n) � HoM(m,RGn)

commutes for each pair m ∈ M, n ∈ N .

Remark 2.2.12. The proofs of Theorem 2.2.11 and the analogous result for Quillen
adjunctions make use of the particular construction of the associated total derived func-
tors. For Quillen adjunction, one shows that the total left derived functors constructed in
the usual way preserve homotopies between fibrant-cofibrant objects [Hov99, 1.3.10]. For
deformable adjunctions, one uses the deformations to construct unit and counit maps in the
homotopy categories that define a partial adjunction, exhibiting adjoint correspondences
between pairs Fm → n and n → Gm with m ∈ MQ and n ∈ NR. Because the deforma-
tions define equivalences of categories HoM � HoMQ and HoN � HoNR, this partial
adjunction extends to a complete adjunction.

Our point is that both standard arguments are surprisingly fiddly. Hence, the author
was surprised to learn that a formal proof is available. Attempts to show that the total
derived functors are adjoints using their defining universal properties alone have not suc-
ceeded. However, when these derived functors are constructed via deformations, they turn
out to satisfy a stronger universal property, which is enough to prove this result.

Recall a pointwise right Kan extension is one which is constructed as a limit in the
target category. From this definition, one would not expect a total left derived functor to be
a pointwise Kan extension. Nonetheless:

Proposition 2.2.13. The total left derived functor of a left deformable functor is a
pointwise right Kan extension.
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Proof. If F : M→ N is left deformable, it has a total left derived functor (δFQ, δFq)
constructed using a left deformation (Q, q) and the localization functor δ. Because Kan
extensions are characterized by a universal property, any total derived functor LF is iso-
morphic to this one.

Our proof will show that LF is an absolute right Kan extension meaning a right Kan
extension that is preserved by any functor H : HoN → E. We use Remark 2.1.11 to transfer
the desired universal property to the subcategory of homotopical functors in EM. To show
that (HδFQ,HδFq) is a right Kan extension of HδF along γ : M → HoM, consider a
homotopical functor G : M → E equipped with a natural transformation α : G ⇒ HδF.
Because G sends weak equivalences to isomorphisms, α factors as

G α +3

(Gq)−1

��

HδF

GQ
αQ
+3 HδFQ

HδFq

KS

Suppose α also factors as HδFq · β for some β : G ⇒ HδFQ. The components of HδFq
at objects of MQ are isomorphisms: F preserves weak equivalences between objects in
MQ, δ inverts them, and any functor H preserves the resulting isomorphisms. Hence, the
components of β are uniquely determined on the objects inMQ. But both the domain and
codomain of β are homotopical functors and every object inM is weakly equivalent to one
inMQ so the isomorphisms Gq : GQ � G and HδFQq : HδFQ2 � HδFQ imply that β is
unique. □

Remark 2.2.14. This is the same argument used to prove Theorem 2.2.8, enhanced by
the trivial observation that any functor H preserves isomorphisms.

The main theorem from [Mal07] illustrates that what matters is not the details of the
construction of the total derived functors, but rather that they satisfy the stronger universal
property of being absolute Kan extensions. Once the statement is known, the proof is
elementary enough to leave to the reader:

Exercise 2.2.15. Suppose F ⊣ G is an adjunction between homotopical categories and
suppose also that F has a total left derived functor LF, G has a total right derived functor
RG, and both derived functors are absolute Kan extensions. Show that LF ⊣ RG. That
is, show the total derived functors form an adjunction between the homotopy categories,
regardless of how these functors may have been constructed.

Remark 2.2.16. A more sophisticated categorical framework allows us to combine
Theorem 2.2.9 and its dual, Theorem 2.2.11, and a further result: if a functor is both left
and right deformable with respect to a left deformation that preserves fibrant objects or
a right deformation that preserves cofibrant objects, then the total left and right derived
functors are isomorphic.

To this end, define a double category Der whose objects are deformable categories:
homotopical categories equipped with a left deformation (Q,MQ) and a right deformation
(R,MR) such that either R preservesMQ or Q preservesMR. Horizontal 1-cells are right
deformable functors that preserve fibrant objects; vertical 1-cells are left deformable func-
tors that preserve cofibrant objects; and 2-cells are arbitrary natural transformations in the
appropriate squares. The results mentioned above are subsumed by the following theorem:
the map that sends a homotopical category to its homotopy category and the functors to
their total derived functors defines a double pseudofunctor Der → Cat landing in the
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double category of categories, functors, and natural transformations. See [Shu11, §8] for
proof.

2.3. Classical derived functors between abelian categories

It is worthwhile to take a moment to explain how this theory fits with the classical
definition and construction of derived functors in homological algebra.

The category ModR of left R-modules has the following property: for any R-module A
there exists a projective module P together with an epimorphism P ↠ A. By an inductive
argument, any module admits a projective resolution, an acyclic (except in degree zero)
bounded below chain complex of projectives P• that maps quasi-isomorphically to the
chain complex concentrated in degree zero at the module A. A more refined version of
this construction starts with any bounded below chain complex A• and produces a chain
complex of projectives P• together with a quasi-isomorphism P• → A•.

Making a careful choice of projective resolutions, this procedure defines a functor
Q : Ch≥0(R) → Ch≥0(R) together with a natural quasi-isomorphism q : Q ⇒ 1; in other
words, taking projective resolutions defines a left deformation for the homotopical category
of bounded below chain complexes and quasi-isomorphisms into the subcategory of chain
complexes of projective modules. Dually, any R-module embeds into an injective module;
iterating this procedure produces an injective resolution. When care is taken with the
construction, injective resolutions assemble into a right deformation r : 1⇒ R on Ch≥0(R),
the category of bounded below cochain complexes.

Any additive functor F : ModR → ModS induces obvious functors F• : Ch≥0(R) →
Ch≥0(S ) and F• : Ch≥0(R) → Ch≥0(S ) that preserve chain homotopies and hence chain
homotopy equivalences. Any quasi-isomorphism between non-negatively graded chain
complexes of projective objects is a chain homotopy equivalence so is preserved by F•.
Dually, any quasi-isomorphism between cochain complexes of injective objects is a chain
homotopy equivalence so is preserved by F•. Thus, the functor F• has a left derived functor
and F• has a right derived functor constructed as in 2.2.8. The functor that is classically
referred to as the left derived functor of F : ModR →ModS is the composite

ModR
deg0 // Ch≥0(R)

LF• // Ch≥0(S )
H0 // ModS

which takes the projective resolution of an R-module A, applies F•, and then computes the
0th homology.

Remark 2.3.1. The reason one typically only forms left derived functors of right exact
functors and right derived functors of left exact functors is that these hypotheses produce
long exact sequences from short exact sequences: Given a short exact sequence 0 → A →
B → C → 0 of left R-modules there is a short exact sequence of projective resolutions
0 → QA → QB → QC → 0. Because QC is projective, this short exact sequence
is split, and hence preserved by any additive functor F. From the short exact sequence
0→ F•QA→ F•QB→ F•QC → 0 we get a long exact sequence of homology groups.

· · · → H1(F•QB)→ H1(F•QC)→ H0(F•QA)→ H0(F•QB)→ H0(F•QC).

When F is right exact, it preserves exactness of Q1A→ Q0A→ A→ 0 which implies that
H0(F•QA) = FA so the above long exact sequence becomes

· · · → H2(F•QC)→ H1(F•QA)→ H1(F•QB)→ H1(F•QC)→ FA→ FB→ FC → 0.
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Remark 2.3.2. Similar constructions can be given for more general abelian categories,
presuming that they have enough projectives or enough injectives. However, it is not al-
ways possible to construct functorial deformations into chain complexes of projectives or
cochain complexes of injectives. In the absence of functorial deformations, this construc-
tion defines a total derived functor but not a point-set level functor.

2.4. Preview of homotopy limits and colimits

In closing, we preview a theorem whose statement and proof will motivate much of
the next three chapters. Consider diagrams of shape D in a complete and cocomplete
homotopical category M. As illustrated by Example 2.1.16, it is likely that the colimit
and limit functors MD → M will not be homotopical with respect to pointwise weak
equivalences in MD. Because the former functor is cocontinuous and the latter functor
is continuous, we hope to be able to construct a left derived functor of colim and a right
derived functor of lim, in which case we call the derived functors hocolim and holim. But
even if M is a model category, it is likely that MD will not have model structures such
that colim or lim are, respectively, left and right Quillen. Hence, we need a mechanism
for constructing derived functors which does not require a full model structure. This is
precisely what the theory of deformations provides.

Note that in the classical literature, a “homotopy colimit” or “homotopy limit” of-
ten means something else: it is an object of M that satisfies an appropriate homotopical
universal property, which makes sense only when the hom-sets of M have some sort of
topological structure. To make this precise, we ask at minimum that the category M is
simplicially enriched. In order for the desired representing object to exist, we also ask
thatM is tensored and cotensored over simplicial sets. In the next chapter, we give pre-
cise definitions of these concepts.

A priori the simplicial enrichment onM need not interact meaningfully with the ho-
motopical structure. A common setting that provides the desired compatibility is that of a
simplicial model category, introduced at the end of Chapter 3. With these hypotheses it is
possible to construct homotopy colimit and limit functors as point-set derived functors of
the colimit and limit functors that also satisfy the appropriate homotopical universal prop-
erties. Note that our constructions put no restrictions on the categoryD except smallness.

More precisely, in Chapter 5 below, we will see how to define a left deformation for
colim and a right deformation for lim using the two-sided bar and cobar constructions
introduced in Chapter 4. We also show that the bar and cobar constructions defining the
homotopy colimit and homotopy limit functors also have an appropriate “local” universal
property, representing “homotopy coherent cones” under or over a diagram. The main
result of Chapter 5 is a precise statement and proof of this claim, following [Shu09].

First, to explain what we mean by the simplicial enrichment, tensors, and cotensors
mentioned above, and because this material will be needed later, we embark upon a brief
detour through enriched category theory.





CHAPTER 3

Basic concepts of enriched category theory

Most of the categories one encounters in mathematics are locally small, meaning that
the collection of arrows between any two fixed objects is a set. Frequently in examples,
these hom-sets admit additional compatible structures. These are the purview of enriched
category theory, which we introduce in this chapter.

Why bother with enrichments? One answer is that it seems silly to forget entirely about
structures that are natural present in many examples, particularly when, as we shall see, a
fully-developed theory is available. Another answer, directed in particular to homotopy
theorists, is that ordinary unenriched categories are too coarse to describe all homotopical
phenomena.

For instance, a product of a family of objects mα in a categoryM is given by a repre-
sentation m for the functorMop → Set displayed on the right:

M(−,m)
�
−→

∏
α

M(−,mα).

By the Yoneda lemma, a representation consists of an object m ∈ M together with maps
m → mα for each α that are universal in the sense that for any collection x → mα ∈ M,
each of these arrows factors uniquely along a common map x→ m. But in certain contexts
we might prefer to require only that the triangles

(3.0.1) x

∃

���
�
�

!!B
BB

BB
BB

B

m //
≃

mα

commute “up to homotopy.” In order for this to make sense, we are most likely assum-
ing that each hom-set is equipped with a topology; we write M(x,mα) to distinguish the
space from the set. A homotopy between two arrows x → mα in the underlying category
M means a path in the space M(x,mα) between the corresponding points. Now we can
define the homotopy product to be an object m equipped with a natural (weak) homotopy
equivalence

M(x,m)→
∏
α

M(x,mα)

for each x ∈ M. Surjectivity on path components implies the existence and homotopy
commutativity of the triangles (3.0.1).

Unusually for homotopy limits (cf. Remark 6.3.1) this homotopy product is a product
in the homotopy category hM of the enriched categoryM. Since we have not specified a
class of weak equivalences to invert, this notion of homotopy category is distinct from the
one introduced in the previous chapter; we will compare these two notions in section 10.5.
Here, the homotopy category hM of the topological categoryM has a simple definition:

25
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hM has the same objects asM but hom-sets

hM(x, y) := π0M(x, y)

obtained by applying the path-components functor π0 : Top→ Set. Because π0 commutes
with products and is homotopical (takes weak equivalences to isomorphisms), it follows
that a homotopy product is a product in the homotopy category hM. Similarly, a homotopy
coproduct is a coproduct in the homotopy category.

To place the above discussion on firm footing, we will now describe how to make sense
of categorical notions in a way that is compatible with whatever extra structures might be
present on the collection of morphisms between two fixed objects.

3.1. A first example

Consider, the category ModR of left modules over a fixed, not necessarily commuta-
tive, ring R. For each pair A, B ∈ModR, the set ModR(A, B) of homomorphisms from A to
B is itself an abelian group, which we denote ModR(A, B): the null homomorphism serves
as the identity and the sum of two homomorphisms is defined pointwise using the addi-
tion in B. Furthermore, composition in the category ModR distributes over this hom-wise
addition: in other words, each composition function

ModR(B,C) ×ModR(A, B)
◦
−→ModR(A,C)

in Set is Z-bilinear, inducing a group homomorphism

ModR(B,C) ⊗Z ModR(A, B)
◦
−→ModR(A,C)

in Ab.
The group Z plays a special role in Ab. Firstly, it represents the forgetful functor

Ab → Set; homomorphisms Z → A correspond to elements of A. In particular, we
can represent the identity at A, not to be confused with the unit for the addition law on
ModR(A, A), by an arrow

Z
idA
→ModR(A, A)

in the category Ab. Furthermore, Z is a unit for the monoidal product

− ⊗Z − : Ab × Ab→ Ab

in the sense that tensoring on the left or the right with Z is naturally isomorphic to the
identity functor. These structures allow us to express the usual composition axioms dia-
grammatically, i.e., we encode the associativity and unit laws by asking that certain dia-
grams commute inside Ab. To summarize these facts, we say the category ModR admits
the structure of a category enriched over (Ab,⊗Z,Z).

3.2. The base for enrichment

Before we give the general definition, we must precisely describe the appropriate con-
text for enrichment. As the previous example suggests, the base category over which we
enrich should be a symmetric monoidal category (V,×, ∗). Here, V is an ordinary cat-
egory, − × − : V × V → V is a bifunctor called the monoidal product, and ∗ ∈ V is
called the unit object. We write “×” for the monoidal product because it will be the carte-
sian product in our main examples: the categories of simplicial sets, spaces, categories,
and sets. This notation will also help distinguish the monoidal product from the tensor,
defined in section 3.7, of an object of V with an object in some V-category. But in other
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examples (such as Ab) alternate monoidal products (e.g. ⊗Z) are preferred, and we stress
that we do not mean to suggest that the monoidal product is necessarily the cartesian one.

A symmetric monoidal category is also equipped with specified natural transforma-
tions

(3.2.1) v × w � w × v u × (v × w) � (u × v) × w ∗ × v � v � v × ∗

expressing symmetry, associativity, and unit conditions on the monoidal product. These
must satisfy a handful of coherence conditions, described in [ML98, XI]. The main theo-
rem is that these natural transformations compose to give a unique isomorphism between
any two expressions for a particular product of objects. In practice, this naturality means
that we need not concern ourselves with particular parenthesizations or orderings; hence,
we will not emphasize the role of the structural isomorphisms (3.2.1) here.

Example 3.2.2. The category sSet is symmetric monoidal with the cartesian product,
computed pointwise, and the terminal simplicial set denoted by ∆0 or ∗.

Example 3.2.3. Here are a few other symmetric monoidal categories:
• Any category with finite products is symmetric monoidal with the terminal ob-

ject serving as the unit: e.g., Top, Set, Cat, Gpd.
• (ModR,⊗R,R) for any commutative ring R; e.g., (Ab,⊗Z,Z) or (Vectk,⊗k, k).
• Ch≥0(R) or Ch•(R), the category of unbounded chain complexes of modules

over a commutative ring. The monoidal product is the tensor product, with the
symmetry isomorphism expressing graded commutativity. The unit is the chain
complex consisting of the commutative ring R concentrated in degree zero.

• The homotopical categories of S -modules, symmetric spectra, and orthogonal
spectra are all symmetric monoidal categories with homotopy categories equiv-
alent to the stable homotopy category [EKMM95, HSS00, MMSS01].

• (Set∗,∧, ∗ ⊔ ∗) and other examples of this type as described in 3.3.14 below.

In all of these examples, the categoryV is complete and cocomplete. For convenience,
let us always suppose without further comment that this is the case.

3.3. Enriched categories

Definition 3.3.1. AV-categoryD consists of
• a collection of objects x, y, z ∈ D
• for each pair x, y ∈ D, a hom-objectD(x, y) ∈ V
• for each x ∈ D, a morphism idx : ∗ → D(x, x) inV
• for each triple x, y, z ∈ D, a morphism ◦ : D(y, z) ×D(x, y)→ D(x, z) inV

such that the following diagrams commute for all x, y, z,w ∈ D:

D(z,w) ×D(y, z) ×D(x, y)

◦×1
��

1×◦ // D(z,w) ×D(x, z)

◦

��
D(y,w) ×D(x, y) ◦ // D(x,w)

D(x, y) × ∗
1×idx //

�
((PP

PPP
PPP

PPP
P

D(x, y) ×D(x, x)

◦

��

D(y, y) ×D(x, y)

◦

��

∗ × D(x, y)
idy×1oo

�
vvnnn

nnn
nnn

nnn

D(x, y) D(x, y)
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Here the indicated isomorphisms are the maps (3.2.1) specified by the symmetric monoidal
structure onV. An associativity isomorphism is omitted from the first diagram.

Example 3.3.2. A one-object Ab-category is a ring with identity. The unique hom-set
is the set of endomorphisms of the only object. The composition law defines multiplication
and a multiplicative identity. The enrichment defines the addition law and additive identity.
The axioms listed above ensure that multiplication distributes over addition, and so on.

Example 3.3.3. Topological spaces are naturally enriched over groupoids. Given
spaces X and Y , define the hom-object from X to Y to be the groupoid whose objects
are continuous maps X → Y and whose morphisms are homotopy classes of homotopies
between these maps.

Example 3.3.4. When V has copowers of the unit object that are preserved by the
monoidal product in each variable—e.g., when V is cocomplete and closed in the sense
defined in 3.3.6—any unenriched category C has an associated free V-category. Its ob-
jects are those of C. The hom-object from a to b is the copower ⊔C(a,b) ∗. The morphisms
identifying the identities are given by including ∗ at the component of the identity arrow in
⊔C(a,a) ∗. Because the monoidal product preserves coproducts in each variable, the domains
of the composition morphisms have the form(

⊔
C(b,c)
∗

)
×

(
⊔
C(a,b)

∗

)
� ⊔
C(b,c)

(
∗ ×

(
⊔
C(a,b)

∗

))
� ⊔
C(b,c)

(
⊔
C(a,b)

∗ × ∗

)
cong ⊔

C(b,c)×C(a,b)
∗

Hence, the composition morphism reindexes the coproduct along the composition function
C(b, c) × C(a, b)→ C(a, c).

When V is Cat, Top, or sSet, free V-categories have discrete hom-sets in the sense
appropriate to each category.

Example 3.3.5. The category sSet is enriched over itself using the hom-spaces YX

defined in Example 1.5.6. The composition map ZY × YX → ZX is defined as follows: the
composite of a pair of n-simplices f : ∆n × X → Y and g : ∆n × Y → Z is the n-simplex

∆n × X ∆×1 // ∆n × ∆n × X
1× f // ∆n × Y

g // Z,

where the arrow ∆ denotes the diagonal map.

This is an instance of a common class of examples worthy of special mention.

Definition 3.3.6 (closed monoidal categories). When each functor − × v : V → V
admits a right adjointV(v,−), the right adjoints in this family of parameterized adjunctions
assemble in a unique way into a bifunctor

V(−,−) : Vop ×V → V

such that there exist isomorphisms

(3.3.7) V(u × v,w) � V(u,V(v,w)) ∀ u, v,w ∈ V

natural in all three variables [ML98, IV.7.3].
In this case,V is enriched over itself using the internal homsV(−,−). The required

composition law
V(v,w) ×V(u, v)→V(u,w)

is adjunct under − × u ⊣ V(u,−) to the composite

(3.3.8) V(v,w) ×V(u, v) × u 1×ϵ // V(v,w) × v ϵ // w
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where the epsilons are components of the counits of the appropriate adjunctions. The iden-
tities are the maps ∗ → V(v, v) adjunct under − × v ⊣ V(v,−) to the natural isomorphism

∗ × v
�
→ v.

Triples (V,×, ∗) of this form are called closed symmetric monoidal categories. In
the special case where the monoidal product is the cartesian product on V, one says that
V is cartesian closed.

Remark 3.3.9. In fact, the hom-sets V(−,−) in the isomorphism (3.3.7) can be re-
placed with the internal homs to obtain an analogous isomorphism

V(u × v,w) � V(u,V(v,w))

inV. This follows from the associativity of the monoidal product and the Yoneda lemma,
as we will demonstrate in section 3.7.

Example 3.3.10. In Example 1.5.6, we defined the hom-spaces so that the condition
(3.3.7) is satisfied; hence sSet is cartesian closed.

Example 3.3.11. The category of modules over a commutative ring is closed. Note that
multiplication by r ∈ R is not R-linear unless r is in the center of the ring. In particular, Ab
and Vectk are closed symmetric monoidal categories, and hence self-enriched.

Example 3.3.12. The category Cat is cartesian closed: functors and natural transfor-
mations between two fixed categories themselves assemble into a category. A category,
such as Cat, that is Cat-enriched is called a 2-category. In a generic 2-category, the mor-
phisms in the hom-categories are called 2-cells. The term 1-cell is used for the objects of
the hom-categories, i.e., the arrows in the underlying category, defined in 3.4.5. Objects
are also called 0-cells.

Example 3.3.13. The category of all topological spaces is not cartesian closed. How-
ever, there exist several convenient categories of spaces that are cartesian closed, complete
and cocomplete, and large enough to contain the CW complexes, though not all topological
spaces.

We will devote section 6.1 to a thorough exploration of this topic. For now, let Top
denote some convenient category of spaces.

The closed symmetric monoidal category Set∗ of based sets, which is isomorphic to
the slice category ∗/Set, is a special case of a general construction.

Construction 3.3.14. For any cartesian closed symmetric monoidal category (V,×, ∗)
which we also suppose to be complete and cocomplete, there is a general procedure for
producing a closed symmetric monoidal category (V∗,∧, S 0), whereV∗ is the category of
based objects in V, i.e., the slice category under ∗, the terminal object of V. The unit
S 0 is defined to be ∗ ⊔ ∗, where the coproduct is taken in V, not in V∗. The basepoints
assigned to two objects v and w can be used to define a canonical map v ⊔ w → v × w.
Define the smash product to be the pushout

(3.3.15) v ⊔ w //

�� ⌜

v × w

��
∗ // v ∧ w

in V. Because V is cartesian closed, the functors v × − preserve colimits. It follows
that this construction is associative up to isomorphism. footnoteThe smash product is not
associative in the (inconvenient) category of all based spaces; cf. Lemma 6.1.3.
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The hom-objects are defined to be the pullbacks

V
∗
(v,w) //

��

⌟
V(v,w)

��
V(∗, ∗) // V(∗,w)

of the maps given by pre- and postcomposing1 with the basepoint inclusions for v and w.
In examples, this internal hom is the object of basepoint-preserving maps from v to w, and
its basepoint is the constant map.

There is a disjoint basepoint–forgetful adjunction

(−)+ : V
//

⊥ V∗ : Uoo

whose left adjoint is defined to be the coproduct with the terminal object.

Lemma 3.3.16. WhenV is a cartesian closed symmetric monoidal category, the func-
tor (−)+ : V → V∗ is strong monoidal, i.e.,

S 0 � (∗)+ v+ ∧ w+ � (v × w)+
and these natural isomorphisms are appropriately associative and unital.

Proof. The unit isomorphism is tautologous. By definition, the object v+ ∧ w+ is the
cofiber of

v+ ⊔ w+ // (v ⊔ ∗) × (w ⊔ ∗) � v × w ⊔ v × ∗ ⊔ ∗ × w ⊔ ∗ × ∗ � v × w ⊔ v ⊔ w ⊔ ∗

Here, the distributivity isomorphisms require that the monoidal structure on V is carte-
sian closed. The map avoids the first component of the coproduct; hence, v+ ∧ w+ is the
composite pushout

v+ ⊔ w+

�� ⌜

// // v ⊔ w ⊔ ∗

��

//

⌜

v × w ⊔ v ⊔ w ⊔ ∗

��
∗ // ∗ // v × w ⊔ ∗ = (v × w)+

which is seen to have the stated description because the top left arrow is an epimorphism
and thus the left-hand pushout is the terminal object. □

Example 3.3.17. Taking Top to be a convenient category of spaces, the category
(Top∗,∧, S 0) of based spaces is closed symmetric monoidal with respect to the smash
product as is (sSet∗,∧, ∂∆1). Note these monoidal categories are not cartesian; the smash
product is not the categorical product.

3.4. Underlying categories of enriched categories

An example will motivate a general definition. For a fixed discrete group G, the functor
category TopG of G-spaces and G-equivariant maps has two natural enrichments, which
we distinguish by means of special notation. Firstly, the category TopG is topologically
enriched: the set of G-equivariant maps is a subspace TopG(X,Y) of the space Top(X,Y)
of all continuous maps from X to Y and is topologized as in Remark 6.1.7.

The category TopG is also symmetric monoidal: the product of two G-spaces is given
the diagonal action, and the one-point space is given the trivial action to serve as the unit

1We will explain precisely what we mean by this in (3.4.14) below; your intuition is correct.
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object. If X and Y are G-spaces, the space Top(X,Y) of all continuous maps has a canonical
G-action, by conjugation:

g ∈ G, f ∈ Top(X,Y), x ∈ X ⇝ g · f (x) := g f (g−1x).

We write Top
G

(X,Y) for this G-space. With these definitions TopG is cartesian closed.
Morally, the category TopG is the underlying (unenriched) category of both TopG

and Top
G

, but it is unclear whether this intuition can be formalized: the naı̈ve notion of
category underlying Top

G
, obtained by forgetting the topology and the G-action, returns

something larger. It turns out that there is a general procedure for extracting an underlying
category from an enriched category that gives the desired notion in both examples. To
discover the correct definition, it is helpful to generalize.

To define the underlying category of a V-category, we first need some “underlying
set” functorV → Set. In several examples, in particular for Ab, sSet, Top, Top∗, or Cat,
the unit object for our preferred monoidal structure represents the “underlying set” functor
that takes an abelian group, simplicial set, space, or category to its underlying set, set of
vertices, set of points, or set of objects. Generalizing, we might be define the “underlying
set” functor to be this represented functor

V(∗,−) : V → Set
and apply it to the hom-objects of a V-category to define the underlying category. Fol-
lowing your nose leads to the correct definition, but it is helpful to isolate which properties
of the functor V(∗,−) facilitate this “change of base” construction because we will use it
more generally.

Definition 3.4.1. A functor F : V → U between symmetric monoidal categories
(V,×, ∗) and (U,⊗,1) is lax monoidal if there exist associative and unital natural trans-
formations

(3.4.2) Fv ⊗ Fv′ → F(v × v′) and 1→ F(∗).

For example, the functor (−)+ : (V,×, ∗) → (V∗,∧, S 0) of Construction 3.3.14 is
strong monoidal, meaning lax monoidal with natural isomorphisms (3.4.2).

Lemma 3.4.3 (change of base). In the presence of any lax monoidal functor F : V →
U, anyV-category has an associatedU-category with the same objects.

Proof. LetD
V

be aV-category. Define aU-categoryD
U

with the same objects and
with hom-objectsD

U
(x, y) = FD

V
(x, y). The composition and unit maps

FD
V

(y, z) ⊗ FD
V

(x, y)→ F(D
V

(y, z) ×D
V

(x, y))
F(◦) // FD

V
(x, z) = D

U
(x, z)

1 // F(∗)
F(idx) // FD

V
(x, x) = D

U
(x, x)

employ the lax monoidal structure on F. □

The point of course is thatV(∗,−) is lax monoidal. For any objects v,w ∈ V, there is
a function

(3.4.4) V(∗, v) ×V(∗,w)→V(∗, v × w),

natural in both v and w, defined by applying the bifunctor × to the pair of morphisms
∗ → v and ∗ → w and precomposing with the isomorphism ∗ � ∗×∗. WhenV is cartesian
monoidal (3.4.4) is a bijection, but in any case we can use Lemma 3.4.3 to change the base
for the enrichment fromV to Set.
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Definition 3.4.5. The underlying category C0 of aV-category C has the same objects
and has hom-sets

C0(x, y) := V(∗,C(x, y)).
We define the identities idx ∈ C0(x, x) to be the specified morphisms idx ∈ V(∗,C(x, x)).
Composition is defined hom-wise by the following arrow in Set:

(3.4.6) C0(y, z) × C0(x, y) //__________________ C0(x, z)

V(∗,C(y, z)) ×V(∗,C(x, y)) // V(∗,C(y, z) × C(x, y)) // V(∗,C(x, z))

The first arrow is (3.4.4); the second isV(∗,−) applied the composition morphism for C.

Example 3.4.7. Let us determine the underlying categories of the enriched categories
TopG and Top

G
. For both, the objects are G-spaces. By Definition 3.4.5, the hom-set

from X to Y in the underlying category of the Top-enriched category TopG is the set
Top(∗,TopG(X,Y)), i.e., the set of points of TopG(X,Y), i.e., the set of G-equivariant
maps X → Y . So the underlying category of TopG is TopG. By contrast, in the under-
lying category of the TopG-enriched category Top

G
, the hom-set from X to Y is the set

TopG(∗,Top
G

(X,Y)). Because ∗ is given the trivial action, G-equivariant maps from ∗ to
Top

G
(X,Y) are precisely G-fixed points. Fixed points for the conjugation action are pre-

cisely G-equivariant maps,2 so the underlying category is again TopG, as desired.

Remark 3.4.8. This discussion generalizes. SupposeV is a complete and cocomplete
closed symmetric monoidal category such as Set, Top, Top∗, sSet, sSet∗, Vectk, ModR,
Ab, and so on. As observed by Ross Street and others, under these hypothesesVG inherits
a canonical closed symmetric monoidal structure in such a way that the forgetful functor
U : VG → V preserves the unit, tensor product, and internal homs.3 As above, the hom-
objectVG(c, d) agrees withV(c, d) and is equipped with a canonical G-action. For formal
reasons, the underlying category is the originalVG.

The fact that the underlying category of the TopG-enriched category Top
G

was TopG

is a special instance of the following result which says that the underlying category of a
closed monoidal category is the category itself.

Lemma 3.4.9. If (V,×, ∗) is a closed symmetric monoidal category, the underlying
category of theV-categoryV isV.

Proof. From the adjunction (3.3.7) and the unit isomorphism,

(3.4.10) V(∗,V(x, y)) � V(∗ × x, y) � V(x, y),

so the hom-sets of the underlying category of V agree with those of V. By the usual
argument, any two putative identities for the same object must coincide, so it remains to
show that composition inV agrees with the definition (3.4.6). Writing this down carefully
is somewhat trickier than one might expect.

On account of the isomorphism (3.4.10), we agree to use the same label for corre-
sponding morphisms, e.g.,

∗
f
→V(x, y) ↭ f : x→ y.

2This gives a mnemonic for remembering the notation: TopG(X,Y) = (Top(X,Y))G = (Top
G

(X,Y))G .
3Because U is given by precomposing by the inclusion e → G of the trivial group into the group G and V

is complete and cocomplete, U has both left and right adjoints given by the left and right Kan extension.
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Writing ϵ x
y : V(x, y) × x → y for the component at y of the counit of the adjunction for x,

the latter f is defined in terms of the former by:

(3.4.11) x � ∗ × x
f×1 // V(x, y) × x

ϵ x
y // y

Now we consider the effect of (3.4.6) on a pair of morphisms f , g : ∗ ⇒ V(y, z). By
definition, their composite is

(3.4.12) ∗ � ∗ × ∗
g× f // V(y, z) ×V(x, y) ◦ // V(x, z)

Recall from (3.3.8) that ◦ was defined to be adjunct to

V(y, z) ×V(x, y) × x
1×ϵ x

y // V(y, z) × y
ϵ

y
z // z

Employing naturality of the adjunction − × x ⊣ V(x,−), (3.4.12) is adjunct to

∗ × x � ∗ × ∗ × x
g× f×1 // V(y, z) ×V(x, y) × x

1×ϵ x
y // V(y, z) × y

ϵ
y
z // z

Upon precomposing with a unit isomorphism, this arrow becomes

x � ∗ × x
g×1 // V(y, z) × x � V(y, z) × x

1× f // V(y, z) × y
ϵ

y
z // z

by functoriality of × and the definition (3.4.11). By naturality of the unit isomorphism and
functoriality of ×, this is

x
f // y � ∗ × y

g×1 // V(y, z) × y
ϵ

y
z // z = x

f // y
g // z

by (3.4.11) for g. □

The following exercise is a good way to familiarize oneself with manipulations in-
volving arrows in the underlying category of an enriched category.

Exercise 3.4.13. LetD be aV-category and ∗
g
→ D(y, z) be an arrow inD0. Using g

define for any x ∈ D

(3.4.14) g∗ : D(x, y) � ∗ × D(x, y)
g×1 // D(y, z) ×D(x, y) ◦ // D(x, z).

This construction defines an (unenriched) representable functor

D(x,−) : D0 →V

Show the composite of this functor with the underlying set functor V(∗,−) : V → Set is
the representable functorD0(x,−) : D0 → Set for the underlying categoryD0.

The upshot is that when D is, say, a topological category, pre- and postcomposition
by arrows in the underlying category is continuous. But really more is true. The repre-
sentable functors D(x,−) defined in Exercise 3.4.13 are in fact V-functors, a notion we
now introduce.



34 3. BASIC CONCEPTS OF ENRICHED CATEGORY THEORY

3.5. Enriched functors and enriched natural transformations

SmallV-categories themselves form a category; in fact, they form a 2-category.4 For
this we need the following notion:

Definition 3.5.1. AV-functor F : C → D betweenV-categories is given by an object
map C ∋ x 7→ Fx ∈ D together with morphisms

C(x, y)
Fx,y // D(Fx, Fy)

inV for each x, y ∈ C such that the following diagrams commute for all x, y, z ∈ C:

C(y, z) × C(x, y)

Fy,z×Fx,y

��

◦ // C(x, z)

Fx,z

��

∗
idx //

idFx ##G
GG

GG
GG

GG
G C(x, x)

Fx,x

��
D(Fy, Fz) ×D(Fx, Fy) ◦ // D(Fx, Fz) D(Fx, Fx)

So in particular, a topological functor between Top-categories consists of continuous
maps between each hom-space. In the literature, Top-enriched functors are frequently
called continuous functors. A simplicial functor between sSet-categories consists of maps
between the n-simplices of the appropriate hom-spaces. A 2-functor, i.e., a Cat-functor,
consists of maps of objects, morphisms, and 2-cells that preserve domains, codomains,
composition, and identities in all dimensions.5

Example 3.5.2. A covariant Ab-functor from a one-object Ab-category R to Ab is a
left R-module; a contravariant Ab-functor is a right R-module.

WriteV-Cat for the category ofV-categories andV-functors.

Exercise 3.5.3. Extend Definition 3.4.5 to define the underlying functor ofV-functor
and show that your definition is functorial, i.e., defines a functor (−)0 : V-Cat→ Cat.

Example 3.5.4 (representableV-functors). WhenV is a closedV-category, there is a
V-functor C(c,−) : C → V whose underlying functor is the representable C(c,−) : C0 →

V of Exercise 3.4.13. The map on objects is obvious; the morphism

C(x, y)→V(C(c, x),C(c, y))

is defined to be the transpose of the composition morphism for C.

Example 3.5.5. Suppose V is closed, or at least satisfies the hypotheses of Example
3.3.4. A V-functor F from the free V-category on an unenriched category C to a V-
categoryD consists of an object function together with maps

⊔
C(x,y)
∗ → D(Fx, Fy) or equivalently C(x, y)→ D0(x, y)

for all x, y ∈ C. Chasing through the definitions, we see that the free V-category functor
is left adjoint to the underlying category functor. Hence, a V-functor C → D is a functor
C → D0, and we are content not to introduce notation for freeV-categories.

4Indeed, we will see in 7.3.1 thatV-Cat is a closed symmetric monoidal category.
5A pseudofunctor is a weakened version of a 2-functor in which the preservation is only up to coherent

isomorphism.
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Example 3.5.6. In the unenriched sense, the terminal simplicial set ∆0 represents the
functor (−)0 : sSet → Set that takes a simplicial set X to its set X0 of vertices. In the sSet-
enriched sense, the simplicial functor represented by ∆0, generally written sSet(∆0,−) but
which we abbreviate to (−)∆

0
, is the identity on sSet: by definition

(X∆
0
)n = sSet(∆n × ∆0, X) � sSet(∆n, X) � Xn,

the last isomorphism by the Yoneda lemma.

Example 3.5.7. When G is a finite group, orthogonal G-spectra are most concisely
defined to be TopG

∗ -enriched diagrams on a particular TopG
∗ -enriched category IG taking

values in (Top
∗
)G [MM02].

We use arrows in the underlying category to define the notion of aV-natural transfor-
mation. While the basic data of a V-natural transformation is unenriched, the naturality
condition is stronger than the unenriched one.

Definition 3.5.8. A V-natural transformation α : F ⇒ G between a pair of V-
functors F,G : C ⇒ D consists of a morphism αx : ∗ → D(Fx,Gx) in V for each x ∈ C
such that for all x, y ∈ C the following diagram commutes:

C(x, y)
Fx,y //

Gx,y

��

D(Fx, Fy)

(αy)∗
��

D(Gx,Gy)
(αx)∗
// D(Fx,Gy)

Here (αx)∗ and (αy)∗ are defined using (3.4.14).

Example 3.5.9. An Ab-natural transformation between two Ab-functors R⇒ Ab, i.e.,
two left R-modules A and B, is a group homomorphism A→ B that commutes with scalar
multiplication. Hence, an Ab-natural transformation is exactly a module homomorphism,
and the category of Ab-functors and Ab-natural transformations from R to Ab is precisely
the category ModR.

V-categories, V-functors, and V-natural transformations assemble into a 2-category
V-Cat. Extending Exercise 3.5.3, the “underlying set” functorV(∗,−) : V → Set can be
used to define the underlying functor of aV-functor and underlying natural transformation
of aV-natural transformation. Indeed:

Proposition 3.5.10. “Underlying” is a 2-functor (−)0 : V-Cat→ Cat.

Remark 3.5.11. We encourage the reader to sketch a proof of Proposition 3.5.10. To
organize ideas, it might be helpful to note the following generalization: any lax monoidal
functor F : V → U induces a 2-functor V-Cat → U-Cat, extending the construction of
Lemma 3.4.3.

Whenever possible, we will omit the “(−)0” notation from the underlying notions and
instead adopt the following convention: if an unenriched object is denoted with the same
letter previous assigned an enriched notion, e.g., F : M → N in the presence of a V-
functor F : M→ N , we mean the former to be the underlying object of the latter.

A priori there is no notion of isomorphism in aV-category C, but the Yoneda lemma
implies:

Lemma 3.5.12. The following are equivalent:
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(i) x, y ∈ C are isomorphic as objects of C
(ii) the representable functors C(x,−),C(y,−) : C⇒ Set are naturally isomorphic

(iii) the unenriched representable functors C(x,−),C(y,−) : C ⇒ V are naturally
isomorphic

(iv) the representableV-functors C(x,−),C(y,−) : C⇒ V areV-isomorphic

This preliminary version of the V-Yoneda lemma will be extended in Lemma 7.3.5
once we have constructed the object ofV-natural transformations.

Proof. Applying the underlying category functor (−)0 : V-Cat → Cat, the fourth
statement implies the third. The third statement implies the second by composing with
V(∗,−). The second statement implies the first by the unenriched Yoneda lemma; this is
still the main point. Finally, the first implies the last by a direct construction employing the
morphisms (3.4.14), left as an exercise. □

Adjunctions and equivalences—which can be encoded by relations between appropri-
ately defined objects, 1-cells, and 2-cells—are definable in any 2-category. Interpreting
these definitions in the 2-category V-Cat leads to the correct notions. We record these
definitions for later use. By an analog of the unenriched argument, this definition of V-
equivalence is the same as the standard 2-categorical one.

Definition 3.5.13. AV-equivalence of categories is given by aV-functor F : C → D
that is

• essentially surjective: every d ∈ D is isomorphic (inD0) to some object Fc.
• V-fully faithful: for each c, c′ ∈ C, the map Fc,c′ : C(c, c′) → D(Fc, Fc′) is an

isomorphism inV.

For example, a DK-equivalence (named for William Dwyer and Daniel Kan) of sim-
plicially enriched categories is concisely defined as follows. We will see in Chapter 10 that
the localization functor sSet→ Ho(sSet) is lax monoidal; hence simplicial enrichments in-
duce canonical enrichments over the homotopy category of spacesH := Ho(sSet). A sim-
plicial functor is a DK-equivalence just when the resultingH-functor is aH-equivalence.

Definition 3.5.14. A V-adjunction consists of V-functors F : C → D, G : D → C
together with

• V-natural isomorphismsD(Fc, d) � C(c,Gd) inV
or equivalently

• V-natural transformations η : 1 ⇒ GF and ϵ : FG ⇒ 1 satisfying the triangle
identities Gϵ · ηG = 1G and ϵF · Fη = 1F .

We will see a number of examples important to homotopy theory shortly.

3.6. Simplicial categories

Let us pause to explore the meaning of these definitions in our main example: simpli-
cial categories, i.e., categories enriched over (sSet,×, ∗).

Any simplicial category C gives rise to a simplicial object in Cat, which we will denote
C• : ∆op → Cat.

C0 s0 // C1d1oo
d0oo s0 //

s1 // C2d1oo
d2oo

d0oo
s1 //
s0 //

s2 //
C3 · · ·d2oo

d1oo

d3oo

d0oo
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Each category Cn has the same objects as C. Define Cn(x, y) = C(x, y)n, i.e., arrows in
Cn from x to y are n-simplices in the hom-space C(x, y). The right actions of morphisms
in ∆ on the hom-spaces of C induce identity-on-objects functors between the categories
Cn, specifying the simplicial object. Note there is a fortunate confluence of notation: the
category C0 is the underlying category of C.

For example, sSet is a simplicial object in (large) categories. The objects of each
category are simplicial sets X,Y . Morphisms from X to Y in the nth category are maps
∆n × X → Y of simplicial sets. The face and degeneracy operators act by precomposition
on the representable part of the domain.

Conversely, any simplicial object C• : ∆op → Cat for which each of the constituent
functors di : Cn → Cn−1, si : Cn → Cn+1 is the identity on objects corresponds to a simpli-
cially enriched category, where we define C(x, y)n to be Cn(x, y) and use the functors di, si

to specify the simplicial action. This is a convenient mechanism for producing simplicial
categories; cf. Example 16.2.3.

A simplicial functor F : C → D consists of functors Fn : Cn → Dn for each n that
commute with the simplicial operator functors. Necessarily, each Fn has the same underly-
ing object function. For example, a simplicial functor F : C → sSet specifies a simplicial
set Fx for each x ∈ C together with a map ∆n × Fx → Fy for each n-simplex in C(x, y)
such that the faces and degeneracies of the map ∆n ×Fx→ Fy correspond to the faces and
degeneracies of the n-simplex.

A simplicial natural transformation between simplicial functors F,G : C⇒ D is given
by arrows in the underlying category ofD for each object of C, satisfying an enriched natu-
rality condition. In this case, the data consists of an arrow αx ∈ D0(Fx,Gx) for each x ∈ C.
The naturality condition says firstly that the αx form a natural transformation between F0
and G0 but also that each degenerate image of the vertices αx forms a natural transforma-
tion between the functors Fn and Gn. So the arrows s0(αx) ∈ D1(Fx,Gx) should form a
natural transformation F1 ⇒ G1; the arrows s0s0(αx) = s1s0(αx) ∈ D2(Fx,Gx) form a
natural transformation F2 ⇒ G2; and the images of the αx under the unique degeneracy
operator [n]↠ [0] form a natural transformation Fn ⇒ Gn.

3.7. Tensors and cotensors

Let us return for a moment to the adjunction defining a closed symmetric monoidal cat-
egory (V,×, ∗) and prove the claim made in Remark 3.3.9, namely, that the isomorphism
(3.3.7) can be interpreted internally toV. To show thatV(u × v,w) andV(u,V(v,w)) are
isomorphic, we will appeal to the Yoneda lemma and prove they represent the same functor
Vop → Set. For any x ∈ V, by (3.3.7) and associativity of the monoidal product, we have
a sequence of natural isomorphisms

V(x,V(u × v,w)) � V(x × u × v,w) � V(x × u,V(v,w)) � V(x,V(u,V(v,w)))

proving our claim.
Furthermore, from our discussion of representable functors in Example 3.5.4, we have

seen that for each v ∈ V, the right adjoint V(v,−) : V → V is in fact a V-functor. It
follows that the left adjoint − × v : V → V canonically inherits the structure of a V-
functor: the required maps on hom-objects are defined by

V(u,w)
(ηv

w)∗ // V(u,V(v,w × v)) � V(u × v,w × v).
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More generally, supposeM and N areV-categories and that we are given an adjunc-
tion

(3.7.1) N(Fm, n) �M(m,Gn)

between the underlying categories. Inspired by the case just considered, we might ask
when it is possible to enrich (3.7.1) to an isomorphism inV.

Attempting to use the same idea and show that N(Fm, n) and M(m,Gn) represent
the same functor leads us to consider the hom-set V(v,M(m,Gn)), but already we do not
know how to proceed. It would be helpful here if each M(m,−) : M → V and each
N(n,−) : N → V has a left adjoint and these adjoints are preserved by F. Or, dually, we
can prove our result if eachM(−,m) and N(−, n) has a mutual right adjoint and these are
preserved by G.

We will return to this situation in Proposition 3.7.10 after presenting the general defi-
nitions thus motivated.

Definition 3.7.2. AV-categoryM is tensored if for each v ∈ V and m ∈ M there is
an object v ⊗ m ∈ M together with isomorphisms

M(v ⊗ m, n) � V(v,M(m, n)) ∀ v ∈ V m, n ∈ M.

By the Yoneda lemma, there is a unique way to make the tensor product into a bi-
functor − ⊗ − : V ×M →M so that the isomorphism is natural in all three variables. By
an argument analogous to the one just given, it follows that each represented V-functor
M(m,−) : M→V admits a leftV-adjoint − ⊗ m : V →M. Dually:

Definition 3.7.3. A V-categoryM is cotensored if for each v ∈ V and n ∈ M there
is an object nv ∈ M together with isomorphisms

M(m, nv) � V(v,M(m, n)) ∀ v ∈ V m, n ∈ M.

By the Yoneda lemma, there is a unique way to make the cotensor product into a
bifunctor (−)− : Vop×M →M so that the isomorphism is natural in all three variables. As
above, each represented V-functorM(−, n) : Mop

→ V admits a mutual right V-adjoint
n− : Vop →M.

Remark 3.7.4. IfM is tensored and cotensored overV, then the tensor, cotensor, and
internal hom form a two-variableV-adjunction

M(v ⊗ m, n) � V(v,M(m, n)) �M(m, nv).

See [Shu09, 14.8] for a definition.

Example 3.7.5. By the discussion at the beginning of this section, any closed symmet-
ric monoidal category is tensored, cotensored, and enriched over itself.

Example 3.7.6. Any locally small category with products and coproducts is enriched,
tensored, and cotensored over Set. The tensor of a set A with an object m ∈ M is the
copower A · m =

∐
A m and the cotensor is the power mA =

∏
A m, introduced in section

1.2.

More interesting examples appear below, but to produce them it will help to first de-
velop a bit of the general theory. We begin by observing that the defining V-natural iso-
morphisms imply that tensors (and dually cotensors) are associative and unital with respect
to the monoidal structure onV.
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Lemma 3.7.7. Let (V,×, ∗) be a closed symmetric monoidal category and supposeM
is a tensoredV-category. Then the tensor product is unital and associative, i.e., there exist
natural isomorphisms

∗ ⊗ m � m (v × w) ⊗ m � v ⊗ (w ⊗ m) ∀v,w ∈ V m ∈ M.

Proof. We use the Yoneda lemma inV and Lemma 3.5.12. On account of the natural
isomorphisms

V(w,V(∗, v)) � V(w × ∗, v) � V(w, v)
for any v,w ∈ V, we see that V(∗, v) � v, as these objects represent the same functor.
Hence,

(3.7.8) M(∗ ⊗ m, n) � V(∗,M(m, n)) �M(m, n),

which implies that ∗ ⊗m � m by Lemma 3.5.12. Naturality of the isomorphisms of (3.7.8)
implies that the isomorphism between the representing objects is again natural in m.

Similarly,

M((v × w) ⊗ m, n) � V(v × w,M(m, n)) � V(v,V(w,M(m, n)))

� V(v,M(w ⊗ m, n)) �M(v ⊗ (w ⊗ m), n),
the isomorphism surrounding the line break being the main point. □

Remark 3.7.9. Proposition 10.1.4 contains the converse to Lemma 3.7.7: such “V-
module” structures encode tensors. This is easy to prove now, but we will not need the
result until later.

The following lemma answers the question posed at the start of this section and dis-
plays some of the utility of tensors and cotensors. In the statement, if an enriched object
bears the same name as an unenriched object, we mean to assert that the underlying part of
the enriched object is the previously specified unenriched object.

Proposition 3.7.10. SupposeM andN are tensored and cotensoredV-categories and
F : M ⇄ N : G is an adjunction between the underlying categories. Then the data of any
of the following determines the other

(i) aV-adjunction N(Fm, n) �M(m,Gn)
(ii) aV-functor F together with natural isomorphisms F(v ⊗ m) � v ⊗ Fm

(iii) aV-functor G together with natural isomorphisms G(nv) � (Gn)v

Proof. The proof is similar to the above arguments, left as an exercise to ensure that
they have been internalized. □

In order to give examples of V-adjunctions, we must first find a few more tensored,
cotensored, and enriched categories. Our search is greatly aided by the following theorem.

Theorem 3.7.11. Suppose we have an adjunction F : V ⇄ U : G between closed
symmetric monoidal categories such that the left adjoint F is strong monoidal. Then any
tensored, cotensored, and enriched U-category becomes canonically enriched, tensored,
and cotensored overV.

By the theory of doctrinal adjunctions [Kel74] or, alternatively, by the calculus of
mates [KS74], the fact that the left adjoint F is strong monoidal implies that the right
adjoint G is lax monoidal. Hence, by Lemma 3.4.3, we can change the base of the enrich-
ment fromU toV by applying the right adjoint to the hom-objects. By a strong monoidal
adjunction, we mean an adjunction satisfying the hypotheses of Theorem 3.7.11.
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Proof. SupposeM is a tensored and cotensoredU-category

M
U

(u ⊗ m, n) � U(u,M
U

(m, n)) �M
U

(m, nu).

We define tensor, cotensor, and internal hom overV, using the notation

− ⋆ − : V ×M→M, {−,−} : Vop ×M →M, M
V

(−,−) : Mop ×M → V

by

v ⋆ m := Fv ⊗ m, {v,m} := mFv, M
V

(m, n) := GM
U

(m, n).

We must show thatM
V

(v ⋆ m, n), V(v,M
V

(m, n)), andM
V

(m, {v, n}) represent the
same functorVop → Set. For the first part, we have natural isomorphisms

V(x,M
V

(v ⋆ m, n)) = V(x,GM
U

(Fv ⊗ m, n)) � U(Fx,M
U

(Fv ⊗ m, n))

�M(Fx ⊗ (Fv ⊗ m), n) �M((Fx × Fv) ⊗ m, n) � U(Fx × Fv,M
U

(m, n))

� U(F(x × v),M
U

(m, n)) � V(x × v,GM
U

(m, n))

� V(x,V(v,GM
U

(m, n))) = V(x,V(v,M
V

(m, n)))

The other half is similar. □

Corollary 3.7.12. The strong monoidal adjunction F ⊣ G of Theorem 3.7.11 is a
V-adjunction with respect to the inducedV-category structure onU.

Proof. By the Yoneda lemma and the definitions given in the proof of Theorem 3.7.11:

V(w,U
V

(Fv, u)) � V(w,GU
U

(Fv, u)) � U(Fw,U
U

(Fv, u)) � U(Fw × Fv, u)

� U(F(w × v), u) � V(w × v,Gu) � V(w,V(v,Gu)). □

Example 3.7.13. By 3.3.14, there is a closed monoidal category (sSet∗,∧, ∂∆1) to-
gether with an adjunction

(−)+ : sSet
//

⊥ sSet∗ : Uoo

with strong monoidal left adjoint. It follows that sSet∗ is tensored, cotensored, and enriched
over simplicial sets. If K is a simplicial set and ∗ → X is a based simplicial set, then
K ⊗ X = K+ ∧ X is the quotient K × X/K × ∗, i.e., the coequalizer

K × ∗ //// K × X

of the inclusion at the basepoint component with the constant map at the basepoint. The
internal hom sSet

∗
(X,Y) has as n-simplices maps

(∆n × X)/(∆n × ∗)→ Y

with basepoint the constant map X → ∗ → Y . The simplicial hom-space just forgets this
basepoint. The cotensor YK is defined to be sSet

∗
(K+,Y) with the constant map at the

basepoint of Y serving as the basepoint. By Corollary 3.7.12, the adjunction (−)+ ⊣ U is
simplicially enriched. It follows the underlying simplicial set of the cotensor is (UY)K .

Example 3.7.14. A similar analysis shows that the convenient category of based topo-
logical spaces is topologically enriched, tensored, and cotensored.
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Example 3.7.15. We will prove in Lemma 6.1.6 that geometric realization is a strong
monoidal left adjoint

| − | : sSet
//

⊥ Top : Soo

This is another instance in which the point-set considerations appearing in the definition
of the convenient category of topological spaces play an important role. Because Top is
a closed monoidal category, it follows that Top is tensored, cotensored, and enriched over
simplicial sets. Writing Top for the internal hom, if K ∈ sSet, X ∈ Top, then K ⊗ X :=
|K| × X and XK := Top(|K|, X). The simplicial enrichment has hom-objects the simplicial
sets S Top(X,Y). By Corollary 3.7.12, these definitions make | − | : sSet ⇄ Top : S into a
simplicially enriched adjunction.

Remark 3.7.16. Because the categories Top and sSet are both cartesian closed, the
right adjoint S , which preserves products, is also strong monoidal. It follows that any
simplicially enriched category is also topologically enriched, but tensors and cotensors do
not transfer in this direction. This is one reason why we prefer simplicial enrichments to
topological ones: they are more general.

Example 3.7.17 ([Hir03, 9.8.7]). Let A be any non-empty topological space, regarded
as a functor 1 → Top from the terminal category. Because Top is cocomplete, we can
form the left Kan extension of this functor along itself. By Theorem 1.2.1, the resulting
functor L : Top→ Top is given on objects by

X 7→
∐

Top(A,X)

A.

This functor is not simplicial (nor is it continuous). For every pair of spaces X and Y ,
we would need a map S Top(X,Y) → S Top(LX, LY) between the associated total singular
complexes. Taking X = A and Y = A × I, the obvious pair of inclusions i0, i1 : A ⇒
A × I defines two vertices in Top(A, A × I) connected by a 1-simplex, namely the obvious
homeomorphism A × |∆1| → A × I.

But the images of i0 and i1 under L land in distinct components of LY and cannot be
so connected. If however we replace the Kan extension defining L by its enriched analog,
defined in (7.6.7), then this functor is simplicially enriched.

Exercise 3.7.18. Let M be cocomplete. Show that the category M∆
op

of simplicial
objects inM is simplicially enriched and tensored, with (K ⊗ X)n := Kn · Xn defined using
the copower. Give a formal argument whyM∆ is simplicially enriched and cotensored if
M is complete.

Digression 3.7.19 (Dold-Kan correspondence). Exercise 3.7.18 applies to the category
M = Ab. Our particular interest in the category Ab∆op

of simplicial abelian groups is on
account of the Dold-Kan correspondence: there is an (adjoint) equivalence of categories
Ab∆op

⇄ Ch≥0(Z).
By the Ab-enriched analog of Construction 1.5.1, this adjunction is determined by a

cosimplicial object ∆ → Ch•(Z) that sends [n] to the normalized Moore complex of the
free simplicial abelian group on ∆n. Explicitly, the simplicial set ∆n : ∆op → Set composes
with the free abelian group functor Set → Ab to form a simplicial abelian group. The
associated chain complex is formed from this graded group with differentials defined to be
the alternating sum of the face maps. The normalized chain complex quotients by formal
sums of degenerate simplices.
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Example 3.7.20. Let F : M ⇄ N : G be an unenriched adjunction between cocom-
plete categories. Levelwise composition defines adjoint functors

F∗ : M∆op //
⊥ N∆op

: G∗oo

We use Proposition 3.7.10 to prove that F∗ ⊣ G∗ is a simplicial adjunction, using the en-
richments of Exercise 3.7.18. Because F is a left adjoint, it commutes with coproducts, and
in particular copowers, and hence preserves the tensors defined above. From the definition
of the simplicial enrichment left as an exercise, it is clear from these isomorphisms that
F∗ is a simplicial functor.6 It follows from Proposition 3.7.10 that G∗ is also simplicially
enriched and the adjunction is a simplicial adjunction.

3.8. Simplicial homotopy and simplicial model categories

IfM is a simplicially enriched category, then there is a canonical notion of homotopy
between maps in the underlying categoryM. A homotopy between f , g : m ⇒ n is given
by the data of the left-hand diagram below. IfM is tensored or cotensored over simplicial
sets, the left-hand diagram transposes to one of the right-hand diagrams

∆0

f

##F
FF

FF
FF

FF

d1

��

in sSet

∆1 H //M(m, n)

∆0

d0

OO

g

;;xxxxxxxxx

∆0 ⊗ m � m

d1⊗1
��

f

%%LL
LLL

LLL
LLL

L inM

∆1 ⊗ m H // n

∆0 ⊗ m � m

g

99rrrrrrrrrrr
d0⊗1

OO

inM n � n∆
0

m H //

f
::vvvvvvvvvvv

g $$H
HH

HH
HH

HH n∆
1

nd1

OO

nd0

��
n � n∆

0

In other words, ifM is tensored or cotensored over simplicial sets, we can realize a homo-
topy as an arrow in the underlying categoryM. Immediately, we get a notion of simplicial
homotopy equivalence inM, as displayed for example in (3.8.5).

Definition 3.8.1. If M is simplicially enriched, tensored, and cocomplete, the geo-
metric realization of a simplicial object is

|X•| :=
∫ n∈∆

∆n ⊗ Xn.

These coends define a functor | − | : M∆op
→M.

This construction is an example of a functor tensor product of ∆• : ∆ → sSet with
X• : ∆op →M. We will see more of these in Chapter 4.

Remark 3.8.2. WhenM is tensored, there are two reasonable definitions for simplicial
tensors onM∆op

. One approach, which works equally well for any diagram categoryMD,
is to define tensors pointwise: given K ∈ sSet and X : D → M, define K ⊗ X to be the
functor d 7→ K⊗(Xd). The other, particular toM∆op

, is the definition suggested by Exercise
3.7.18. This is always the preferred choice because the concordant definition of simplicial
homotopy agrees with the older combinatorial definition, parallel to the notion of chain
homotopy.

Furthermore:

6Alternatively, we might appeal to Proposition 10.1.5, which characterizes unenriched functors between
tensoredV-categories that enrich toV-functors.
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Lemma 3.8.3. SupposeM is simplicially enriched, tensored, and cotensored, and ad-
mits geometric realizations of simplicial objects. Then geometric realization preserves
tensors.

Proof. We will prove this in 8.1.6, or see [RSS01, 5.4]. A key observation is that the
bifunctor − ⊗ − : Set∆op

×M →M, admitting pointwise right adjoints, preserves colimits
in both variables. □

Corollary 3.8.4. IfM is simplicially enriched, tensored, and cotensored, then geo-
metric realization preserves simplicial homotopy equivalences.

Proof. Because geometric realization preserves tensors, given a simplicial homotopy
equivalence inM∆op

(3.8.5) ∆0 ⊗ X• � X•
1

%%JJ
JJJ

JJJ
JJJ

d1⊗1
��

∆0 ⊗ Y• � Y•
f g

%%JJ
JJJ

JJJ
JJJ

d1⊗1
��

X•
f // Y•
g

oo ∆1 ⊗ X• // X• ∆1 ⊗ Y• // Y•

∆0 ⊗ X• � X•

d0⊗1

OO

g f

99tttttttttt
∆0 ⊗ Y• � Y•

d0⊗1

OO

1

99tttttttttt

geometric realization produces a simplicial homotopy equivalence inM between |X•| and
|Y•|. □

In Chapter 7, we will show that whenM is cotensored in addition to being tensored
and enriched, geometric realization is a simplicial functor, using the simplicial enrichment
onM∆op

given in Exercise 3.7.18. The notion of simplicial homotopy equivalence, defin-
able in any simplicial category, is obviously preserved by any simplicial functor.

We close this chapter on enriched category theory with the topic that we used to mo-
tivated it at the end of Chapter 2. We will give a proper definition of a simplicial model
category in 11.4.4 once we have formally introduced model categories. For present pur-
poses, the following lemma axiomatizes those characteristics that we will need.

Lemma 3.8.6. A simplicial model category

(i) is complete and cocomplete
(ii) is tensored, cotensored, and enriched over simplicial sets;

(iii) has subcategories of cofibrant and fibrant objects preserved, respectively, by tensor-
ing or cotensoring with any simplicial set;

(iv) admits a left deformation Q into the cofibrant objects and a right deformation R into
the fibrant objects;

(v) is a saturated homotopical category;
(vi) has simplicial homotopy equivalences among the weak equivalences;

(vii) has the property that the internal hom preserves weak equivalences between cofibrant
objects in its first variable, provided the second variable is fibrant, and preserves
weak equivalences between fibrant objects in its second variable, provided its first
variable is cofibrant.

Proof. Properties (i), (iv), and (v) are true for any model category, the latter by the
theorem of Quillen mentioned in Remark 2.1.9. Properties (ii), (iii), and (vii) are immedi-
ate from the definition of a simplicial model category; (iii) and (vii) are consequences of
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the SM7 axiom [Qui67, §II.2] and Ken Brown’s lemma. Property (vi) is non-trivial; see
[Hir03, 9.5.16]. □

Examples include sSet, sSet∗, Top, and Top∗—more details will appear in section 6.2
in preparation for the calculations that appear in that chapter. By work of Daniel Dugger
and others, many model categories can be replaced by simplicial model categories with the
same homotopy category. For example, one theorem says that any left proper, combinato-
rial model category is Quillen equivalent to a simplicial model category [Dug01].

Some less technical observations are perhaps more to the point. There are analogous
definitions of a topological model category, or sSet∗-model category, or V-model cat-
egory (subject to certain restrictions on V), which are enriched, tensored, and cotensored
over Top, sSet∗, orV in place of sSet. There is a homotopical version of Theorem 3.7.11
that says that if the strong monoidal adjunction F ⊣ U is additionally a Quillen adjunc-
tion, then anyU-model category is canonically aV-model category.

The adjunctions

(−)+ : sSet
//

⊥ sSet∗ : Uoo | − | : sSet
//

⊥ Top : Soo

are strong monoidal Quillen adjunctions, provided that Top is the usual convenient cat-
egory of spaces. It follows that any based simplicial or topological model category is
canonically a simplicial model category. However, extending Remark 3.7.16, the converse
is not generally true. For this reason, we submit that simplicial model categories are an
appropriate general setting to define homotopy limits and colimits.



CHAPTER 4

The unreasonably effective (co)bar construction

The bar construction was first introduced in homological algebra by Samuel Eilenberg
and Mac Lane as a way to construct resolutions of algebras over a commutative ring. The
name comes from their shorthand use of the character “|” in place of “⊗.” It has since been
greatly generalized. We will not introduce the most general version of this construction—
for this, see, e.g., [Shu09, 23.3-23.5]—but rather one at the right level of generality for
present purposes.

One advantage of the bar construction that we will not discuss here but will certainly
exploit in Part II is that it can easily be extended to enriched contexts. Some of our notation
is chosen to ease that generalization. In what follows, V should typically be read as the
category sSet and M should be be simplicially enriched, tensored, and cotensored. The
enrichment will not be used explicitly. Rather what is needed is a notion of simplicial
homotopy; a method for computing the geometric realization of simplicial objects and the
totalization of cosimplicial objects; and the ancillary properties of these functors that result
from the presence of tensors and cotensors.

Remark 4.0.1. Functors naturally valued in Set can be interpreted as taking value in
(discrete) simplicial sets, in which case the simplicial tensor is equivalent to the copower:
for A ∈ Set, m ∈ M

(4.0.2) A ⊗ m = (⊔A∆
0) ⊗ m � ⊔A(∆0 ⊗ m) � ⊔Am = A · m.

In particular, it is occasionally convenient to relax the just-stated conventions and allow
V = Set andM to be arbitrary. On account of isomorphisms such as (4.0.2), there is no
real ambiguity when, say, a simplicial set is promoted to a horizontally discrete bisimplicial
set.

In Chapter 5, we will use to the two-sided bar construction and dual two-sided co-
bar construction introduced here to define homotopy colimit and homotopy limit functors,
respectively, for diagrams of any shape taking values in a simplicial model category.

4.1. Functor tensor products

A common form of the coend, introduced in section 1.2, is deserving of a special
name. In the presence of a bifunctor − ⊗− : V×M→M, the functor tensor product of
F : D →M with G : Dop →V is the coend

(4.1.1) G ⊗D F :=
∫ D

G ⊗ F = coeq

 ∐
f : d→d′

Gd′ ⊗ Fd
f ∗ //
f∗
//
∐
d

Gd ⊗ Fd


As our notation might suggest, commonly ⊗ is the bifunctor of a tensoredV-category,

perhaps in the special case given by a monoidal category. Or perhaps V = Set, M has
coproducts, and ⊗ is the copower. In general, its codomain could be some category other
thanM, but we will not need this extra flexibility here. In the literature, it is fairly common
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for the notation G ⊗D F to change to reflect the bifunctor used to define the coend, but we
believe the appropriate choice of bifunctor in any context is fairly obvious and hence use
uniform notation throughout.

The name and notation are motivated by the following example.

Example 4.1.2. Let R be a ring. A right R-module A is an Ab-functor A : Rop → Ab
and a left R-module B is an Ab-functor B : R → Ab. The underlying unenriched functors
A : R → Ab, B : Rop → Ab forget the addition in R and remember only the monoid action
on the abelian groups A and B. Nonetheless, the functor tensor product

A ⊗R B =
∫ R

A ⊗Z B

is the usual tensor product over R of a right and left R-module.

Example 4.1.3. Let ∗ : Dop → sSet be the constant functor at the terminal object and
letM be a tensored simplicial category, so that Lemma 3.7.7 applies. Then by inspection
of the formula (4.1.1)

∗ ⊗D F � colim F.

Example 4.1.4. The coYoneda lemma 1.4.6 establishes that the covariant and con-
travariant representables are free modules in the sense that D(−, d) ⊗D F � Fd and
G ⊗D D(d,−) � Gd.

Example 4.1.5. From the formula of 1.2.1, pointwise left Kan extensions are functor
tensor products. Given F : C → E, K : C → D then

LanK F(d) = D(K−, d) ⊗C F.

In particular, writing ∆• : ∆ → Top for the functor that sends the nth represented
simplicial set to the standard topological n-simplex, for any simplicial set X, by the Yoneda
lemma

|X| = sSet(∆•, X) ⊗∆ ∆
• � X• ⊗∆ ∆

•

Hence, geometric realization can be defined to be the functor tensor product of ∆• with a
simplicial set, discrete bisimplicial set, or discrete bisimplicial space defined with respect
to the copower, simplicial tensor, or cartesian product of spaces, respectively.

Example 4.1.6. As in Definition 3.8.1, the geometric realization of a simplicial object
in a category tensored over simplicial sets is defined to be the functor tensor product of the
simplicial object X• : ∆op →M with the Yoneda embedding ∆• : ∆→ sSet.

(4.1.7) |X| := ∆• ⊗∆op X•

We use this definition for geometric realization except when M = Set. In this case,
our conventions dictate that the terms ∆n ⊗ Xn denote copowers Xn · ∆

n in sSet, in which
case the formula (4.1.7) returns the simplicial set X by the density theorem. Instead, we
nearly always prefer to define |X| to be the usual topological space—but this is really a
minor point.

Exercise 4.1.8. Let X : ∆op → sSet be a bisimplicial set. Compute |X|.
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4.2. The bar construction

The two-sided bar construction is a fattened up version of the functor tensor product
in a sense we will make intuitive here and make precise when we introduce weighted
colimits in Chapter 7. LetM be simplicially enriched, tensored, and cotensored. We will
define the two-sided bar construction associated to a small category D and to diagrams
G : Dop → sSet and F : D →M.

The first step is to extend the diagram inside the coequalizer (4.1.1) to a simplicial
object inM.

Definition 4.2.1. The two-sided simplicial bar construction is a simplicial object
B•(G,D, F) inM whose n-simplices are defined by the coproduct

Bn(G,D, F) =
∐

d⃗ : [n]→D

Gdn ⊗ Fd0,

writing d⃗ as shorthand for a sequence d0 → d1 → · · · → dn of n composable arrows inD.

The diagram d⃗ is exactly an n-simplex in the nerve of D. The degeneracy and in-
ner face maps in the simplicial object B•(G,D, F) reindex the coproducts according to
the corresponding maps for the simplicial set ND. The component of the nth face map
Bn(G,D, F) → Bn−1(G,D, F) at d⃗ : [n] → D applies G to dn−1 → dn to obtain a map
Gdn ⊗ Fd0 → Gdn−1 ⊗ Fd0 and includes this at the component which is the restriction of d⃗
along dn : [n − 1]→ [n]. The 0th face map is defined similarly.

Example 4.2.2. WhenV =M = Set and F and G are the constant functors that send
everything to the terminal object, B•(∗,D, ∗) is the usual nerve ND.

The colimit of the simplicial object B•(G,D, F) is the functor tensor product G ⊗D F,
as can be deduced by inspecting the formula (4.1.1).1 The two-sided bar construction is
a “fattened up” colimit, more precisely a weighted colimit, constructed from the Yoneda
embedding ∆• : ∆→ sSet and the tensor structure onM.

Definition 4.2.3. The bar construction is the geometric realization of the simplicial
bar construction, i.e.,

B(G,D, F) = |B•(G,D, F)| = ∆• ⊗∆op B•(G,D, F).

The unique maps ∆n → ∗ assemble into a natural transformation ∆• ⇒ ∗. Applying
the functor −⊗∆op B•(G,D, F), this induces a map B(G,D, F)→ G⊗D F from the geomet-
ric realization of the simplicial bar construction to its colimit, the functor tensor product.
Such comparisons exist between weighted colimits and conical colimits for any cartesian
monoidal categoryV; cf. section 7.6.

Example 4.2.4. Regarding a group G as a one-object category, Example 4.2.2 special-
izes to produce a model B(∗,G, ∗) for the classifying space of the group. The classifying
space, commonly denoted BG, is defined to be the geometric realization of the simplicial
object Bn(∗,G, ∗) = Gn. The degeneracy maps in the simplicial object

B•(∗,G, ∗) = · · · G ×G ×G //
//
//

//
G ×Goo

oo
oo

//
//
// Goo

oo //
// ∗oo

insert identities. The inner face maps use multiplication in the group. The outer face maps
project away from either the first or last copy of G.

1This has to do with the theory of final functors; cf. Example 8.3.8.
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Example 4.2.5. As a consequence of the “freeness” mentioned in 4.1.4, we are partic-
ularly interested in functor tensor products in the special case where G is a representable
functor D(−, d). Using the Yoneda embedding, the objects B(D(−, d),D, F) ∈ M depend
functorially on d ∈ D. It is useful to have notation for the resulting functor, and we follow
the common convention and write

B(D,D, F) : D →M for the functor d 7→ B(D(−, d),D, F).

Allowing F to vary, we obtain a functor B(D,D,−) : MD → MD. We will prove in
Lemma 5.1.5 that ifM is a simplicial model category, then B(D,D,−) is equipped with a
natural weak equivalence to the identity functor, and hence forms a left deformation on the
homotopical categoryMD with pointwise weak equivalences.

Exercise 4.2.6. Taking M = Set, show that B•(D(−, d),D, ∗) � N(D/d) so that
B•(D,D, ∗) is naturally isomorphic to the functor N(D/−) : D → sSet.

Dually, B•(∗,D,D(d,−)) � N(d/D) and hence B•(∗,D,D) � N(−/D) : Dop → sSet.
For example, take D to be a group G. Then B(G,G, ∗) : G → Top is a space with a left
G-action, commonly denoted EG, and B(∗,G,G) is a space with a right G-action. We will
prove in 4.5.5 that these spaces are contractible.

4.3. The cobar construction

There are two ways one might attempt to dualize the bar construction. Replacing
D with Dop has no meaningful effect; replacing M with Mop does. The resulting dual
construction is called the cobar construction. Of course, citing duality, there is nothing
more that needs to be said, but we give a few details nonetheless to ease this introduction.

Let F,G : D ⇒M. Recall from Exercise 1.2.8 that the set of natural transformations
from G to F is computed by the end

MD(G, F) �
∫

d∈D
M(Gd, Fd) � eq

 ∏
d∈D
M(Gd, Fd)

f ∗ //
f∗
//

∏
f : d→d′

M(Gd, Fd′)

 .
In the presence of a bifunctor {−,−} : Vop × M → M, the functor cotensor product or
sometimes functor hom (for lack of a better name) of G : D → V and F : D →M is the
coend

{G, F}D :=
∫

d∈D
{Gd, Fd} � eq

 ∏
d∈D
{Gd, Fd}

f ∗ //
f∗
//

∏
f : d→d′

{Gd, Fd′}

 .
Here, it is common to use a cotensor, power, or hom for the bifunctor {−,−}, the latter
in the case that F and G have the same codomain. We generally prefer the exponential
notation for this sort of bifunctor but here needed some place to put the superscript.

Example 4.3.1. IfM is cotensored over sSet, the totalization of a cosimplicial object
X• : ∆→M

Tot X• := {∆•, X•}∆

is defined to be the functor cotensor of X• and the Yoneda embedding ∆• : ∆→ sSet.

The cosimplicial cobar construction is a fattened up version of the functor cotensor
product. LetM be complete and cotensored overV. Let D be small, let F : D →M and
let G : D → V. Note the variance of G parallels that of F, in contrast to the setting for the
bar construction.
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Definition 4.3.2. The cosimplicial cobar construction C•(G,D, F) is a cosimplicial
object inM, defined dually to the simplicial bar construction. Using exponential notation
for the cotensor, the n-simplices are

Cn(G,D, F) =
∏

d⃗ : [n]→D

FdGd0
n

The cosimplicial degeneracy and inner face maps are induced by the corresponding
maps of the nerve ND. The dualization is due to the natural variance of the indexing sets
of products.

The component of the 0th face map Cn−1(G,D, F) → Cn(G,D, F) landing in the
component indexed by d⃗ : [n] → D uses the arrow Gd0 → Gd1 in V to define a map
FdGd1

n → FdGd0
n , by contravariance of the first variable in the cotensor. The face map

projects to the component indexed by the restriction of d⃗ along the 0th face map [n− 1]→
[n] and then composes with this map. The nth face map Cn−1(G,D, F) → Cn(G,D, F) is
defined similarly; see section 9.1 for more details.

Definition 4.3.3. The cobar construction C(G,D, F) is the totalization of the cosim-
plicial cobar construction, i.e.,

C(G,D, F) := {∆•,C•(G,D, F)}∆

where ∆• : ∆→ sSet is the Yoneda embedding.

4.4. Simplicial replacements and colimits

Following [Shu09, §7], we explain the relevance of the bar construction to homotopy
theory. Suppose we have a diagram F : D →M. We know how to compute its colimit

colimD F = coeq

 ∐
f : d→d′

Fd ⇒
∐

d

Fd

 ,
but we have seen that the functor colimD need not be homotopical. The hope, realized in
Corollary 5.1.3, is that a “fattened up” version of the colimit functor will preserve pointwise
weak equivalence between diagrams.

If D = ∆op and M is tensored over simplicial sets, we have some idea of what we
might do. A fattened version of the colimit of a simplicial object is its geometric real-
ization,2 as defined in 3.8.1. So one idea would be to try and replace a generic diagram
F : D →M by a simplicial object inM that has the same colimit.

To the small categoryD, we can associate a simplicial set ND. The data of a simplicial
set X can in turn be encoded in a category elX in a way that retains its higher dimensional
information. This is called the category of simplices; the general framework for this
construction, which explains the peculiar notation, is described in 7.1.9. The category elX
has simplices σ ∈ Xn as objects. A map from σ ∈ Xn to σ′ ∈ Xm is a simplicial operator
α : [n]→ [m] such that σ′ · α = σ. Note there is a canonical forgetful functor elX → ∆.

Example 4.4.1. Objects of elND are finite composable strings of morphisms of D.
Face morphisms between such strings either factor some of the arrows in the sequence or
introduce new arrows on either end. Degeneracy morphisms forget identities. We denote
the forgetful functor by Σ : elND → ∆.

2Warning: the geometric realization of a simplicial object X : ∆op → M is not in general its homotopy
colimit; cf. 7.7.2 and 14.3.10.
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There is a canonical functor S : elND → Dop that projects to the source of the string
of arrows. To see the contravariance, note that the maps d0 : [n−1]→ [n] act on objects of
elND by precomposing a string d⃗ : [n − 1]→ D with a new starting arrow d−1 → d0. This
arrow defines a map from the source of the latter sequence to the source of the former.

Taking opposite categories, we have a diagram

∆op

(elND)op
S

//

Σ

::uuuuuuuuu
D

so we can get a simplicial object associated to F : D → M by precomposing with S and
then taking the left Kan extension along Σ. But is there any reason why the colimit of
LanΣS ∗F would have anything to do with the colimit of F? It turns out, yes.

We need two observations. The first is that the precomposition functor S ∗ : MD →
M(elND)op

is full and faithful, which implies that the counit of the adjunction LanS ⊣ S ∗ is
an isomorphism LanS S ∗F

�
→ F.

The second fact is a general observation about Kan extensions that we will prove in
even greater generality in 8.1.4. Given F : D →M and K : D → E, by the defining univer-
sal properties of colimits and Kan extensions, we have a sequence of natural isomorphisms

M(colim
E

LanK F,m) �ME(LanK F,∆m) �MD(F,∆m) �M(colim
D

F,m),

where the ∆m are constant functors taking values at m ∈ M. Hence, the colimit of a left
Kan extension is the same as the colimit of the original functor. In particular,

colim
D

F � colim
D

LanS S ∗F � colim
(elND)op

S ∗F � colim
∆op

LanΣS ∗F.

How do we understand this simplicial object LanΣS ∗F? By Remark 1.2.6,

(LanΣS ∗F)n = colim
(
Σ/[n] U // (elND)op S // D

F //M
)
,

where, on account of the ∆op, the objects of Σ/[n] are sequences of composable arrows
d⃗ = d0 → · · · → dm in D together with a morphism [n] → [m] in ∆. The slice category
Σ/[n] is the disjoint union of categories, each of which has a terminal object given by some
sequence of n-composable arrows, possibly involving identities, together with the identity
map on [n]. It follows that the colimit is just the coproduct of the images of these objects;
cf. 8.3.7. Hence,

(LanΣS ∗F)n =
∐

d⃗ : [n]→D

Fd0 = Bn(∗,D, F)

which we recognize as a special case of the two-sided bar construction.
In summary, we have proven:

Lemma 4.4.2. We can replace a diagram F : D →M by a simplicial object B•(∗,D, F),
or dually by a cosimplicial object C•(∗,D, F) , so that

colim
D

F � colim
∆op

B•(∗,D, F) and lim
D

F � lim
∆

C•(∗,D, F).

Before closing we should note that the proof that the colimit of a left Kan extension
is isomorphic to the colimit of the original diagram extends to weighted colimits, in par-
ticular to functor tensor products, and in particular to geometric realizations. We state this
application as a lemma, which has obvious implications for computing bar constructions.
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Write ∆• : ∆ → sSet for the Yoneda embedding, and suppose that M is cocomplete
and tensored over simplicial sets. Recall the following definition from 1.1.9: a simplicial
object X• : ∆op → M is n-skeletal if it is isomorphic to the left Kan extension of its n-
truncation X≤n

M∆op

res≤n

⊥ //M∆op
≤n

Lanuu

Lemma 4.4.3. If X is n-skeletal, then

|X| � ∆• ⊗∆op X• � ∆• ⊗∆op Lan X≤n � ∆
•
≤n ⊗∆op

≤n
X≤n

In words, |X| is isomorphic to the functor tensor product of its n-truncation X≤n with the
restricted Yoneda embedding ∆•≤n : ∆≤n → Set∆op

≤n .

Proof. The proof is left as an exercise for the reader (or see 8.1.4). □

4.5. Augmented simplicial objects and extra degeneracies

We close this chapter by describing a technique for computing the homotopy type of
the geometric realization of a simplicial object in a tensored, cotensored, and simplicially
enriched categoryM. We conclude with some examples illustrating its application.

Recall an augmented simplicial object is a presheaf on the category ∆+ of finite or-
dinals and order preserving maps.3 Equivalently, it is a simplicial object X together with
an object X−1 and a map d0 : X0 → X−1 such that the two maps X1 ⇒ X0 → X−1 agree.
Equivalently, an augmentation is specified by a map of simplicial objects X → X−1 whose
target is the constant simplicial object on X−1.

In a complete category M, any simplicial object can be augmented by the unique
map to the terminal object ∗. It is natural to ask when X → ∗ is a simplicial homotopy
equivalence. The answer presented below makes sense for any category M, though our
exploratory discussion, following [Dug08], will tacitly supposeM = Set.

The intuition is that a contracting homotopy X → ∗ provides a method to deform each
simplex of X down to a point. This data could be given by

• a vertex ∗ ∈ X0
• for each x ∈ X0, a 1-simplex from ∗ to x
• for each f ∈ X1 a 2-simplex whose initial vertex is ∗, whose 0th face is f , and

whose other faces are the previously specified 1-simplices
• for each σ ∈ Xn, an n+ 1-simplex whose initial vertex is ∗, whose 0th face is σ,

and whose other faces are the previously specified n-simplices.
In other words, a contracting homotopy consists of maps s−1 : Xn → Xn+1 for all n ≥ −1
that are sections of the face maps d0 : Xn+1 → Xn and satisfy the other simplicial identities
that this labeling would suggest [GJ99, III.5].

We can extend this definition to generic augmented simplicial objects by requiring that
the map s−1 : X−1 → X0 is a section of the augmentation d0 : X0 → X−1. The data of the
maps s−1 might be called a “backwards” contracting homotopy; a “forwards” contracting
homotopy is obtained by replacing the simplicial object X with its opposite, obtained by
precomposing with the functor (−)op : ∆→ ∆ that reverses the ordering of elements in each

3Here are some fun facts: The category ∆+ is the free monoidal category (the multiplication given by ordinal
sum) containing a monoid (the object [0]). Its opposite ∆op

+ , by duality the free monoidal category containing a
comonoid, is also the category of “finite intervals,” i.e., finite totally ordered sets with a designated “top” and
“bottom” element and maps which preserve these.
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set [n]. The maps defining the data of a forwards contracting homotopy are commonly
labelled sn+1 : Xn → Xn+1.

Contracting homotopies of augmented simplicial objects are sometimes called extra
degeneracies. The following classical result uses the tensor structure of 3.7.18 to define
the notion of simplicial homotopy equivalence.

Lemma 4.5.1 ([Mey84, §6]). Specifying an augmentation and extra degeneracies for
a simplicial object X in a cocomplete category M is equivalent to specifying an object
X−1 ∈ M and a retract diagram

X−1
s−1
→ X

d0
→ X−1

whose maps define a simplicial homotopy equivalence between X and the constant simpli-
cial object X−1.

IfM is a tensored, cotensored, and simplicially enriched category then Corollary 3.8.4
implies that |X| → X−1 is a simplicial homotopy equivalence. IfM is a simplicial model
category, 3.8.6.(vi) implies that this map is a weak equivalence. For later reference, we
record this corollary.

Corollary 4.5.2. If an augmented simplicial object X → X−1 in a simplicial model
category admits either a forwards or backwards contracting homotopy, then the natural
map |X| → X−1 is a weak equivalence.

Remark 4.5.3. Exercise 3.7.18 and dual versions of Lemma 3.8.3 and Corollary 3.8.4
imply the dual of Corollary 4.5.2: if a cosimplicial object in a simplicial model cate-
gory admits an augmentation and a contracting homotopy, then the natural map from the
augmentation to its totalization is a simplicial homotopy equivalence and hence a weak
equivalence.

Remark 4.5.4. The geometric realization of a simplicial object is not always its ho-
motopy colimit; cf. Remark 5.2.4. However, it is also the case that the homotopy colimit
of a simplicial object admitting an augmentation and a contracting homotopy is weakly
equivalent to its augmentation. This will be proven in Exercise 8.5.14.

Example 4.5.5. Let G be a group and write EG = B(G,G, ∗). The simplicial set

B•(G,G, ∗) = · · · G ×G ×G ×G //
//
//

//
G ×G ×Goo

oo
oo

//
//
//ff pje_YTN G ×Goo

oo //
//ff k_S
Goo

cc p_N

is augmented by the one-point set ∗ and admits a “backwards” contracting homotopy that
inserts identities into the left-most group in each product. Hence EG = |B•(G,G, ∗)| is a
contractible G-space. Another proof of contractibility will be given in Example 8.5.4.

Example 4.5.6. Suppose a small categoryD has a terminal object t. Then B•(∗,D, F)
admits a natural augmentation

∐
d∈D Fd → Ft and extra degeneracy: the map∐

d⃗ : [n]→D

Fd0 →
∐

d⃗′ : [n+1]→D

Fd′0

uses the terminal object to extend a sequence of composable arrows d0 → · · · → dn → t.
Hence B(∗,D, F) is homotopy equivalent to Ft, the image of the terminal object. Recall
B(∗,D, F) is a “thickened” version of the functor tensor product ∗⊗DF � colimD F. In this
case, the geometric realization of the simplicial object B•(∗,D, F) is homotopy equivalent
to the ordinary colimit, computed by evaluating at the terminal object by any of the proofs
given for Lemma 8.3.1.
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A final example will be a key step in the proofs of the next section.

Example 4.5.7. Recall our shorthand notation

B(D,D, F) : D →M for d 7→ B(D(−, d),D, F).

Generalizing Example 4.5.5, the simplicial object B•(D(−, d),D, F) admits an augmenta-
tion and extra degeneracy. The augmentation

∐
d′ D(d′, d) × Fd′ → Fd is by composition

and is natural in d ∈ D. The extra degeneracies, which insert the identity at 1d, are not
natural in d ∈ D. Nonetheless, by Lemma 4.5.1, the natural map ϵ : B(D,D, F) ⇒ F
produced by the augmentation admits pointwise homotopy inverses; i.e., each component
ϵd is a simplicial homotopy equivalence.





CHAPTER 5

Homotopy limits and colimits: the theory

For a fixed small category D and homotopical category M, the homotopy colimit
functor should be a derived functor of colim: MD → M. Assuming the homotopical
categoryM is saturated, which it always is in practice, the homotopy type of a homotopy
colimit will not depend on which flavor of derived functor is used. Because colimits are left
adjoints, we might hope that colim has a left derived functor and dually that lim: MD →
M has a right derived functor, defining homotopy limits.

For special types of diagrams (e.g., ifD is a Reedy category), there are simple modifi-
cations that produce the right answer. For instance, homotopy pullbacks can be computed
by replacing the maps by fibrations between fibrant objects. Or if the homotopical category
M is a model category of a particular sort (cofibrantly generated for colimits or combina-
torial for limits), then there exist suitable model structures (the projective and injective,
respectively) on MD for which Quillen’s small object argument can be used to produce
deformations for the colimit and limit functors.

These well-documented solutions are likely familiar to those acquainted with model
category theory, but they are either quite specialized (those depending on the particular
diagram shape) or computationally difficult (those involving the small object argument).
By contrast, the theory of derived functors developed in Chapter 2 does not require the
presence of model structures on the diagram categories.

In this chapter, we will make use of Theorem 2.2.8 to produce point-set derived func-
tors L colim,R lim: MD ⇒ M for any small category D and simplicial model category
M using deformations constructed via the bar and cobar constructions. The hypotheses
onM are more-or-less unavoidable: although we will not make explicit use of the enrich-
ment, the associated tensor and cotensor structures are essential to the definition of the bar
and cobar constructions. The other properties of a simplicial model category, as axioma-
tized by Lemma 3.8.6, ensure that the two-sided (co)bar constructions are homotopically
well-behaved.

This short chapter contains only the statements and proofs of these results. We post-
pone the discussion of examples to Chapter 6, where we will also describe ambient sim-
plicial model categories of interest. Later, in section 7.7, we will see that the homotopy
(co)limits constructed here also satisfy a “local” universal property: the homotopy colimit
of F : D → M represents a particular simplicial functor of “homotopy coherent cones”
under F.

5.1. The homotopy limit and colimit functors

In what follows, we agree to write hocolim: MD →M for the left derived functor of
colim and holim: MD →M for the right derived functor of lim. Our use of “the” here is
misleading: derived functors are not uniquely defined on the point-set level. Nonetheless,
it will be convenient to fix a particular construction we will call “the” homotopy (co)limit.
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Colloquial statements of the form “the homotopy (co)limit is isomorphic to” mean that this
particular construction agrees with something or other.

The main goal of this chapter is to show that homotopy colimits and limits can be
computed in a simplicial model category by means of a deformation formed using the bar
and cobar constructions. This result is a corollary of the following theorem.

Theorem 5.1.1. LetM be a simplicial model category with cofibrant replacement Q
and fibrant replacement R. The pair

(5.1.2) B(D,D,Q−) : MD →MD B(D,D,Q−)
ϵQ
⇒ Q

q
⇒ 1

is a left deformation for colim: MD →M. Dually,

C(D,D,R−) : MD →MD 1
r
⇒ R

ηR
⇒ C(D,D,R−)

is a right deformation for lim: MD →M.

Corollary 5.1.3. If M is a simplicial model category and D is any small category,
then the functors colim, lim: MD → M admit left and right derived functors, which we
call hocolim and holim, defined by

hocolimD := L colimD � B(∗,D,Q−) and holimD := R limD � C(∗,D,R−).

Before proving Theorem 5.1.1, let us prove its corollary, after first revisiting the func-
tor tensor product calculations of Examples 4.1.3 and 4.1.4. Recall that ∗⊗D− : MD →M
is isomorphic to the colimit functor and D(−, d) ⊗D − : MD → M is isomorphic to the
functor given by evaluation at d. It follows thatD⊗D − : MD →MD is naturally isomor-
phic to the identity functor.

Proof of Corollary 5.1.3. By Theorem 5.1.1 and Theorem 2.2.8,

(5.1.4) L colimD(−) � colim
D

B(D,D,Q−) � ∗ ⊗D B(D,D,Q−).

By “Fubini’s theorem,” iterated coends commute passed each other, provided that all the
involved colimits exist [ML98, §IX.8]. This should be regarded as a particular instance
of the fact that colimits commute with each other. It follows that functor tensor products
commute past either variable of the two-sided bar construction. Hence

∗ ⊗D B(D,D,Q−) � B(∗ ⊗D D,D,Q−) � B(∗,D,Q−),

the last isomorphism because evaluating a constant functor produces a constant functor.
Hence, the right-hand side of (5.1.4) is B(∗,D,Q−), as desired.

Dually,
R limD(−) � lim

D
C(D,D,R−) � {∗,C(D,D,R−)}D.

The functor cotensor product is an end, which commutes past the limits defining the cobar
construction. But the cobar construction is contravariant in the first variable; hence the
limit in sSetop is a colimit in sSet. Therefore,

{∗,C(D,D,R−)}D � C(∗ ⊗D D,D,R−) � C(∗,D,R−)

as desired. □

Until presenting examples, we will not discuss homotopy limits further as the proofs
are entirely dual. The proof of Theorem 5.1.1 will occupy the remainder of this section.
The first step is to recall that the map ϵ : B(D,D, F) ⇒ F, as a geometric realization of
a pointwise simplicial homotopy equivalence, is itself a pointwise simplicial homotopy
equivalence by Corollary 3.8.4. Hence, it is a pointwise weak equivalence by 3.8.6.(vi),
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and it follows that the two-sided bar construction (5.1.2) defines a left deformation onMD

in the sense of Definition 2.2.1. We record this in the following lemma.

Lemma 5.1.5. The natural weak equivalence ϵ : B(D,D, F)⇒ F makes B(D,D,−) a
left deformation forMD.

The deformation (5.1.2) is obtained by composing ϵ of the lemma with the left defor-
mation q : Q ⇒ 1 to the cofibrant objects of the simplicial model category. This certainly
defines a left deformation onMD. It remains to show that (5.1.2) defines a left deforma-
tion for the colimit functor, i.e., that colim preserves pointwise weak equivalences between
diagrams in a full subcategory ofMD containing the image of B(D,D,Q−). The general
strategy is presented in the following lemma.

Lemma 5.1.6. Suppose (Q, q) is a left deformation onM and F : M→ N . If
• FQ is homotopical
• FqQ : FQ2 ⇒ FQ is a natural weak equivalence

then (Q, q) is a left deformation for F. In other words, F is homotopical on a full sub-
category of cofibrant objects if F preserves weak equivalences in the image of Q and also
preserves the weak equivalences qQ.

Proof. This is an easy consequence of the 2-of-3 property. □

By Lemma 5.1.6, it suffices to show that B(∗,D,Q−) � colimD B(D,D,Q−) is ho-
motopical and that the composite below is a natural weak equivalence:
(5.1.7)

colim
D

B(D,D,QB(D,D,QF))
colimD ϵ// colim

D
QB(D,D,QF)

colimD q// colim
D

B(D,D,QF)

Both steps require that we explore the homotopical aspects of the bar construction.

5.2. Homotopical aspects of the bar construction

The good homotopical properties of the two-sided bar construction hinge of the fact
that the simplicial bar construction B•(G,D, F) is Reedy cofibrant when G and F are
pointwise cofibrant. Readers conversant in the language of model categories might wish to
skip directly to Chapter 14 where this notion is defined. For present purposes, we content
ourselves with a conceptual discussion that highlights the main ideas.

In a simplicial model category, there is a class of maps called the cofibrations which
have special homotopical properties; an object is cofibrant, here meant in the technical
sense, just when the unique map from the initial object is a cofibration. A Reedy cofi-
brant simplicial object is one in which the inclusion, called the latching map, from the
degenerate n-simplices, the nth latching object, into all n-simplices is a cofibration.

Lemma 5.2.1. LetD be a small category and letM be a simplicial model category. If
F : D →M is pointwise cofibrant, then B•(∗,D, F) is Reedy cofibrant.

Lemma 5.2.1 explains the role of the functor Q in the left deformation B(D,D,Q−).
Postcomposition by Q yields a pointwise cofibrant replacement of our diagram F. We
cannot resist giving the proof now because it is so simple.

Proof of Lemma 5.2.1. Recall Bn(∗,D, F) is the coproduct over NDn of the image
under F of the first object in the sequence of composable arrows. Hence, the nth latching
object sits inside Bn(∗,D, F) as the coproduct indexed by degenerate simplices in NDn. By
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Lemma 11.1.4, the cofibrations, and hence the cofibrant objects, are closed under coprod-
ucts. By 11.1.4 again cofibrations are closed under pushout and hence coproduct inclusions
of cofibrant objects are also cofibrations. By hypothesis, every object in these coproducts
is cofibrant, so the above observations imply that the nth latching map is a cofibration. □

Remark 5.2.2. Recall from 3.8.6.(iii) that tensoring with any simplicial set preserves
cofibrant objects. Thus, the argument just given also shows that B•(G,D, F) is Reedy
cofibrant for any pointwise cofibrant F taking values in a simplicial model category and
any functor G : Dop → sSet.

Our proof of Theorem 5.1.1 relies on one major result, a consequence of a standard
theorem from Reedy category theory, which we will prove as Corollary 14.3.10.

Theorem 5.2.3 ([GJ99, VII.3.6], [Hir03, 18.4.11]). IfM is a simplicial model cate-
gory, then

| − | : M∆op
→M

is left Quillen with respect to the Reedy model structure. In particular, | − | sends Reedy
cofibrant simplicial objects to cofibrant objects and preserves pointwise weak equivalences
between them.

Remark 5.2.4. At this level of generality, this is the strongest result possible: it is not
true that geometric realization preserves all pointwise equivalences (cf. Example 2.2.5).
This is why we warned above that geometric realization is not a homotopy colimit in all
contexts. It is not even homotopical!

Combining 5.2.2 and 5.2.3, we conclude that:

Corollary 5.2.5. The functor B(G,D,−) preserves weak equivalences between point-
wise cofibrant objects. In particular B(∗,D,Q−) is homotopical. Dually, when F is point-
wise cofibrant, B(−,D, F) preserves weak equivalences.

It remains only to show that the natural map (5.1.7) is a weak equivalence. By natu-
rality of ϵ,

B(D,D,QB(D,D,QF))
ϵQB //

B(D,D,q)
��

QB(D,D,QF)

q

��
B(D,D, B(D,D,QF))

ϵB // B(D,D,QF)

commutes. By 5.2.2, B•(D,D,QF) : D → M∆op
is pointwise Reedy cofibrant; hence,

by Theorem 5.2.3, B(D,D,QF) is pointwise cofibrant. Applying colimD to the left-hand
vertical map, we get B(∗,D, q) : B(∗,D,QB(D,D,QF))→ B(∗,D, B(D,D, F)), which is
a weak equivalence by Corollary 5.2.5, which says that B(∗,D,−) preserves weak equiv-
alences between pointwise cofibrant diagrams. Hence, it remains only to show that the
image of the bottom map under colimD is a weak equivalence. This is accomplished by
the following lemma, which is in some ways the crux of the argument.

Lemma 5.2.6. When F is pointwise cofibrant, the functor colimD preserves the weak
equivalence

ϵB(D,D,F) : B(D,D, B(D,D, F))→ B(D,D, F).

Proof. Recall that ϵF : B(D,D, F)→ F is the geometric realization of a map between
simplicial objects with components at d ∈ D determined by the maps

(D(dn, d) ×D(dn−1, dn) × · · · × D(d0, d1)) · Fd0 −→ Fd.
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These maps compose the arrows inD and then evaluate the functor at the composite arrow
d0 → d. Using the fact that functor tensor products, as colimits, commute with both
variables of the two-sided bar construction, ϵF can be expressed as

B(D,D, F) � B(D,D,D⊗D F) � B(D,D,D) ⊗D F
ϵ⊗D1
−→ D ⊗D F � F

where this ϵ is the geometric realization of the map of simplicial objects

(5.2.7) ϵ : B•(D(−, d),D,D(d′,−))→ D(d′, d)

defined by composing the arrows inD.
Importantly, the augmented simplicial object (5.2.7) admits both backwards and for-

wards contracting homotopies. The forwards contracting homotopy was used to show that
ϵ⊗DF : B(D,D, F)⇒ F is a natural weak equivalence. Dually, the backwards contracting
homotopy can be used to show that G⊗Dϵ : B(G,D,D)⇒ G is a natural weak equivalence.

The argument is now completed by the following commutative diagram, which ex-
presses the “associativity” of the two-sided bar construction, in the sense of natural isomor-
phisms B(G,D, B(D,D, F)) � B(B(G,D,D),D, F). Our map colimD ϵB is the top map in
the following diagram, whose vertical isomorphisms depend on the coYoneda lemma and
the fact that both variables of the two-sided bar construction commute with colimits.

∗ ⊗D B(D,D, B(D,D, F))
∗⊗Dϵ //

�
��

∗ ⊗D B(D,D, F)
�
��

∗ ⊗D B(D,D,D) ⊗D B(D,D, F)
∗⊗Dϵ⊗DB(D,D,F) //

�
��

∗ ⊗D D⊗D B(D,D, F)
�
��

B(∗,D,D) ⊗D B(D,D, F)
ϵ⊗DB(D,D,F) //

�
��

∗ ⊗D B(D,D, F)
�
��

B(B(∗,D,D),D, F)
B(ϵ,D,F) // B(∗,D, F)

Using the backwards contracting homotopy mentioned above, the map ϵ : B(∗,D,D)→ ∗
is a weak equivalence, hence, by Corollary 5.2.5, preserved by the functor B(−,D, F).
Thus, the bottom map is a weak equivalence. The result now follows from the 2-of-3
property. □





CHAPTER 6

Homotopy limits and colimits: the practice

Now that we have a general formula for homotopy limit and colimit functors in any
simplicial model category, we should take a moment to see what these objects look like in
particular examples, in particular, for traditional topological spaces. This demands that we
delve into a topic that is perhaps overdue. In addition to the category of simplicial sets,
there are several choices available for a simplicial model category of spaces. In section 6.1,
we discuss the point-set topological considerations that support the definitions of two of
the aforementioned convenient categories of spaces: k-spaces and compactly generated
spaces.1 In section 6.2, we use these results to list several simplicial model categories
of spaces, paying particular attention to their fibrant and cofibrant objects, which feature
in the construction of homotopy limits and colimits. The short section 6.3 concludes this
background segment with some important preparatory remarks.

Finally in sections 6.4 and 6.5, we turn to examples, describing the spaces produced by
the formulae of Corollary 5.1.3 and considering what simplified models might be available
in certain cases. A particularly intuitive presentation of the theory of homotopy limits and
colimits, including several of the examples discussed in those sections, can be found in
the unfinished, yet extremely clear notes on this topic by Dugger [Dug08]. We close this
chapter in section 6.6 with a preview of Part II. We show that our preferred formulae for
homotopy limits and colimits are isomorphic to certain functor cotensor and functor tensor
products. We give an immediate application that illustrates the power of this perspective,
proving that the homotopy colimit of a diagram of based spaces has a certain relationship
to the homotopy colimit of the underlying unbased diagram.

6.1. Convenient categories of spaces

For this section only, let us revert to the old naı̈ve notation and write Top for the
category of all topological spaces and continuous maps. At issue is that the category Top
of all spaces is not particularly well behaved categorically. The following results illustrate
some pathologies.

Theorem 6.1.1 ([Bor94, 7.1.1-2]). The product, unit, and internal hom for any sym-
metric monoidal closed structure on the category Top necessarily have the cartesian prod-
uct, one-point set, and set of all continuous functions as underlying sets. But there is no
such structure in which the monoidal product is the cartesian product of spaces. Hence
Top is not cartesian closed.

In other words, it is not possible to topologize the set of continuous maps from X to Y
in such a way that there exists a continuous “evaluation” function

Top(X,Y) × X → Y

1Note that neither of these models is the one described in the paper [Ste67], whose title introduced the
phrase “A convenient category of topological spaces.”
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satisfying the desired universal property: Top(X,Y) should be terminal in the category of
spaces W equipped with a continuous map W × X → Y . For pathological spaces X, the
problem, familiar from undergraduate point-set topology, is that the functor −×X : Top→
Top does not preserve all colimits [Mun75, §22 Example 7].

Remark 6.1.2. By a theorem of Maria Cristina Pedicchio and Sergio Solimini, there
is a unique closed symmetric monoidal structure on Top [PS86]; the underlying sets of the
product, unit, and hom-spaces are determined by Theorem 6.1.1. This closed monoidal
structure topologizes the hom-spaces using the topology of pointwise convergence: a sub-
basis is given by sets of functions that take a specified point in the domain into a specified
open subset of the codomain [Bor94, 7.1.6]. Note that this is not the most useful topology
on hom-spaces: even for metric spaces, a sequence of continuous functions that converges
pointwise need not have a continuous limit. The monoidal product X⊗Y , whose underlying
set is the cartesian product X × Y , is topologized so that a continuous function X ⊗ Y → Z
is exactly a function X × Y → Z that is separately continuous in each variable.

For based spaces, the situation is even worse. From our experience with CW com-
plexes, we might hope that an internal hom would be right adjoint to the smash product.
However:

Lemma 6.1.3 (Kathleen Lewis [MS06, 1.7.1]). The smash product in the category Top∗
of based spaces and basepoint-preserving maps is not associative. In particular, if Q and
N are topologized as subspaces of the real line with basepoint 0, then (Q ∧ Q) ∧ N and
Q ∧ (Q ∧ N) are not homeomorphic.

We suggest two alternatives to Top, which require the following definitions from
point-set topology. Historically, the terminology has been somewhat variable. Our ter-
minology and notation follows [McC69, §2] and [May99, §5], but our presentation owes
more to [Vog71] and [Bor94], which helped us separate the benefits of the two alternatives
presented below.

Definition 6.1.4. A subspace A ⊂ X is compactly closed if its restriction along any
continuous function K → X with compact Hausdorff domain is closed in K. A space X is
a k-space if every compactly closed subspace of X is closed.

Examples of k-spaces include CW complexes, compact spaces, locally compact spaces,
topological manifolds, and first-countable spaces, including metric spaces. Write kTop for
the full subcategory of k-spaces; kTop forms a coreflective subcategory of Top, meaning
the inclusion

kTop
⊥
// Top

k
jj

has a right adjoint, called k-ification. The functor k maps a space X to a space with the same
underlying set topologized so that the closed subsets of kX are precisely the compactly
closed subsets of X. The identity function kX → X is continuous and has a universal
property: kX has the finest topology so that any map K → X, with K compact Hausdorff,
factors through kX → X. This map is the counit of the coreflection; the unit is the identity.
One readily checks that compactly closed subsets of kX are closed— hence, kkX = kX—
and that a continuous map f : X → Y gives rise to a continuous map k f : kX → kY .

Theorem 6.1.5. The category kTop is complete and cocomplete. Colimits are formed
as in Top, and limits are formed by applying the functor k to the corresponding limit in
Top. The category kTop is cartesian closed.
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Proof. See [Vog71, §3] for a proof of cartesian closure. The assertions about limits
and colimits follow formally from 6.1.9. □

In particular, the product of two k-spaces is the k-ification of the usual product topol-
ogy. If one of the spaces is locally compact, these two notions coincide, but in general
the k-space product topology will be finer. This modification is desirable: the functor
| − | : sSet → Top does not preserve products, but | − | : sSet → kTop does. One inter-
pretation of this result is that the k-ification of the product topology is the topology of the
product of CW complexes.

Lemma 6.1.6. If X and Y are simplicial sets then the geometric realization of their
product is homeomorphic to the k-ification of the product of their geometric realizations.

Proof. The canonical map |∆m × ∆n| → |∆m| × |∆n| is a continuous bijection between
compact Hausdorff spaces and hence a homeomorphism. Note that |∆n| is locally compact,
so the right hand product agrees with its k-ification. By the density theorem, generic sim-
plicial sets X and Y are colimits, indexed by their categories of simplices, of representable
simplicial sets; see 7.2.7. Because kTop is cartesian closed, the k-space product preserves
colimits in both variables and the result follows. □

A function f : X → Y is k-continuous if and only if its composite with any continuous
function K → X whose domain is a compact Hausdorff space K is continuous. A contin-
uous function is clearly k-continuous. Conversely, a k-continuous function whose domain
is a k-space is also continuous; this is the universal property that characterizes the k-space
topology.

Remark 6.1.7 ([Bor94, §7.2]). In the cartesian closed structure on kTop, the topology
on the space of maps X → Y is the k-ification of the compact-open topology. This dif-
fers from the usual compact-open topology if X happens to have non-Hausdorff compact
subspaces.

Note that k-continuity is not a local property unless compact subsets of X are locally
compact, which is automatic if X is Hausdorff but not true in general. Hence, we might
prefer to introduce a separation condition on k-spaces so that the topology assigned to the
hom-spaces gives a better notion of convergence for sequences of continuous functions.

Definition 6.1.8. A space X is weak Hausdorff if the image of any continuous map
with compact Hausdorff domain is closed in X. A weak Hausdorff k-space is called com-
pactly generated.

CW complexes, metric spaces, and topological manifolds are compactly generated.
The weak Hausdorff condition should be thought of as a separation axiom: Hausdorff
spaces (T2-spaces) are weak Hausdorff and weak Hausdorff spaces are T1. In a weak
Hausdorff space, the image of a map K → X with compact Hausdorff domain is a compact
Hausdorff subspace, and in particular is locally compact. A subspace of a weak Hausdorff
space is compactly closed if and only if its intersection with compact Hausdorff subspaces
is closed. The slogan is that the compact Hausdorff subspaces of a compactly generated
space determine its topology. In particular, a map X → Y between compactly generated
spaces is continuous if and only if its restriction to any compact Hausdorff subspace of X
is continuous.
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Write CGTop for the category of compactly generated spaces. It is a reflective sub-
category of kTop, i.e., the inclusion functor

CGTop ⊥ // kTop
wss

has a left adjoint. The reflector w takes a k-space X to its maximal weak Hausdorff quotient,
which is again a k-space.

Digression 6.1.9 (reflective subcategories). Let us pause a moment to review the gen-
eral features of this situation. A category C is a reflective subcategory of D if there is a
full inclusion

(6.1.10) C
⊥ // D

R
|| K_s

that admits a left adjoint R. Because the right adjoint is full and faithful, the counit of the
adjunction is an isomorphism. The unit d → Rd is universal among maps from an object
d ∈ D to an object, its reflection,2 in the subcategory C.

An important point is the adjunction (6.1.10) is monadic, meaning C is canonically
equivalent to the category of algebras for the monad R onD. The proof is elementary: the
essential point is that R is an idempotent monad, meaning its multiplication is a natural
isomorphism. In particular, the functor C → D not only preserves but creates all limits.
So ifD is complete, then C is as well, with its limits formed as in the larger category.

If D is also cocomplete, then C is too, but colimits are computed by applying the
functor R to the corresponding colimit in D. This situation is familiar from algebraic
geometry: limits of sheaves on a space X are formed pointwise, as they are for presheaves,
while colimits have to pass through the “sheafification” functor that reflects presheaves into
the subcategory of sheaves.

Exercise 6.1.11. Verify that the procedure just described produces colimits in C.

These general remarks prove the initially unjustified assertions in Theorem 6.1.5. Col-
imits, formed in Top, of k-spaces are necessarily k-spaces. The category kTop is also
complete, with limits formed by applying k-ification to the corresponding limit in Top.
Similarly, limits of weak Hausdorff spaces are necessarily weak Hausdorff. Hence, limits
in CGTop are formed as in kTop, by applying k to the ordinary limit. In particular, geo-
metric realization can also be regarded as a strong monoidal functor | − | : sSet→ CGTop.

Certain colimits of compactly generated spaces happen to be weak Hausdorff already,
in which case the functor w has no effect. For instance, the category CGTop is closed under
colimits of sequences of closed inclusions, pushouts along closed inclusions, and quotients
by closed equivalence relations [May99, §5.2]. However, generic colimits constructed by
applying w are poorly behaved, and in particular change the underlying set of the resulting
topological space. Thus, one tends to only work in the category CGTop when the desired
colimit constructions avoid weak Hausdorffication.

Like kTop, the category CGTop is cartesian closed with internal homs as described in
6.1.7. Hence, it follows from Construction 3.3.14 that the categories of based k-spaces and
based compactly generated spaces are also closed monoidal. To summarize, we will state
the theorem.

2The mnemonic is that an object looks at its reflection.
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Theorem 6.1.12. The categories kTop and CGTop are cartesian closed. The cat-
egories kTop∗ and CGTop∗ are closed symmetric monoidal with respect to the smash
product.

6.2. Simplicial model categories of spaces

We can now use the extension of Theorem 3.7.11 mentioned at the end of Chapter 3
to produce several simplicial model categories of spaces in which to compute homotopy
limits and homotopy colimits.

Example 6.2.1 ([Hov99, 4.2.8]). The primary example, due to Quillen, is sSet. All
objects are cofibrant. Fibrant objects, called Kan complexes, are simplicial sets X in
which any horn Λn

k → X admits an extension along the canonical inclusion Λn
k → ∆

n. See
Example 11.3.5.

Example 6.2.2. By Lemma 6.1.6, the usual geometric realization–total singular com-
plex adjunction is strong monoidal, at least when we interpret its target as landing in kTop
or CGTop. It is a left Quillen functor by a classical theorem of Quillen [Qui67]. Hence,
the fact that Quillen’s model structures on kTop and CGTop form monoidal model cate-
gories [Hov99, 4.2.11] implies that they are simplicial model categories. For both model
structures, all objects are fibrant. The cofibrant spaces are the cell complexes. See Example
11.3.6.

Example 6.2.3. By Construction 3.3.14, there is a strong monoidal Quillen adjunction
with left adjoint (−)+ : sSet → sSet∗ [Hov99, 4.2.9]. This makes the monoidal model cat-
egories of based simplicial sets into a simplicial model category. All objects are cofibrant.
Fibrant objects are based Kan complexes.

A final pair of examples makes use of the following result.

Proposition 6.2.4. Geometric realization extends to a strong monoidal left Quillen
functor | − | : sSet∗ → CGTop∗.

Proof. See [Hov99, 4.2.17] for a proof that geometric realization is a left Quillen
functor. Here we will show that it is strong monoidal, i.e., that it commutes with smash
products. Recall that the smash product of a pair of based spaces was defined by the
pushout (3.3.15). Because geometric realization is a left adjoint, it preserves the pushout.
By Lemma 6.1.6 it also commutes with the constituent coproduct and product. The con-
clusion follows. □

Example 6.2.5. Applying Proposition 6.2.4, it follows that the closed monoidal cate-
gories of based k-spaces and based compactly generated spaces are simplicial model cat-
egories. All objects are fibrant. Cofibrant objects are non-degenerately based cell com-
plexes.

In the sequel, we write Top to mean either CGTop or kTop. Because the weak Haus-
dorff property is stable under the sorts of colimits we will need, including those involved
in the bar construction, the distinction between these categories is immaterial. We will not
discuss the inner workings of the convenient category of spaces in the future and will have
no further use for the category of all spaces.
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6.3. Warnings and simplifications

Before presenting examples, we should issue a warning.

Remark 6.3.1. We always take the weak equivalences in the categoryMD of diagrams
of shapeD in a homotopical categoryM to be defined pointwise. By the universal property
of localization, there is a canonical map

MD

γ

��

γD // (HoM)D

Ho(MD)

99r
r

r
r

r

but it is not typically an equivalence of categories.3 Indeed, some of the pioneering for-
ays into abstract homotopy theory were motivated by attempts to understand the essential
image of the functor Ho(MD)→ (HoM)D.

The diagonal functor ∆ : M→MD is homotopical and hence acts as its own derived
functors. By Exercise 2.2.15, the total derived functor Lcolim: Ho(MD) → HoM is left
adjoint to ∆ : HoM→ Ho(MD) but unless the indicated comparison is an equivalence, this
is not the same as the diagonal functor ∆ : HoM → Ho(M)D. Hence, homotopy colimits
are not typically colimits in the homotopy category.

For example:

Example 6.3.2. Fix a field k. A chain complex A• ∈ Ch•(k) is quasi-isomorphic to its
homology, interpreted as a chain complex with zero differentials.4 Among chain complexes
with zero differentials, quasi-isomorphisms are just pointwise isomorphisms. It follows
that the category Ho(Ch•(k)) is equivalent to the category of graded vector spaces. The lat-
ter category is complete and cocomplete but these (co)limits are not homotopy (co)limits.
A high level way to see this is the following: Ch•(k) is a stable (∞, 1)-category so homo-
topy pullbacks are also homotopy pushouts, which mutatis mutandis is not true for graded
vector spaces.

Unlike the situation in the previous example, more often homotopy categories have
few actual limits and colimits. The author learned about the following example of a non-
existent colimit in the homotopy category of spaces from Michael Andrews and Markus
Hausmann.

Example 6.3.3. The identity and reflection about some axis of symmetry define a
parallel pair of maps S 1 ⇒ S 1 of degree 1 and −1. Suppose there existed a coequalizer X
inH � Ho(Top). Recall cohomology is a represented functor onH , i.e.,

Hn(X; G) = H(X,K(G, n)).

Because represented functors take colimits to limits, it follows that

Hn(X; G) // Hn(S 1; G)
1 //
−1
// Hn(S 1; G)

3This is only true in very special cases, such as when D is discrete. This is the reason why homotopy
products and homotopy coproducts are products and coproducts in the homotopy category, as discussed in the
introduction to Chapter 3.

4Construction of the requisite quasi-isomorphism makes use of the fact that a vector space decomposes into
a direct sum involving any subspace.
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is an equalizer diagram. By a routine calculation, H̃n(X; G) = 0 unless n = 1, H1(X;Z) = 0,
and H1(X;Z/2) = Z/2. For any abelian group G, the universal coefficient theorem gives
us short exact sequences

0→ Ext(Hi−1(X;Z),G)→ Hi(X; G)→ Hom(Hi(X; Z),G)→ 0.

Writing A for H1(X;Z), we easily compute that Hom(A,Z/2) = Z/2 and Ext(A,Z/2) =
Hom(A,Z) = Ext(A,Z) = 0. But these calculations contradict the long exact sequence

0→ Hom(A,Z)
2
→ Hom(A,Z)→ Hom(A,Z/2)→ Ext(A,Z)

2
→ Ext(A,Z)→ Ext(A,Z/2).

These warnings dispatched, the following simplification is frequently applied. By
Corollary 5.1.3, given any F : D → M taking values in a simplicial model category, the
object B(∗,D,QF) has the right homotopy type for hocolim F. But if the diagram hap-
pens to be pointwise cofibrant already, then Corollary 5.2.5 implies that B(∗,D, F) and
B(∗,D,QF) are weakly equivalent and the “correction” given by applying Q is not nec-
essary. Put another way, our homotopy colimit functor B(∗,D,Q−) defines which objects
have the correct homotopy type to be the homotopy colimit. But in computing examples,
one typically prefers a simpler construction, here omitting the pointwise cofibrant replace-
ment, that gives the right homotopy type.

Remark 6.3.4. In the simplicial model category Top, not all objects are cofibrant.
Nonetheless, by a folklore result, the homotopy colimit of a diagram F : D → Top can
always be computed by B(∗,D, F). In other words, it is not necessary that the objects in
the diagram are pointwise cofibrant in order for the bar construction to give the correct
homotopy type.

The proof relies upon the fact that in the category of spaces Theorem 5.2.3 holds under
weaker hypotheses than in the general case, and the simplicial bar construction satisfies
these conditions even if the diagram F is not pointwise cofibrant. We were delighted to
discover the beautiful proof of this fact in [DI04, §A]. For the reader’s convenience, it is
reproduced in section 14.5.

6.4. Sample homotopy colimits

These preliminaries completed, we are now ready to deploy Corollary 5.1.3 in the
field. Let us warm up with a very simple example.

Example 6.4.1. Consider a functor f : 2 → Top whose image is the arrow X
f
→ Y .

Because the category 2 has only a single non-identity arrow, N2 is 1-skeletal. Because de-
generate simplices in the simplicial bar construction correspond to degenerate simplices in
the nerve of the diagram shape (the fact that enabled the proof of Lemma 5.2.1), B•(∗,2, f )
is 1-skeletal. Hence, Lemma 4.4.3 implies that hocolim( f ) = B(∗,2, f ) can be computed
as the functor tensor product of the 1-truncated simplicial object.

By definition, the first two spaces in the simplicial bar construction B•(∗,2, f ) are

B0 = X ⊔ Y and B1 = X0 ⊔ X f ⊔ Y1,

where the superscripts indicate the arrow that indexes each component of B1. The first X
in B1 corresponds to the domain of the image of the identity at 0, the second X corresponds
to the domain of f , and the Y corresponds to the domain of the image of the identity at 1.
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By 5.1.3, the homotopy colimit is the (1-truncated) geometric realization, which is

hocolim( f ) = 5 colim



∆1 ⊗ B0
s0 //

s0

&&LL
LLL

LLL
LLL

L ∆1 ⊗ B1

∆0 ⊗ B1

d0
88rrrrrrrrrrrr

d1

88rrrrrrrrrrrr d0 //
d1

// ∆0 ⊗ B0



= colim


X × I ⊔ Y × I

s0 //

s0

**TTT
TTTT

TTTT
TTTT

TTTT
TTT

(X0 × I) ⊔ (X f × I) ⊔ (Y1 × I)

X0 ⊔ X f ⊔ Y1

d0
44jjjjjjjjjjjjjjjjjjj

d1

44jjjjjjjjjjjjjjjjjjj d0 //
d1

// X ⊔ Y


(6.4.2)

writing I = |∆1| � [0, 1] ⊂ R. This colimit is computed by first taking the disjoint union

(X ⊔ Y) ⊔ ((X0 × I) ⊔ (X f × I) ⊔ (Y1 × I))

of the two objects on the right of (6.4.2) and then indentifying any two points that appear
in the images of any pair of corresponding maps (s0 and s0 or di and di). In particular
s0 includes X0 × I into the 0 component of the top coproduct and s0 projects onto X in
the bottom coproduct. Hence, the cylinders X0 × I and Y1 × I are identified with their
projections X and Y . The intermediate result is

(6.4.3) X ⊔ (X f × I) ⊔ Y,

but it remains to identify the images of the di and di.
The images of X0 and Y1 under d0 and d0 and d1 and d1 have already been identified

when we quotiented using the degeneracy operator. The image of X f under d1 is X and the
map restricts to the identity. The image of X f under d0 is X × {0} ⊂ X f × I, so the zeroth
face of this cylinder gets glued to the X in (6.4.3). The image of X f under d0 is f (X) ⊂ Y ,
while the image of X f under d0 is X × {1} ⊂ X f × I. So the first face of this cylinder gets
identified with Y by gluing (x, 1) to f (x). The result is

hocolim( f ) = X × I ⊔ Y/(x,1)∼ f (x)

This is the usual mapping cylinder M f .

Remark 6.4.4. The mapping cylinder deformation retracts onto Y . In 8.5.9, as a con-
sequence of the theory of homotopy final functors, we will see that hocolim(X → Y)
necessarily has the same homotopy type as Y .

Example 6.4.5. A similar calculation reveals that the homotopy colimit of a diagram

of spaces X
f
← A

g
→ Y is the space

X ⊔ (A × I) ⊔ A ⊔ (A × I) ⊔ Y/⟨ f (a)∼(a,0), (a,1)∼a∼(a,0), (a,1)∼g(a)⟩

that identifies one end of the left cylinder with its image in X, one end of the right cylin-
der with its image in Y , and the other two ends of the cylinders together. This space is
homeomorphic to the double mapping cylinder

X ⊔ (A × I) ⊔ Y/⟨ f (a)∼(a,0), (a,1)∼g(a)⟩

5Recall that the colimit under consideration is a coend. In particular, the parallel maps d0 and d1 are not
coequalized.
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a familiar model for the homotopy pushout.

Example 6.4.6. A special case has a special name. The homotopy pushout of a diagram
∗ ← X → ∗ in Top is the (unreduced) suspension of X. The homotopy pushout in Top∗
is the reduced suspension of X. The relation between the reduced suspension and the
unreduced suspension is governed by a general result, Theorem 6.6.5, that will be proven
shortly.

Reconsidering Example 2.1.16, the homotopy pushout of Dn ← S n−1 → Dn is home-
omorphic to S n, which was also the ordinary pushout. The homotopy pushout of ∗ ←
S n−1 → ∗ is the unreduced suspension of S n−1, also homeomorphic to S n.

In contrast to the ordinary pushout, the homotopy pushout is homotopy invariant, i.e.,
given a commutative diagram

X
∼

��

Aoo //

∼
��

Y

∼

��
X′ A′oo // Y ′

with vertical maps weak homotopy equivalences, the induced map P → P′ between the
homotopy pushouts is a weak homotopy equivalence. This is of course a consequence of
our definition of the homotopy pushout as a derived functor, but let us check this directly.
After identifying |∆1| with the interval [0, 1], we obtain an open cover of P by U = X ∪
(A × [0, 2/3)) and V = (A × (1/3, 1]) ∪ Y such that the maps

a 7→ (a, 1/2) : A→ U ∩ V, X ↪→ U, Y ↪→ V

are all a deformation retracts. Define analogous spaces U′ and V ′ for X′, A′,Y ′ and note
that P → P′ restricts to weak equivalences U → U′, V → V ′, and U ∩ V → U′ ∩ V ′,
because the displayed inclusions are compatible with the deformation retracts onto the
weak equivalences X → X′, Y → Y ′, A → A′. It follows from a classical topological
theorem, recorded as Lemma 14.5.9, that P→ P′ is a weak equivalence, as desired.

Exercise 6.4.7. Show that the homotopy colimit of Y
f
← X → ∗ in Top∗ is the reduced

mapping cone C f of the based map f , also called the homotopy cofiber. WritingH∗ for the
homotopy category of based spaces, show using either formal or classical arguments that
the cofiber sequence X → Y → C f induces an exact sequence of based sets H∗(C f ,Z) →
H∗(Y,Z) → H∗(X,Z). That is, show that the image of the first map is the kernel of the
second. Homotopy invariance says that if we replace f by a homotopy equivalent diagram

X′
f ′
→ Y ′ then the induced map between the homotopy cofibers is a homotopy equivalence.

Example 6.4.8. Consider a diagram X
f
→ Y

g
→ Z given by a functor F : 3 → Top.

Extending 6.4.1, the geometric realization of the 1-truncation of B•(∗,3, F) is formed by
gluing three mapping cylinders M f , Mg, and Mg f along the spaces X, Y , and Z. But, as
mentioned in Remark 6.4.4, 8.5.9 implies that the homotopy colimit should have the homo-
topy type of Z, which this space does not. From this we see that the “higher homotopies”
in the bar construction play an essential role.

Indeed, the simplicial set N3 is 2-skeletal, so B(∗,3, F) is homeomorphic to the geo-
metric realization of the 2-truncation of B•(∗,3, F). The non-degenerate 2-simplex of N3
glues in the space X × |∆2| along the three cylinders in the obvious way.

A simpler construction also has the correct homotopy type:

(X × I) ⊔ (Y × I) ⊔ Z/⟨(x,1)∼( f (x),0),(y,1)∼g(y)⟩
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The inductive version of this construction is called the mapping telescope and is the ho-
motopy colimit of a sequence

X1 → X2 → X3 → · · ·

The proof that the mapping telescope computes the homotopy colimit of this diagram will
be given in Example 11.5.11.

Example 6.4.9. The homotopy colimit of the constant diagram of shapeD at the termi-
nal object is B(∗,D, ∗), which by Example 4.2.2 is isomorphic to the geometric realization
of the nerve ofD. In the case whereD is a 1-object groupoid, i.e., a group G, this space

(6.4.10) BG := B(∗,G, ∗) � B(∗ ⊗G G,G, ∗) � ∗ ⊗G B(G,G, ∗) � colim
G

EG

is called the classifying space of G. More generally, we refer to B(∗,D, ∗) as the classifying
space of the category.

The formula (6.4.10) gives a concrete model of BG as a CW complex. For instance, let
G = Z/2. By definition Bn(∗,Z/2, ∗) is the discrete space on 2n vertices: ordered n-tuples
of 0s and 1s. Geometric realization produces a CW complex with the following description.
Start with a single 0-cell ∗. A priori, there are two 1-cells because B1(∗,Z/2, ∗) has two
vertices 0 and 1. But the first of these is degenerate; degeneracy maps in B•(∗,G, ∗), the
nerve of a category, insert identities, here 0s. So the remaining 1-cell 1 is glued at both
endpoints to ∗. For convenience, we remember the fact that the other 1-cell 0 was collapsed
to the point ∗.

Continuing, a priori we have four 2-cells labelled 00, 01, 10, 11. The first three are
degenerate so the only one contributing to the homotopy type is the fourth. Its three faces
are, in order, 1, 0, and 1; recall the outer face maps are projections and the inner face maps
are compositions. Hence, the associated 2-simplex |∆2| is attached to the loop at ∗ using an
attaching map S 1 → S 1 of degree 2.

Inductively, there is a single non-degenerate n-cell 11 · · · 1 whose outer two faces are
attached to the non-degenerate (n−1)-cell and whose remaining faces are degenerate. Care-
ful examination of these attaching maps reveals that we have just described the standard
CW structure for RP∞, the classifying space for Z/2.

Example 6.4.11 (Borel construction). Let X : G → Top be a G-space. The ordinary
colimit of this diagram is the orbit space. By Corollary 5.1.3,

hocolim
G

X = colim
G

B(G,G, X) � colim
G

B(G,G,G ⊗G X) � colim
G

(B(G,G,G) ⊗G X).

The action on the right of B(G,G,G) is free and the product “⊗” is the cartesian product on
Top. Hence, the G-space B(G,G,G) ⊗G X is homeomorphic to B(G,G, ∗) × X = EG × X
endowed with diagonal action. In Example 4.5.5, we saw that EG was contractible. So if
the G-action on X is free then

hocolim
G

X = colim
G

(EG × X) � colim
G

X � X/G.

For instance, the antipodal Z/2 action on S n produces RPn as its orbit space, and this action
is free, so RPn is also the homotopy orbit space. If the action on X is trivial,

hocolim
G

X � (colim
G

EG) × X � EG/G × X � BG × X.

The construction of the space hocolimG X is called the Borel construction.
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For instance, Z/2 acts freely on S n by the antipodal action and these actions are com-
patible with the inclusions

S 1 ↪→ S 2 ↪→ · · · ↪→ ∪nS n =: S∞

Here the colimit and the homotopy colimit coincide. Indeed, extending the computation
of BZ/2 = RP∞ above, we see that EZ/2 = B(Z/2,Z/2, ∗) admits precisely this CW
decomposition: we start with two 0-cells, to which we attach a parallel pair of 1-cells, to
which we attach a parallel pair of 2-cells, and so on. The free Z/2-action is the antipodal
map, exchanging the cells in each degree.

Because the maps are equivariant, we can quotient by Z/2 before forming the colimit,
returning our previous calculation: BZ/2 � (EZ/2)/(Z/2) � ∪nS n/⟨±1⟩ � ∪nRPn = RP∞.

6.5. Sample homotopy limits

Homotopy limits, being somewhat harder to visualize, are less frequently expounded
upon in the literature. Therefore, let us dualize and compute a few homotopy limits.

Example 6.5.1. Let Xα be a collection of simplicial sets indexed by some set I. We use
the cobar construction to compute their homotopy product. The nerve of I, regarded as a
discrete category, is 0-skeletal, so the cobar construction is isomorphic to its 0-truncation,
which produces the product of fibrant replacements of these objects, i.e.,

holim
α∈I

Xα �
∏
α∈I

RXα

Now that we know this object has the correct homotopy type, we might ask whether
a simpler construction is available. Tautologically, there is a weak equivalence Xα →
RXα from each simplicial set to its fibrant replacement. Iterating Lemma 6.1.6, geometric
realization preserves finite products. A finite product of weak equivalences of topological
spaces is again a weak equivalence; one way to see this is to note that binary products of
spaces are homotopy pullbacks because all spaces are fibrant. So if the index set is finite,
then the ordinary product

∏
α Xα is weakly equivalent to the homotopy product. For infinite

products however, the “correction” provided by the fibrant replacements is necessary.

Example 6.5.2. Dualizing Example 6.4.1, the homotopy limit of X
f
−→ Y is the map-

ping path space. Because the nerve of the walking arrow category is 1-skeletal it suffices,
by the dual of Lemma 4.4.3, to compute the totalization of the 1-truncated cosimplicial
object

C0 = X × Y d0 //
d1 // X × Y × Y = C1.s0oo

To improve the aesthetics, let us write XI for Top(|∆1|, X), the cotensor X∆
1

defined by
3.7.15, 6.1.7, and 6.2.2. Recall this means that XI is the space of continuous maps |∆1| → X
topologized with the k-ification of the compact open topology; that is, XI is the k-ification
of the path space of X.

Observing that the right adjoint (−)I preserves products, Corollary 5.1.3 implies that

holim f = lim


X × Y

d0
//

d1
//

s0

''PP
PPP

PPP
PPP

PPP
X × Y × Y

XI × Y I × Y I s0
//

d0
77nnnnnnnnnnnnnn

d1

77nnnnnnnnnnnnnn
XI × Y I
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Using ad hoc methods, justified by the fact that limits commute with each other, we can
simplify this expression. The first step might be to pullback along the degeneracy maps,
restricting to the subspace of the lower left-hand product where the paths in the first and
last coordinates are constant.

= lim


X × Y I × Y

d0

��
d1

��
X × Y

d0
//

d1
// X × Y × Y


The face map d0 : X × Y → X × Y × Y projects and then acts by the identity, whereas
d0 : X × Y I × Y → X × Y × Y evaluates at the endpoint of each path. The effect of the limit
condition imposed by these maps is to restrict to the subspace X×Y I ⊂ X×Y I ×Y in which
the third coordinate is identified with the endpoint of the path in Y . We are now left with
the pullback

holim f � N f

��

//
⌟

Y I

d1=ev0

��
X

d1= f
// Y

which defines the mapping path space.

Example 6.5.3. Consider a diagram ∗
p //
q
// X in Top, picking out a pair of points

in X. If p , q, the limit of this diagram is empty; if p = q it is a singleton. Let us compute
the homotopy limit. Again the nerve of the category • ⇒ • is 1-skeletal, so it suffices to
compute the totalization of a 1-truncated cosimplicial object. As we saw in the previous
example, the resulting homotopy limit will be a subspace of C0 × (C1)∆

1
. Using subscripts

to indicate which objects are indexed by which arrows, the relevant spaces are

C0 = ∗ × X (C1)∆
1
= ∗∆

1

0 × X∆
1

p × X∆
1

q × X∆
1

1 ,

where we have used the fact that the cotensor with ∆1, as a right adjoint, preserves the
categorical product.

The limit condition imposed by the degeneracy map s0 : ∆1 → ∆0, replaces the space
(C1)∆

1
by a subspace isomorphic to X∆

1

p ×X∆
1

q ×X. The limit condition imposed by d1 : ∆0 →

∆1 replaces two copies of X∆
1

in the product by the respective pullbacks

Γ(X, p)

��

//
⌟

X∆
1

d1

��
∗

p // X � X∆
0

and Γ(X, q)

��

//
⌟

X∆
1

d1

��
∗

q // X � X∆
0

The pullback Γ(X, p) is the space of paths in X starting at p. Finally, the limit condition
imposed by d0 : ∆0 → ∆1 demands that the codomains of the paths in Γ(X, p) and Γ(X, q)
coincide with some specified x ∈ X. It follows that the homotopy limit is homeomorphic
to the subspace of X∆

1
of paths from p to q in X. Taking p = q, the homotopy limit is the

loop space Ω(X, p).
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Exercise 6.5.4. Dualize Example 6.4.5 to show that the homotopy limit of p : Y → X,
q : Z → X is the subspace of XI × Y × Z of triples ( f , y, z) with p(y) = f (0), q(z) = f (1).
This space is called the homotopy pullback.

The homotopy limit of Example 6.5.3 can also be constructed as a homotopy pullback
in based spaces. Note that the underlying space of this homotopy pullback is isomorphic
to the homotopy pullback of the underlying spaces. This is an instance of a general phe-
nomenon that can assist with the computation of homotopy limits in sSet∗ or Top∗.

Lemma 6.5.5. Suppose given a diagram F : D → M∗, where M is either simplicial
sets or spaces. Then the underlying space of its homotopy limit is the homotopy limit of the
composite of F with the forgetful functorM∗ →M.

Proof. The proof is left to the reader (or see Corollary 8.1.2). □

Example 6.5.6. The limit of

(6.5.7) · · · ↪→ Xn ↪→ · · · ↪→ X3 ↪→ X2 ↪→ X1

is ∩nXn. Dualizing Example 6.4.8 and making use of the topological properties of the
standard interval, the homotopy limit has the same homotopy type as a space with the
following description: the homotopy limit is the space of maps [1,∞) → X1 such that
f ([n,∞)) ⊂ Xn for all n > 0. For example, let Xn be the ball of radius 1/n in R2 about the
origin, but with the origin removed. Forgetting the distance to the origin but remembering
the angle defines a natural homotopy equivalence from the sequence of inclusions (6.5.7)
to the constant sequence at S 1. The limit of the former is empty and the limit of the latter
is of course S 1. By the homotopy invariance of C(∗,D,−), the homotopy limit, the space
of paths in the punctured disk that approach the origin, has the homotopy type of S 1.

Example 6.5.8. The limit of X : G → Top is XG, the space of fixed points. The
homotopy limit is the homotopy fixed point space XhG computed by TopG(EG, X). Pre-
composition with the contraction EG → ∗, gives a canonical map XG → XhG, which is
not generally an equivalence. We will prove that this homotopy colimit has this form in
section 7.7.

6.6. Homotopy colimits as weighted colimits

Historically, the first definitions of homotopy limits and colimits, such as that of Pete
Bousfield and Kan [BK72], employed functor tensor and cotensor products. Our facility
with the two-sided bar construction makes the following theorem easy to prove.

Theorem 6.6.1. Let F : D → M be any diagram in a complete and cocomplete, ten-
sored, cotensored, and simplicially enriched categoryM. There are natural isomorphisms

B(∗,D, F) � N(−/D) ⊗D F and C(∗,D, F) � {N(D/−), F}D

In particular, the homotopy colimit of a pointwise cofibrant diagram F can be computed by
the functor tensor product with N(−/D). Dually, the homotopy limit of a pointwise fibrant
diagram can be computed by the functor cotensor product with N(D/−).

Proof. Extending previous notation, here we regard the contravariant Yoneda embed-
ding as a functor D : Dop → sSetD taking values in discrete simplicial sets. By Exercise
4.2.6, B•(∗,D,D) is the horizontally discrete bisimplicial set N(−/D). By the coYoneda
lemma, which is used to prove Exercise 4.1.8, the geometric realization of a bisimplicial set
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is isomorphic to its diagonal; hence B(∗,D,D) � N(−/D) and the claimed isomorphism
is an easy calculation:

N(−/D) ⊗D F � B(∗,D,D) ⊗D F � B(∗,D,D⊗D F) � B(∗,D, F). □

The result of Theorem 6.6.1 is important enough to merit a more explicit demonstra-
tion. By Fubini’s theorem for iterated coends and cocontinuity of simplicial tensors:

N(−/D) ⊗D F � B(∗,D,D) ⊗D F

�

∫ d∈D

|B•(∗,D,D(d,−))| ⊗ Fd

�

∫ d∈D (∫ n∈∆

∆n × Bn(∗,D,D(d,−))
)
⊗ Fd

�

∫ d∈D ∫ n∈∆

∆n ⊗ (Bn(∗,D,D(d,−)) ⊗ Fd)

�

∫ n∈∆

∆n ⊗

(∫ d∈D

Bn(∗,D,D(d,−)) ⊗ Fd
)

(6.6.2)

Similarly,

B(∗,D, F) �
∫ n∈∆

∆n ⊗ Bn(∗,D, F)

�

∫ n∈∆

∆n ⊗

 ∐
d⃗ : [n]→D

Fd0

(6.6.3)

So if we can show that∫ d∈D

Bn(∗,D,D(d,−)) ⊗ Fd �
∐

d⃗ : [n]→D

Fd0

then we may conclude that (6.6.2) and (6.6.3) are isomorphic. The tensor inside the left-
hand coend is indexed by the discrete simplicial set N(d/D)n, so it may be rewritten as∫ d∈D ∐

N(d/D)n

Fd.

Elements of N(d/D)n are strings d⃗ : [n] → D of n composable arrows in D together with
an arrow d → d0 inD. Thus, this coend is isomorphic to∫ d∈D ∐

d⃗ : [n]→D

D(d, d0) · Fd �
∐

d⃗ : [n] toD

∫ d∈D

D(d, d0) · Fd �
∐

d⃗ : [n]→D

Fd0

the last step by the coYoneda lemma.

Example 6.6.4. Let X : ∆op → sSet be a bisimplicial set. By Theorem 6.6.1,

hocolim
∆op

X � N(∆/−)op ⊗∆op X

since d/(Dop) � (D/d)op. This homotopy colimit is larger than the geometric realization
of |X|, though we shall see in Example 7.7.2 that there is a canonical comparison map
hocolim∆op X → |X| that is a weak equivalence of simplicial sets. Comparison results like
this motivate our discussion of enriched homotopy theory in Part II.
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The isomorphism of Theorem 6.6.1 simplifies the proof of the following comparison,
the colimit counterpart to Lemma 6.5.5, between homotopy colimits in based and unbased
spaces.

Theorem 6.6.5 (Dror Farjoun [Hir03, 18.8.4]). Given a diagram F : D → sSet∗,
writing U : sSet∗ → sSet for the forgetful functor, there is a cofiber sequence

B(∗,D, ∗)→ hocolim UF → U hocolim F

Similarly, given F : D → Top∗ whose constituent spaces are non-degenerately based, there
is a cofiber sequence

B(∗,D, ∗)→ hocolim UF → U hocolim F

Theorem 6.6.5 says that the space underlying the homotopy colimit of a pointwise
cofibrant diagram of based spaces is the quotient of the homotopy colimit of the underlying
spaces by the classifying space of the diagram category. For example, the classifying space
of the category • ← • → • indexing a pushout diagram is an interval. This includes into
the unreduced suspension at the basepoint component of the product X × I. The quotient
of this map is the usual construction of the reduced suspension.

To isolate the main point, we prove Theorem 6.6.5 in a slightly different form.

Theorem 6.6.6. Let F : D → Top∗ be any diagram and let U : Top∗ → Top. There is
a pushout diagram in Top

N(−/D) ⊗D ∗ //

�� ⌜

N(−/D) ⊗D UF

��
∗ // U(N(−/D) ⊗D F)

The cofibrancy hypothesis on the functor F in the topological case of Theorem 6.6.5 is
to ensure that the first map of the claimed cofiber sequence is a cofibration, which implies
the associated pushout is a homotopy pushout (see Corollary 14.3.2). But even without
this hypothesis, it remains the case that those maps form two sides of a pushout square
whose other vertex is the point. Even though these pushouts might not have good homo-
topical properties, we submit that our proof of the variation described by Theorem 6.6.6
illuminates the reason why Theorem 6.6.5 is true.

Proof of Theorem 6.6.6. The functor tensor products are defined as coequalizers∐
d→d′
|N(d′/D)| × ∗ // //

��

∐
d
|N(d/D)| × ∗ //

��

N(−/D) ⊗D ∗ � B(∗,D, ∗)

���
�
�
�

∐
d→d′
|N(d′/D)| × UFd // //

��

∐
d
|N(d/D)| × UFd //

��

N(−/D) ⊗D UF � B(∗,D,UF)

���
�
�
�

U(
∨

d→d′
|N(d′/D)|+ ∧ Fd) // // U(

∨
d
|N(d/D)|+ ∧ Fd) // U(N(−/D) ⊗D F) � UB(∗,D, F)

The forgetful functor U : Top∗ → Top preserves connected colimits, including coequal-
izers. (This is the case for the forgetful functor associated to any slice category under an
object.) The summands of the various coproducts displayed above encode the appropriate
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notions of simplicial tensor in Top and Top∗ as described in ??. From the definition given
there, if Kα ∈ sSet and Xα ∈ Top∗ we have pushout squares∐

α |Kα| × ∗

��

//

⌜

∐
α |Kα| × Xα

��∐
α ∗

//

⌜��

∐
α(|Kα|+ ∧ Xα)

��
∗ // ∨

α(|Kα|+ ∧ Xα)

It follows that each of the first two columns form two sides of a pushout square over the
point. Hence, the dotted arrows bear the same relationship. □

In effect, using language we are finally ready to introduce, Theorem 6.6.1 asserts that
homotopy limits and homotopy colimits are special cases of weighted limits and colimits,
at least when we do not have to worry about the “corrections” provided by the deformations
Q and R. This observation has a lot of mileage because the general theory of weighted
limits and colimits is well-developed and will allow us to give simple proofs of a number
of facts which we have been postponing. For instance, our proof of Theorem 6.6.6 is a
“calculation with the weights,” which, when combined with the appropriate homotopical
input (e.g., Theorem 11.5.1), proves Theorem 6.6.5.

In particular, our focus on enriched category theory will help us complement the
“global” (i.e., derived functor) perspective on homotopy colimits from the “local” one,
which defines homotopy colimits to be objects that represent “homotopy coherent cones.”
With this motivation, let us turn our focus once more to enriched category theory.



Part II

Enriched homotopy theory





CHAPTER 7

Weighted limits and colimits

“Weighted” notions of limits and colimits are necessary to describe a comprehensive
theory of limits and colimits in enriched categories. Weighted limits extend classical limits
in two ways. Firstly, the universal property of the representing object is enriched: an
isomorphism of sets is replaced by an isomorphism in the base category for the enrichment.
Secondly, and most interestingly, the shapes of cones that limits and colimits represent are
vastly generalized. To build intuition, we will begin our journey by examining the role
played by weighted limits and colimits in unenriched category theory. In the unenriched
context, weighted limits reduce to classical ones. Despite this fact, this perspective can
be conceptually clarifying as we shall see in the examples presented in this chapter and in
Chapter 14.

After first gaining familiarity in the unenriched case, we define internal hom objects
forV-Cat, which will be necessary to encode the enriched universal properties of weighted
limits and colimits. We then introduce the general theory of weighted limits and colimits in
aV-category, also calledV-limits andV-colimits, describe an important special case, and
discuss V-completeness and V-cocompleteness. We close this chapter with applications
to homotopy limits and colimits, establishing their previously advertised local universal
property.

7.1. Weighted limits in unenriched category theory

The limit of a diagram F : C → M is an object of M that represents the functor
Mop → Set that maps m ∈ M to the set of cones over F with summit m. One way to
encode the set of cones over F with summit m is by the set SetC(∗,M(m, F)) of natural
transformations from the constant functor at the terminal object toM(m, F) : C → Set. In
this presentation, we think of the constant functor ∗ : C → Set as specifying the nature of
the cone over a diagram of shape C: for each c ∈ C, the component ∗ → M(m, Fc) picks
out an arrow m → Fc in M. Naturality says that these arrows assemble to form a cone
over F with summit m. By definition, a limit is a representation

M(m, lim F) � SetC(∗,M(m, F)).

Dually, the colimit of F is a representation

M(colim F,m) � SetC
op

(∗,M(F,m)).

Here we reversed the variance of the constant functor ∗ : Cop → Set to match that of
M(F,m) : Cop → Set.

Suppose instead ∗ were replaced by a functor ∗ ⊔ ∗ : C → Set constant at the two-
element set. A natural transformation from this functor toM(m, F) gives rise to two cones
over F with summit m. For arbitrary W : C → Set, referred to in this context as a weight,
the data of a natural transformation W ⇒M(m, F) consists of arrows m→ Fc indexed by
the elements of the set Wc, for each c ∈ C. If W f : Wc → Wc′ maps x ∈ Wc to x′ ∈ Wc′,

79
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naturality implies that the triangle under m whose legs are indexed by x and x′ and whose
base is F f must commute.

Definition 7.1.1. A limit of F : C → M weighted by W : C → Set is an object
limW F ∈ M together with a representation

M(m, limW F) � SetC(W,M(m, F)).

Example 7.1.2. Let f : 2 → M be the functor with image f : a → b and let W : 2 →
Set have image ∗ ⊔ ∗ → ∗, the function from a two element set to a one element set. A
natural transformation W ⇒ M(m, f ) consists of two arrows h : m → a, k : m → a which
have a common composite with f . From the defining universal property, we see that limW f
is the pullback

m
∃!

""F
F

F
F

h

%%
k

��

limW f
⌟

p //

q

��

a

f

��
a

f
// b.

The pair of maps p, q forming the limit cone of shape W is called the kernel pair of f .

There is a reason that weighted limits have not attracted more notice in unenriched
category theory. SupposeM is complete, or at least that the limits appearing below exist.
Then by Exercise 1.2.8, the fact thatM is cotensored over Set, and the fact that representa-
bles preserve limits

SetC(W,M(m, F)) �
∫

c∈C
Set(Wc,M(m, Fc)) �

∫
c∈C
M(m, FcWc) �M(m,

∫
c∈C

FcWc).

The end inside the right-hand hom is the functor cotensor product of W : C → Set with
F : C → M. By this calculation, it has the defining universal property of the weighted
limit. Hence

(7.1.3) limW F �
∫

c∈C
FcWc.

In particular, whenM = Set, Exercise 1.2.8 and (7.1.3) imply that limW F is just the set of
natural transformations from W to F.

Example 7.1.4. In particular, by the Yoneda lemma, the limit of F weighted by the
representable functor C(c,−) is Fc.

Example 7.1.5. IfM is complete and C is small, then for any F : C →M, K : C → D,
there exists a pointwise right Kan extension of F along K defined by

RanK F(d) =
∫

c∈C
FcD(d,Kc).

Comparing with (7.1.3), we see that RanK F(d) is the limit of F weighted by the functor
D(d,K−) : C → Set.
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We can translate the end on the right-hand side of the formula (7.1.3) into a conven-
tional limit: ∫

c∈C
FcWc � eq

∏
c∈C

FcWc ⇒
∏

c→c′∈C

Fc′Wc


� eq

∏
c

∏
Wc

Fc⇒
∏
c→c′

∏
Wc

Fc′
 .(7.1.6)

Recall the limit of a diagram G : D → M can be constructed as the equalizer of the two
natural maps between the products indexed by the objects and morphisms ofD.

(7.1.7) lim
D

G � eq

∏
d∈D

Gd ⇒
∏

d→d′∈D

Gd′
 .

This is quite similar to (7.1.6). Indeed, let D be the category of elements of W, typically
denoted elW. Objects are pairs (c ∈ C, x ∈ Wc) and morphisms (c, x) → (c′, x′) are given
by arrows f colonc→ c′ in C such that W f (x) = x′. There is a canonical forgetful functor
Σ : elW → C. Comparing (7.1.6) with (7.1.7), we see that

(7.1.8) limW F �
∫

c∈C
FcWc � limelW FΣ.

The procedure that translated the functor W : C → Set into the functor Σ : elW → C is
called the Grothendieck construction. The slogan is that weighted limits in unenriched
category theory are ordinary limits indexed by the category of elements of the weight.1

We will make use of the dual form as well.

Construction 7.1.9 (Grothendieck construction). Given a presheaf W : Cop → Set, the
contravariant Grothendieck construction produces a functor elW → C. By definition,
objects in the category elW are pairs (c ∈ C, x ∈ Wc) and morphisms (c, x) → (c′, x′) are
arrows f : c→ c′ in C such that W f : Wc′ → Wc takes x′ to x.

The functor Σ : elW → C so-constructed is called a discrete right fibration, a special
type of functor characterized by a certain lifting property: given any arrow f : c→ c′ in C
and element x′ in the fiber over c′, there is a unique lift of f that has codomain x′.

Given a discrete right fibration Σ : B → C, define a functor W : Cop → Set by taking
Wc to be the fiber Σ−1(c) and W f : Wc′ → Wc by defining the image of x′ ∈ Wc′ = Σ−1(c)
to be the domain of the unique lift of f with codomain x′. We leave it to the reader to
verify that these constructions define an equivalence between the category SetC

op
and the

full subcategory of Cat/C of discrete right fibrations over C.

Example 7.1.10. The category of elements of a simplicial set X : ∆op → Set is called
the category of simplices, introduced in section 4.4. By 7.1.9 its objects are n-simplices
in X, for some n and its morphisms α : σ → σ′ are simplicial operators α : [n] → [m],
where σ ∈ Xn and σ′ ∈ Xm such that σ′ ·α = σ. The functor Σ : elX → ∆ is a discrete right
fibration: given α : [n]→ [m] and σ′ ∈ Xm, there is a unique lift σ′ · α→ σ.

Example 7.1.11. Given F : C → M, K : C → D, as in Example 7.1.5, the category
of elements of D(d,K−) : C → Set has arrows d → Kc as objects; morphisms are arrows

1Note the distinction between the meaning of “indexed by” and “weighted over”—however, some authors,
notably [Kel82], called weighted limits “indexed limits.”
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f : c→ c′ in C such that the triangle

Kc

K f
��

d

66mmmmmm

((QQ
QQQ

Q

Kc′

commutes. Thus, the category of elements of D(d,K−) is the slice category d/K, and the
functor d/K → C produced by the Grothendieck construction is just the usual forgetful
functor. Hence, (7.1.8) gives us the formula for pointwise right Kan extensions stated
without proof in 1.2.6:

RanK F(d) � limD(d,K−) F � lim(d/K → C
F
→M).

The category of elements of a functor W : C → Set can detect whether or not the
functor is representable.

Lemma 7.1.12. The functor W : C → Set is representable if and only if its category of
elements has an initial object.

Dually, a contravariant functor is representable if and only if its category of elements
has a terminal object. This characterization of representability is fundamentally Set-based
and will not generalize to the enriched context.

Proof. By the Yoneda lemma, natural transformations α : C(c,−) ⇒ W correspond
bijectively to objects (c, αc(1c)) in the category of elements of W. This α is a natural
isomorphism just when the corresponding element x = αc(1c) ∈ Wc has the following
universal property: for any x′ ∈ Wc′ there is a unique arrow f : c → c′ such that W f (x) =
x′. But this says precisely that x is initial in the category of elements for W. □

Example 7.1.13. The category of elements of a represented functor C(−, c) : Cop →

Set is isomorphic to the slice category C/c, which has a terminal object: the identity at
c. Indeed, the identity at c defines the canonical representation of C(−, c) by the object c.
Note that any isomorphism c′ � c is also terminal in C/c and also defines a representation
C(−, c′) � C(−, c).

Example 7.1.14. Because the standard n-simplex ∆n is a represented simplicial set,
we know its category of simplices has a terminal object: the unique non-degenerate n-
simplex. The fact that this object is terminal in the category of simplices says that every
other simplex in ∆n is uniquely a face or degeneracy of the standard n-simplex.

Example 7.1.15. Writing ∆ : M →MC for the diagonal functor, a cone with summit
m is precisely a natural transformation ∆m ⇒ F. A representation for the contravariant
functor

MC(∆−, F) : Mop → Set

is precisely a limit for F. By Lemma 7.1.12 this exists just when the category of elements
has a terminal object. By Example 7.1.11, the category of elements is the slice category
∆/F. Hence, a limit is precisely a terminal object in the slice category ∆/F.2

2Indeed, this was the first definition of a limit encountered by the author, in Peter Johnstone’s Part III
Category Theory course.
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Assuming the weighted limits exist, they assemble into a bifunctor

lim− − : (SetC)op ×MC →M

that is covariant in the diagram but contravariant in the weight. In particular, for any weight
W there is a unique natural transformation W ⇒ ∗. Hence, for any F : C → M, there is a
canonical comparison map

lim F → limW F
from the ordinary limit to the W-weighted limit.

Example 7.1.16. Revisiting Example 7.1.2, the ordinary limit of f : a → b is just a.
The comparison map a→ limW f is the canonical arrow induced by the universal property
of the pullback

a
∃!

""E
E

E
E

1

$$
1

��

limW f
⌟

p //

q

��

a

f

��
a

f
// b.

Example 7.1.17. The map induced by C(c,−) ⇒ ∗ between the weighted limits of
a diagram F : C → M is the leg lim F → Fc of the limit cone. For any f : c → c′

in C, the unique map from the representable at c′ to the terminal functor factors through
f ∗ : C(c′,−) ⇒ C(c,−). Functoriality of the weighted limit bifunctor then tell us that the
legs of the limit cone commute with F f .

lim F

||xx
xx
xx
xx

##F
FF

FF
FF

F

Fc
F f

// Fc′

7.2. Weighted colimits in unenriched category theory

The dual notion of weighted colimit is defined by replacing the categoriesM and C of
Definition 7.1.1 withMop and Cop.

Definition 7.2.1. A colimit of F : C → M weighted by W : Cop → Set is an object
colimW F ∈ M together with a representation

M(colimW F,m) � SetC
op

(W,M(F,m)).

Note the variance of the weight is now opposite that of the diagram.

Exercise 7.2.2. Express a cokernel pair, i.e., a pushout of f : a → b along itself as a
weighted colimit.

SupposeM is cocomplete, or at least that the following colimits exist. By 1.2.8

SetC
op

(W,M(F,m)) �
∫

c∈C
Set(Wc,M(Fc,m))

�

∫
c∈C
M(Wc · Fc,m) �M(

∫ c∈C

Wc · Fc,m).
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Hence, the Yoneda lemma provides an isomorphism

colimW F �
∫ c∈C

Wc · Fc

from which we conclude that weighted colimits are computed as functor tensor products
formed using the copower − · − : Set ×M →M.

Example 7.2.3. The value of a pointwise left Kan extension of F : C → M along
K : C → D can be computed at an object d ∈ D as the colimit of F weighted by
D(K−, d) : Cop → Set.

LanK F(d) �
∫ c∈C

D(Kc, d) · Fc � colimD(K−,d) F

By the duals of the remarks made in section 7.1, the weighted colimit colimW F is
isomorphic to the colimit of F reindexed along the functor Σ : elW → C produced by the
Grothendieck construction. In other words, a weighted colimit is a colimit indexed over
the category of elements for W.

(7.2.4) colimW F � colim(elW
Σ
→ C

F
→M)

Example 7.2.5. The category of elements of W = C(−, c) : Cop → Set is the slice
category C/c. This category has a terminal object. Hence the colimit over any diagram
of this shape is just given by evaluating at 1c. This gives another proof of the coYoneda
lemma:

(7.2.6) Fc � colimC(−,c) F �
∫ x∈C

C(x, c) · Fx.

Example 7.2.7. When F : C → Set, the formula (7.2.6) is symmetric: hence

Fc �
∫ x∈C

Fx · C(x, c) � colimF C(−, c).

Applying the Grothendieck construction to F, we obtain a functor elF → C. Letting c ∈ C
vary, (7.2.4) tells us that

F � colimelF C(c,−),

i.e., that F is the colimit, indexed over its category of elements, of representable functors.
This is the precise statement of the density theorem promised in Example 1.4.6.

Example 7.2.8. The density theorem tells us that any simplicial set is canonically a
colimit, indexed by its category of simplices, of the represented simplicial sets. Working
backwards through the analysis above, we could also say that any X ∈ sSet is canonically
the colimit of the Yoneda embedding ∆• : ∆→ sSet weighted by X itself, i.e., that

X � colimX ∆•.

This description fits well with our intuitive understanding of the role played by the
weight. For each element of Xn, here thought of as the nth object of the weight, there
is a corresponding arrow with domain ∆n to the weighted colimit X, which by the Yoneda
lemma corresponds to an n-simplex in the weighted colimit. The face and degeneracy maps
in the weight assign faces and degeneracies to the corresponding elements in the weighted
colimit.
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Example 7.2.9. Given H : Cop×C → Set, the coend
∫ C

H is the colimit of H weighted
by the hom functor C(−,−) : Cop ×C → Set. This follows from the Fubini theorem and the
coYoneda lemma:

colimC(−,−) H �
∫ (x,y)∈Cop×C

C(x, y) × H(y, x) �
∫ x ∫ y

C(x, y) × H(y, x) �
∫ x

H(x, x).

We can apply the Grothendieck construction to H : Cop × C → Set regarded as a
covariant functor to express coends as ordinary colimits. The result twC → Cop × C is
called the twisted arrow category: its objects are arrows in C and morphisms f → g are
factorizations of g through f , i.e., diagrams

·

f

��

·

g

��

uoo

· v
// ·

The projections to Cop and to C are, respectively, the domain and codomain functors. The
functor twC → Cop × C is a discrete left fibration: given f , u, v as above, there is a unique
choice for g.

Remark 7.2.10. There is an alternative method for realizing coends as colimits via the
category [ML98, §IX.5] denotes C§. The obvious functor C§ → twC is final (cf. Example
8.3.9) so any colimit indexed over the twisted arrow category is isomorphic to the colimit
of the diagram reindexed along C§.

WhenM is cocomplete, weighted colimits define a bifunctor

colim− − : SetC
op
×MC →M

that is covariant in both the weight and the diagram. The unique natural transformation
from a weight to the constant functor ∗ produces a canonical comparison from weighted
colimits to ordinary colimits.

The practical utility of weighted notions of limit and colimit for defining objects via
universal properties has a lot to do with the “cocontinuity of the weight,” which we invite
the reader to explore on his or her own in the following exercise. This feature, an immediate
consequence of the definition, extends to the enriched context.

Exercise 7.2.11. Let W : D → Set be the colimit of a diagram of functors j 7→
W j : J → SetD. Give formulas that express limits and colimits weighted by W in terms of
limits and colimits weighted by the W j. Use the former to compute the limit of a simplicial
object in a complete category E weighted by the simplicial set ∂∆n.

7.3. Enriched natural transformations and enriched ends

The point of introducing weighted limits and colimits of course is not for Set but for
categories enriched in some general closed symmetric monoidal category (V,×, ∗). Here
closure of the monoidal category V is essential: weights are V-functors whose target is
V.

The definition essentially parallels Definitions 7.1.1 and 7.2.1 except of course we
enrich to V-functors, V-natural transformations, and isomorphisms taking place in V.
For this last point, we need a way to encode the set ofV-natural transformations between
a pair ofV-functors as an object inV. Doing so requires a brief digression.
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Digression 7.3.1 (the closed symmetric monoidal category V-Cat). The category
V-Cat of V-categories and V-functors admits a natural monoidal product, but it is not
the cartesian product, unless V itself is cartesian monoidal. Instead, define the tensor
product C⊗D of twoV-categories to be theV-category whose objects are pairs (c, d) and
whose hom-objects are

C ⊗D((c, d), (c′, d′)) := C(c, c′) ⊗D(d, d′).

Composition and identities are defined in the obvious way; note these definitions make
explicit use of the symmetry isomorphism in V. The tensor, cotensor, and internal hom
bifunctors introduced in section 3.7 areV-functors whose domain is the tensor product of
the obviousV-categories; cf. Remark 3.7.4.

Modulo size issues, the categoryV-Cat is closed: givenV-categoriesD andMwhere
D is small, define a V-category MD whose objects are V-functors F,G : D ⇒ M and
whose hom-objects, taking inspiration from 1.2.8, are defined by the formula

(7.3.2) M
D(F,G) =

∫
d∈D
M(Fd,Gd).

Here the end (7.3.2) is meant in the enriched sense, indicated by the use of
∫
D

in place

of
∫
D

. Recall that unenriched ends are computed as equalizers, e.g.,∫
D

M(Fd,Gd) � eq

∏
d

M(Fd,Gd)⇒
∏
d,d′

∏
D(d,d′)

M(Fd,Gd′)

 ,
where we have taken the liberty of decomposing the right-hand product over the arrows
in D as a nested product first over pairs of objects and then over the corresponding hom-
set. In the enriched context, the inner-most product over the hom-set D(d, d′) should be
replaced by a cotensor with the hom-object D(d, d′). In the particular case of (7.3.2), the
ambient category is V, so for this example the cotensor is just the internal hom. Hence,
the formula for the enriched end defining the hom-object of V-natural transformations is
the equalizer

(7.3.3)
∫
D

M(Fd,Gd) := eq

∏
d

M(Fd,Gd)⇒
∏
d,d′
V(D(d, d′),M(Fd,Gd′))

 .
The component of the top arrow indexed by the ordered pair d, d′ projects toM(Fd,Gd)
and composes in the second coordinate withD(d, d′). The analogous component of the bot-
tom arrow projects toM(Fd′,Gd′) and precomposes in the first coordinate withD(d, d′).

Exercise 7.3.4. Describe the underlying set ofMD(F,G). Show that if D is the free
V-category on an unenriched categoryD, the enriched end

∫
D
M reduces to the unenriched

end
∫
D
M. Hence, the enriched end formula strictly generalizes the unenriched formula.

The object ofV-natural transformations allows us to state theV-Yoneda lemma.

Lemma 7.3.5 (V-Yoneda lemma). Given a small V-category D, and object d ∈ D,
and aV-functor F : D → V, the canonical map is aV-natural isomorphism

Fd
�
→VD(D(d,−), F).

Proof. Using Lemma 3.5.12, one verifies directly that Fd is the appropriate end. □
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7.4. Weighted limits and colimits

Our main purpose is to define and study weighted limits and colimits in a categoryM
enriched over a closed symmetric monoidal categoryV.

Definition 7.4.1. Given a V-functor F : D → M and a V-functor W : D → V, the
weighted limit of F by W, if it exists, is an object limW F ofM together with aV-natural
isomorphism

M(m, limW F) � VD(W,M(m, F)).

Dually, given F : D →M and W : Dop →V, the weighted colimit of F by W, if it exists,
is an object colimW F ofM together with aV-natural isomorphism

M(colimW F,m) � VD
op

(W,M(F,m)).

Remark 7.4.2. Note that the weight for a limit of a diagram has the same variance but
the weight for a colimit of a diagram has contrasting variance. We like using the letter “W”
for the weight for both limits and colimits, but of course this means that when we discuss
limits and colimits in parallel, the functor W cannot be the same in both cases.

In practice, the author prefers the notation

W ⋆ F := colimW F and {W, F} := limW F

used in [Kel82] and standard within the categorical community because the former evokes
a tensor product and the latter a cotensor product—cf. Theorem 7.6.3. However, we suspect
the clunkier notation used here will prove easier to digest while these concepts remain
unfamiliar.

We are already well acquainted with a pair of simple, but important, examples.

Example 7.4.3. Let 1 be the free V-category on the terminal category, i.e., the V-
category with a single object with hom-object the monoidal unit ∗. AV-functor 1→M is
just an object ofM; the map on hom-objects necessarily picks out the designated identity.
The V-category V1 of V-functors and V-natural transformations is just V. Hence, the
limit of n : 1→M weighted by v : 1→V is defined by the universal property

M(m, limv n) � V(v,M(m, n))

which characterizes the cotensor of n with v. Dually, the colimit of m : 1 → M weighted
by v : 1op →V is defined by the universal property

M(colimv m, n) � V(v,M(m, n))

which characterizes the tensor of v and m.

Example 7.4.4. By the V-Yoneda lemma 7.3.5, limits and colimits weighted by rep-
resentable V-functors are computed by evaluating the diagram at the representing object:
the isomorphisms

M(m, limD(d,−) F) � VD(D(d,−),M(m, F−)) �M(m, Fd)

imply that limD(d,−) F � Fd.

Example 7.4.5. LetV = Cat and let D be the unenriched category that indexes pull-
back diagrams • → • ← •. Define the weight W : D → Cat and diagram F : D → Cat to
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be the functors whose respective images are

W := 1

1
��

F := B

K
��

1
0
// 2 A

H
// C

where 2 is the walking arrow and 0, 1: 1⇒ 2 are the obvious endpoint inclusions. Apply-
ing the defining universal property of the W-weighted limit of F to the unit object 1 ∈ Cat,
which represents the identity functor, the category limW F is characterized by

limW F � Cat(1, limW F) � CatD(W,Cat(1, F)) � CatD(W, F).

Unpacking the definition of the right-hand category, we see that an object of limW F is a
natural transformation W ⇒ F, i.e., a triple (a ∈ A, b ∈ B,Ha → Kb ∈ C). A morphism
from Ha → Kb to Ha′ → Kb′ is a pair of morphisms a → a′ in A and b → b′ in B such
that the obvious square commutes. In this way we see that limW F is the comma category
H/K, which generalizes the notions of slice category encountered previously.

Example 7.4.6. The trick we just employed generalizes. Consider W, F : D ⇒ V.
Recall that the unit object in a closed symmetric monoidal category represents the identity
V-functor. In particular, we see from the defining universal property that

limW F � V(∗, limW F) � VD(W,V(∗, F)) � VD(W, F).

In other words, the weighted limit of a V-valued V-functor is the object of V-natural
transformations from the weight to the diagram.

Remark 7.4.7. Using Example 7.4.6, we can re-express the defining universal prop-
erties of weighted (co)limits in terms of weighted limits in the V-category V, much like
ordinary limits and colimits are defined in terms of limits in Set:

M(m, limW F) � VD(W,M(m, F)) � limWM(m, F)

M(colimW F,m) � VD
op

(W,M(F,m)) � limWM(F,m).
We draw an important conclusion from these isomorphisms: enriched representable func-
tors preserve weighted limits in the codomain variable and colimits in the domain one. The
reason is that this is essentially tautologous: weighted colimits and limits inM are defined
representably as weighted limits inV, and hence in terms of ordinary limits inV, and thus
ultimately in terms of ordinary limits in Set (which are just sets of cones).

7.5. Conical limits and colimits

As always, we suppose that the base for enrichmentV is a closed symmetric monoidal
category that is complete and cocomplete. Recall the functor assigning the freeV-category
to an unenriched category defines a left adjoint to the underlying category functor: a V-
functor F : D → M corresponds to an unenriched functor F : D → M taking values in
the underlying category (cf. 3.3.4 and 3.4.5). In this special case, where the domain of our
diagram is a free V-category, we might choose our weight to be the functor ∗ : D → V
that is constant at the monoidal unit. The resulting weighted limit is called a conical limit.3

3Note that whenD is not a freeV-category, there might not exist a “constant”V-functor ∗ : D → V. (For
instance, consider V = ModR.) A special case where constant V-functors exist for any enriched category D is
when V is cartesian closed, in which case the monoidal unit ∗ is the terminal object. See [Kel82, §3.9]—which
however is entitled “The inadequacy of conical limits”—for a discussion.
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The conical limit lim∗ F has defining universal property

M(m, lim∗ F) � VD(∗,M(m, F)) � lim∗M(m, F),

the last isomorphism by 7.4.7. The underlying set functor V(∗,−) : V → Set yields an
isomorphism

M(m, lim∗ F) � VD(∗,M(m, F)).

By Exercise 7.3.4, the right-hand side is the set of natural transformations ∗ ⇒ M(m, F).
By the definition of arrows in the underlying category M, a natural transformation ∗ ⇒
M(m, F) is just a cone over F with summit m inM. In particular, conical limits inM are
ordinary limits inM, though the defining universal property of the conical limit is stronger.
Conical colimits are of course defined dually:

M(colim∗ F,m) � lim∗M(F,m).

In passing from ordinary limits to weighted limits, we are permitted more flexibility
in specifying both the shape of cones and the universal property satisfied by representing
objects. For conical limits, the cones are unchanged but the universal property is enriched.
To say that the disjoint union of simplicial sets is a coproduct in the unenriched sense is to
say that maps X ⊔ Y → Z correspond to pairs of maps X → Z and Y → Z. To say X ⊔ Y
is the conical coproduct is to say that the spaces of maps ZX⊔Y � ZX × ZY are isomorphic.
The constituent isomorphism on vertices, obtained by applying the underlying set functor
(−)0 : sSet→ Set, is precisely the unenriched statement; the space-level isomorphism also
posits natural bijections between the sets of maps

{(X ⊔ Y) × ∆n → Z} � {(X × ∆n) ⊔ (Y × ∆n)→ Z} � {X × ∆n → Z} × {Y × ∆n → Z}.

As this example illustrates, the universal property of a conical limit or colimit is much
stronger than that asserted by the corresponding classical limit or colimit. Even so, in
common settings, ordinary limits and colimits, assuming they exist, automatically satisfy
an enriched universal property. For instance:

Lemma 7.5.1. Consider F : D → V taking values in a closed symmetric monoidal
categoryV. Then its ordinary limit is a conical limit.

Proof. By (7.3.3) and 7.4.6 and

lim∗ F � VD(∗, F) � eq

∏
d∈D

V(∗, Fd)⇒
∏

d,d′∈D

V(∗, Fd′)D(d,d′)


� eq

∏
d∈D

Fd ⇒
∏

d→d′∈D

Fd′
 � lim

D
F □

Example 7.5.2. LetV = Cat and letM be the 2-category freely generated by a 2-cell
endomorphism as depicted

a

f
$$

f

::⇓α b

The underlying category ofM, forgetting the 2-cells, is isomorphic to the category 2. In
the underlying category, the object b is the product b × b, but this limit is not conical. The
conical limit b × b must have an isomorphism

M(a, b × b) � Cat(∗,M(a, b)) × Cat(∗,M(a, b)) �M(a, b) ×M(a, b).
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HereM(a, b) is the category corresponding to the monoid N, which is not isomorphic to
its square.

There is a good reason why this example was somewhat contrived:

Theorem 7.5.3. WhenM is tensored over V, all limits inM are conical V-limits in
M.

Proof. IfM is tensored then eachM(m,−) is a right adjoint and hence sends limits in
M to limits inV. By Lemma 7.5.1, ordinary limits inV are conical and the result follows.

More slowly: By the Yoneda lemma, to show that the natural map

M(m, limD F)→ limDM(m, F)

is an isomorphism inV it suffices to show that its image underV(v,−) is an isomorphism
for all v ∈ V. This follows from the postulated adjunctions − ⊗ m ⊣ M(m,−) and the fact
that ordinary representables preserve ordinary limits

V(v,M(m, limD F)) �M(v ⊗ m, limD F) � limDM(v ⊗ m, F)

� limDV(v,M(m, F)) � V(v, limDM(m, F)).

By Lemma 7.5.1, the ordinary limit over D ofM(m, F) : D → V is conical. By Remark
7.4.7, this conical limit inV encodes the desired universal property. □

The dual of Theorem 7.5.3 says that the presence of cotensors, aV-limit, implies that
any ordinary colimits areV-colimits. For instance, by the axiomatization of Lemma 3.8.6,
all the limits and colimits in a simplicial model category are conical, meaning they satisfy
a simplicially enriched universal property.

7.6. Enriched completeness and cocompleteness

A classical theorem says that ordinary limits can be constructed out of products and
equalizers via the formula displayed in (7.1.7). In particular, if a category has equalizers
and small products, then it has all small limits. We would like an analogous result that
characterizes V-categories that admit weighted limits for any small V-category D and
any weight W : D → V. SuchV-categories are calledV-complete.

For sake of contrast, let us dualize and explore conditions forV-cocompleteness. As a
preliminary, we should note that in a tensoredV-categoryM there is a notion of enriched
functor tensor product of V-functors G : Dop → V and F : D → M defined using the

enriched coend
∫ D

in place of the ordinary coend
∫ D

:

(7.6.1) G ⊗D F :=
∫ d∈D

Gd ⊗ Fd � coeq

∐
d,d′
D(d, d′) ⊗ (Gd′ ⊗ Fd)⇒

∐
d

Gd ⊗ Fd


Example 7.6.2. The enriched versions of the isomorphisms of 4.1.4 also hold—i.e.,

D(−, d) ⊗D F � Fd and G ⊗D D(d,−) � Gd—as can economically be verified by one of
our favorite methods for computing colimits: guess and check. In other words, write down
the obvious cone and show that it satisfies the universal property to be the desired colimit.

A priori, the formula (7.6.1) uses a mix of weighted colimits (the tensors) and ordinary
unenriched colimits (the coproducts and coequalizer). But whenM is also cotensored over
V, the dual of Theorem 7.5.3 says that these ordinary colimits are conical colimits, in
which case the right-hand side of (7.6.1) is a weighted colimit.
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To calculate its universal property, we use the fact that enriched representables pre-
serve weighted colimits to see that

M(G ⊗D F,m) �M(
∫ D

Gd ⊗ Fd,m) �
∫
D

M(Gd ⊗ Fd,m) �
∫
D

V(Gd,M(Fd,m))

� VD
op

(G,M(F,m)) � limGM(F,m).

By 7.4.7 this says that G ⊗D F is the limit of F weighted by G.
With this simple calculation, we have just proven two theorems:

Theorem 7.6.3. WhenM is tensored and cotensored, then there are natural isomor-
phisms

colimW F � W ⊗D F and limW F � {W, F}D

whenever these weighted limits and colimits exist.

Corollary 7.6.4. AV-categoryM isV-complete andV-cocomplete if it is tensored
and cotensored and if its underlying category is complete and cocomplete.

A category satisfying the hypotheses of Corollary 7.6.4 is calledV-bicomplete.

Exercise 7.6.5. Prove, using the defining universal property, that in a cotensored V-
category, colimits with arbitrary weights preserve (pointwise) tensors. Note this implies a
complementary result to Lemma 3.8.3: in a tensored and cotensored simplicial category
M, geometric realization preserves both pointwise tensors and the tensors defined in 3.8.2.

In aV-complete andV-cocomplete categoryM, weighted limits and colimits define
V-functors

lim− − : (VD)op ⊗M
D
→M colim− − : VD

op
⊗M

D
→M.

Example 7.6.6. The geometric realization of a simplicial object X : ∆op →M in a ten-
sored and cotensored simplicial category is the colimit weighted by the Yoneda embedding.
Note the unique natural transformation ∆• ⇒ ∗ induces a canonical map

colim∆
•

X � |X| −→ π0X � coeq (X1 ⇒ X0) .

For instance, this gives rise to the comparison between the two-sided bar construction
B(G,D, F) and the functor tensor product G ⊗D F mentioned in section 4.2.

Now consider a diagram ofV-functors

D

C

K
@@��������

F
//M

where C is small. Taking inspiration from 7.2.3, we define the left and right V-enriched
Kan extensions of F : C → M along K : C → D to be the weighted colimit and weighted
limit

LanK F(d) := colimD(K,d) F � D(K, d) ⊗C F(7.6.7)

RanK F(d) := limD(d,K) F � {D(d,K), F}C.

This definition adopts the preferred terminology of Kelly, who posits that the only Kan
extensions worthy of the name are those defined pointwise—cf. section 1.3.
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Exercise 7.6.8. SupposeM is V-bicomplete. Describe the universal property of left
and right Kan extensions. Show conversely that a V-functor satisfying the appropriate
universal property is a pointwise Kan extension in the sense defined in (7.6.7).

Example 7.6.9 (extension of scalars). Recall an Ab-functor f : R → S between one-
object Ab-categories is precisely a ring homomorphism, and an Ab-functor M : R → Ab
is a left R-module. The left Ab-enriched Kan extension of M along f is the left S -module
S ⊗R M : S → Ab obtained via extension of scalars.

7.7. Homotopy (co)limits as weighted (co)limits

Recognizing homotopy colimits as weighted colimits will allow us to understand their
local universal property. SupposeM is a simplicial model category with all objects cofi-
brant and let F : D → M. By Theorem 6.6.1 and Theorem 7.6.3, our preferred model of
the homotopy colimit of F is just the colimit of F weighted by N(−/D) : Dop → sSet.
From the defining universal property of the weighted colimit

M(hocolimD F,m) � sSetD
op

(N(−/D),M(F,m)),

we see that the homotopy colimit is an object hocolimD F ∈ M equipped with a universal
simplicial natural transformation N(d/D)⇒M(Fd, hocolimD F).

Example 7.7.1. For instance, consider the case where D is the pushout diagram b ←
a → c andM = Top. The slice categories b/D and c/D are isomorphic to the terminal
category so the corresponding components of the simplicial natural transformation pick
out points in the spacesM(Fb, hocolimD F) andM(Fc, hocolimD F). The space N(a/D)
is the wedge of two intervals, picking out a path in M(Fa, hocolimD F). By naturality,
this path defines a homotopy between the chosen maps Fb → hocolimD F and Fc →
hocolimD F. This describes the local universal property of the homotopy pushout.

Example 7.7.2. The weight for the homotopy colimit of a simplicial object is the op-
posite of the cosimplicial simplicial set [n] 7→ N(∆/[n]). There is a natural transformation
of cosimplicial simplicial sets from N(∆/−) to the Yoneda embedding ∆• called the “last
vertex” map. Its components N(∆/[n])m → ∆

n
m take [n0] → [n1] → · · · → [nm] → [n]

to the map α : [m] → [n], where α(i) is defined to be the image of ni ∈ [ni] in [n]. Note
that the represented simplicial sets ∆n are each isomorphic to their opposites. Hence, the
“last vertex” map equally defines a natural transformation N(−/(∆op)) � N((∆/−)op) �
N(∆/−)op ⇒ ∆•. Assuming for simplicity that the simplicial object X• is pointwise cofi-
brant, by bifunctoriality of weighted colimits, it follows that there is a canonical map be-
tween the weighted colimits

hocolim∆op X � N(∆/−)op ⊗∆op X → ∆• ⊗∆op X � |X|.

This is called the Bousfield-Kan map. We will see in Theorem 14.3.1, an extension of
Theorem 5.2.3, that if X is Reedy cofibrant, then this map is a weak equivalence.

Another homotopy invariant construction on simplicial objects will be described in
Example 8.5.12.

Example 7.7.3. Dualizing, we can use the universal property as a weighted limit to
better understand the totalization of a cosimplicial space X• : ∆→ Top. Writing S Top for
the mapping spaces, as defined in Example 3.7.15, the defining universal property of the
weighted limit is

S Top(m,Tot(X•)) � sSet∆(∆•, S Top(m, X•)).
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Taking m to be a point, we obtain an isomorphism

S Tot(X•) � sSet∆(∆•, S X•) � S Top∆(|∆•|, X•)

between the total singular complex of the space Tot(X•) and the simplicial set of natural
transformations between the cosimplicial spaces |∆•| and X•.4

Taking underlying sets, we see that a point in the totalization consists of a point in X0,
a path in X1 connecting the two images of this point under the coface maps, a (topological)
2-simplex in X2 whose boundary is given by the three images of this path, and so on, where
this data is compatible with the codegeneracies in the following sense. The image of the
path in X1 under the map X1 → X0 is the constant path at the chosen point in X0. The
images of the 2-simplex under X2 ⇒ X1 are appropriately degenerate 2-simplices on the
chosen path, and so on.

Example 7.7.4. In particular, let F,G : D⇒ sSet. Recall C(F,D,G) is the totalization
of the cosimplicial object Cn(F,D,G) =

∏
d⃗ : [n]→DGdFd0

n . So a point in C(F,D,G) con-
sists of maps Fd → Gd for each d; a map Fd×∆1 → Gd′ for each d → d′ restricting to the
previously chosen maps; a map Fd × ∆2 → Gd′′ for each chain d → d′ → d′′ restricting
to previously chosen homotopies; and so forth, subject to the condition that this higher di-
mensional data is degenerate if it is indexed by appropriately degenerate simplices in ND.
We call this data a homotopy coherent natural transformation from F to G.

For any F,G : D⇒M, there is a natural isomorphism

(7.7.5) C(F,D,G) �MD(B(D,D, F),G)

obtained by manipulating the defining weighted limits. One interpretation of the role
played by the left deformation B(D,D,−) : MD →MD is that it replaces a diagram F by a
“fattened up” diagram B(D,D, F) so that ordinary natural transformations B(D,D, F) ⇒
G correspond to homotopy coherent natural transformations from F to G. Applying this
identity to a pair ∗, X : G → Top we see that

holim
G

X � C(∗,G, X) � TopG(B(G,G, ∗), X) = TopG(EG, X)

is the space of homotopy fixed points. See Example 6.5.8.

7.8. Balancing bar and cobar constructions

We have begun to see that our understanding of homotopy (co)limits as weighted
(co)limits can help us understand the local universal property of these objects. Some of
these explorations, such as the one based on equations such as (7.7.5) could have been
given much sooner, but there is a reason we have neglected to tell this story until now.
To explain, consider F : D → M, M a simplicial model category, and permit us a quick

4A reader who would prefer to ignore this simplicial structure and work with the analogous topological
weighted limits is free to do so—see section 8.2.
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calculation:

M(B(∗,D, F),m) �M


∫ n∈∆

∆n ⊗ (
∐

d⃗∈NDn

Fd0),m


�

∫
n∈∆
M(∆n ⊗ (

∐
d⃗∈NDn

Fd0),m)

�

∫
n∈∆
M(

∐
d⃗∈NDn

Fd0,m∆
n
)

�

∫
n∈∆

∏
d⃗∈NDn

M(Fd0,m∆
n
)

�

∫
n∈∆

∏
d⃗∈NDn

M(Fd0,m)∆
n
.(7.8.1)

Here the first isomorphism is the definition of the bar construction; the second and fourth
use the fact that representables preserve weighted colimits; and the third and fifth use the
tensor-cotensor-hom adjunction, the latter requiring that this adjunction is simplicially en-
riched. The final line looks similar to the cobar construction applied to the functorM(F,m)
but for two issues. The first is that this functor is contravariant in D, not covariant—but
of course the product over NDn is equally the product over NDop

n . However, if we per-
form such a replacement, then the cosimplicial object is dualized: the outer coface maps
are swapped, and so on. For some simplicial categories M such as Top, the totalization
of a cosimplicial object is isomorphic to the totalization of its opposite, but in others such
as sSet, this is not the case.5 So the last line is not quite C(∗,Dop,M(F,m)) but rather
something quite close to it.

With 6.6.1, there is a much simpler proof of the isomorphism (7.8.1). Immediately
from the defining universal property of a weighted colimit

(7.8.2) M(colimN(−/D) F,m) � limN(−/D)M(F,m)

IfM = Top, its simplicial enrichment was defined by applying the total singular complex
functor S to its mapping spaces. All spaces are fibrant, so this mapping space is a fibrant
simplicial set. But, as above, the right-hand side is not quite our definition of the homotopy
limit, which was

holim
Dop
M(F,m) � limN(Dop/−)M(F−,m) � limN(−/D)op

M(F−,m).

We regret that our conventions do not allow the slogans expressing the local universal
property of the homotopy colimit—the space of maps out of the homotopy colimit is the
homotopy limit of the mapping spaces—to hold on the nose. Instead, as a consequence
11.5.14 below, this is only true up to weak homotopy equivalence.

5For a general small categoryD, the simplicial sets ND and NDop are not isomorphic, only weak homotopy
equivalent. One way to prove this is to observe that the twisted arrow category (introduced in Example 7.2.9)

comes equipped with canonical source and target projections Dop s
←− twD

t
−→ D. The nerve N(twD) can be

described as the edgewise subdivision of ND, defined to be the simplicial set obtained by precomposing with
the functor ∆ → ∆ that takes the linearly ordered set [n] to the join [n]op ⋆ [n] � [2n + 1]. Any simplicial set is
weak homotopy equivalent to its edgewise subdivision via the maps described in [Seg73, Appendix 1].
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Remark 7.8.3. This might be a good time to remark about how our conventions com-
pare with others in the literature.6 The construction of homotopy limits in [Hir03] agrees
with ours, but homotopy colimits are constructed as a colimit of a pointwise cofibrant
replacement of the diagram weighted by N(−/D)op, not N(−/D) as is our convention.
Neither construction of [BK72] agrees with ours: homotopy colimits are as in [Hir03] and
homotopy limits of pointwise fibrant diagrams are limits weighted by N(D/−)op. These
“op”s appear because the definition of the nerve of a category in [BK72] is the opposite of
the modern convention.

Our conventions were chosen so as to have as few “op”s as possible, and also so that
the constructions as weighted (co)limits are isomorphic to the constructions via the stan-
dard definitions of the two-sided (co)bar constructions. The isomorphism (7.8.2) motivates
Philip Hirschhorn’s conventions; cf. Remark [Hir03, 18.1.11].

6Of course, morally, a homotopy colimit or homotopy limit is only defined up to weak equivalence, so all
conventions agree.





CHAPTER 8

Categorical tools for homotopy (co)limit computations

In this chapter, we collect together a few of miscellaneous results aimed at simplify-
ing computations of homotopy limits and colimits. Several of these techniques come di-
rectly from enriched category theory, providing further justification for our lengthy detour
through the theory of weighted limits and colimits. The relative simplicity of the proofs
in this chapter illustrates how easy it is to obtain computationally useful results with the
theory we have developed. For instance the reduction theorem, which provides a formula
for the homotopy colimit of a restricted diagram, is an immediate corollary of a general
result about colimits weighted by left Kan extensions.

After discussing a few simple applications of the theory of weighted limits and col-
imits to homotopy theory, we turn our attention directly to the base for enrichment. We
observe that homotopy limits and colimits in a topological model category can be defined
directly in that context without pulling the enrichment back to simplicial sets. Furthermore,
our preferred models for the homotopy (co)limit functors are isomorphic in both cases, not
merely weakly equivalent. Our arguments are formal and thus generalize to other enriched
contexts.

Our final topic is the theory of homotopy initial and final functors, extending analo-
gous results from ordinary and enriched category theory. In exploring this material, we
take care to separate the homotopical results from the categorical (up-to-isomorphism)
ones because we find such distinctions to be conceptually clarifying.

8.1. Preservation of weighted limits and colimits

The first result is no surprise.

Proposition 8.1.1. RightV-adjoints preserveV-limits.

Proof. Consider a V-adjunction L : M ⇄ N : R, a diagram F : D → M, and a
weight W : D → V. The chain of isomorphisms

M(m,R limW F) � N(Lm, limW F) � VD(W,N(Lm, F))

� VD(W,M(m,RF)) �M(m, limW RF)
proves the claim by the Yoneda lemma 3.5.12. □

We can use Proposition 8.1.1 to give simple proofs of 6.5.5 and 7.6.5, which had
previously been left as exercises for the reader.

Corollary 8.1.2. Suppose F : D → Top∗ is any diagram. Then the underlying space
of its homotopy limit is the homotopy limit of the diagram UF : D → Top of underlying
spaces.

Proof. We prove that our preferred models for these spaces are isomorphic. It fol-
lows that the underlying spaces of any other models for the homotopy limits are weakly
equivalent because the forgetful functor U is homotopical.

97
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By Theorems 6.6.1 and 7.6.3, the homotopy limit of F is the limit of F weighted by
N(D/−) : D → sSet. The underlying space–disjoint basepoint adjunction constructed in
3.3.14 is simplicial by Theorem 3.7.11 because the left adjoint is strong monoidal. Now
the result follows from Proposition 8.1.1. □

Corollary 8.1.3. Weighted limits commute with pointwise cotensors in a tensored
V-category.

Proof. In a tensoredV-category, cotensors are rightV-adjoints. □

Suppose now thatM is V-bicomplete and consider a pair of V-functors F : C → M
and K : C → D, with C small. Recall that theV-enriched left and right Kan extensions of
aV-functor F : C →M along K : C → D are defined, in the case where C is small, by the
weighted colimit and weighted limit

LanK F(d) := colimD(K,d) F � D(K, d) ⊗C F

RanK F(d) := limD(d,K) F � {D(d,K), F}C.

Lemma 4.4.3, which says geometric realizations of n-skeletal simplicial objects can be
computed by the functor tensor product of the n-truncated simplicial object with the re-
stricted Yoneda embedding, is a special case of a general result:

Lemma 8.1.4. SupposeM is a tensored and cotensored V-category and let K : C →
D, F : C →M, and W : Dop →V beV-functors. Then

colimWK F � colimW LanK F,

assuming these weighted colimits exist.

Proof. By the coYoneda lemma and Fubini’s theorem, both weighted colimits are
isomorphic to the enriched coend∫ C ∫ D

(Wd ×D(Kc, d)) ⊗ Fc. □

In this special case where C and D are both free V-categories and W is the constant
functor at the monoidal unit, WK is again constant at this object. Lemma 8.1.4 shows that
the conical colimits colim∗ LanK F � colim∗ F are isomorphic, generalizing an observation
made in section 4.4.

We will make use of several “dual” versions of Lemma 8.1.4, which the reader should
pause for a moment to discover.

Exercise 8.1.5. State and prove another version of this result, for instance when the
weight is a left or right Kan extension.

One dual version provides the conceptual underpinning for the proof of Lemma 3.8.3.

Corollary 8.1.6. Let M be a tensored and cotensored simplicial category. Then
geometric realization | − | : M∆op

→M preserves the simplicial tensors of 3.7.18.

Proof. We apply a dual version of Lemma 8.1.4 in the case V = Set. By direct
computation, the left Kan extension of the Yoneda embedding ∆• : ∆ ↪→ sSet along the
diagonal functor ∆ : ∆ → ∆ × ∆ is the functor ([n], [m]) 7→ ∆n × ∆m. It follows that the
colimit of a bisimplicial object weighted by this left Kan extension is isomorphic to the
colimit of its diagonal weighted by the Yoneda embedding.
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Let K be a simplicial set and X a simplicial object in a tensored (so that geometric
realization as defined in 4.1.6 makes sense) and cotensored (so that the simplicial tensor
preserves colimits) category. It follows that

K ⊗ |X| � (K• ⊗∆ ∆
•)⊗ (∆• ⊗∆op X•) � (∆• ×∆•)⊗∆op×∆op (⊔

K•
X•) � ∆• ⊗∆op (⊔

K•
X•) � |K ⊗X|.

□

Another corollary is the following a priori mysterious result from Hirschhorn.

Corollary 8.1.7 ([Hir03, 18.9.1]). Let X be a simplicial set and let Y : (elX)op →M

be a pointwise cofibrant contravariant functor from its category of simplices to a simplicial
model categoryM. Define a simplicial object Z : ∆op → M with Zn =

∐
σ∈Xn

Y(σ). Then
the homotopy colimits of Y and Z are isomorphic.

Again, what we mean to say is that our preferred models of these homotopy colimits
are isomorphic.

Proof. Both diagrams are pointwise cofibrant, so the homotopy colimits may be com-
puted as functor tensor products and hence as weighted colimits. Using the observations
made in the discussion motivating the simplicial bar construction in section 4.4, it is easy to
see that Z is the left Kan extension of Y along the discrete left fibration Σ : (elX)op → ∆op.
Using the fact that this functor is a discrete left fibration, it follows that the slice categories
σ/(elX)op and Σσ/∆op are isomorphic for all σ ∈ elX. Hence,

hocolim Z � colimN(−/∆op) LanΣY � colimN(Σ−/∆op) Y � colimN(−/(elX)op) Y � hocolim Y. □

Finally, the reduction theorem of [DK84] is a special case of one dual version of
Lemma 8.1.4.

Theorem 8.1.8 (reduction theorem). Let F : D →M be a pointwise cofibrant diagram
in a simplicial model category and let K : C → D. Then

hocolimC FK � N(−/K) ⊗D F.

Proof. This result is an immediate corollary of a dual version of Lemma 8.1.4 because
N(−/K) � LanK N(−/C). Just for fun, we also give an alternate proof following [HV92].
By direct inspection, for any d ∈ D, N(d/K) � B(∗,C,D(d,K−)), where we regard the
functorD(d,K−) : C → sSet as taking values in discrete simplicial sets. Hence

N(−/K) ⊗D F � B(∗,C,D(−,K−)) ⊗D F � B(∗,C,D(−,K−) ⊗D F) � B(∗,C, FK),

the last isomorphism by 4.1.4. □

8.2. Change of base for homotopy limits and colimits

In the proof of Lemma 7.5.1 in the last chapter, we used the known constructions of
the ordinary and conical limit of a V-valued diagram, the former as an equalizer and the
latter as an enriched end, to show that the same object satisfied the two distinct defining
universal properties. In this section, we repeat this trick with particular weighted colimits
of a diagram F : D → Top to show, among other things, that two reasonable definitions of
homotopy colimits produce the same object, even though the defining universal properties
are a priori distinct. Here we focus on the convenient category of spaces for concreteness,
but our proofs are quite general. At the conclusion of this section, we state a general form
of this “change of base” result, whose proof is the same.

To illustrate the need for a result of this form, let us dualize the discussion of totaliza-
tion from Example 7.7.3. Combining Definition 4.1.6 and Theorem 7.6.3, the geometric
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realization of a simplicial object X : ∆op → Top is the colimit weighted by the Yoneda em-
bedding ∆• : ∆ → sSet. Because our weight is valued in simplicial sets, here again we are
implicitly using the simplicial structure on Top defined in 3.7.15. The defining universal
property of this weighted colimit is therefore an isomorphism of simplicial sets

S Top(|X|,Z) � sSet∆(∆•, S Top(X•,Z)) � S Top∆(|∆•|,Top(X•,Z))

for any Z ∈ Top. Here we write Top for its internal hom as a closed monoidal category,
which means that S Top is the hom-object in its simplicial enrichment. The second isomor-
phism uses the fact that the adjunction | − | ⊣ S is simplicially enriched by Corollary 3.7.12
and Lemma 6.1.6.

But by construction

|X| :=
∫ n∈∆op

∆n ⊗ Xn :=
∫ n∈∆op

|∆n| × Xn,

which, by Theorem 7.6.3, is the Top-enriched colimit of X weighted by the composite

functor ∆
∆•

→ sSet
|−|
→ Top. (The hypotheses of Theorem 7.6.3 apply because Top, as a

closed monoidal category, is tensored and cotensored.) Thus, |X| also is characterized by
the isomorphism of spaces

Top(|X|,Z) � Top∆(|∆•|,Top(X•,Z)),

which feels much more natural.
The same argument proves the following theorem.

Theorem 8.2.1. Let F : D → Top. Then the homotopy colimit of F is computed by
both the sSet-enriched colimit weighted by N(−/D) or the Top-enriched colimit weighted
by |N(−/D)|. Dually, the homotopy limit of F is both the sSet-enriched limit weighted by
N(D/−) and the Top-enriched limit weighted by |N(D/−)|.

Proof. By Theorem 7.6.3 the formulae for the pair of weighted colimits or the pair of
weighted limits are identical even though the defining universal properties differ. □

The argument here is categorical, not homotopical. What we mean to assert is that our
preferred homotopy colimit functors are isomorphic, not merely weakly equivalent. The
argument just given also proves the following general “change of base” result.

Theorem 8.2.2. Suppose we have an adjunction F : V ⇄ U : G between closed sym-
metric monoidal categories such that the left adjoint F is strong monoidal, and let D be
any small unenriched category. Consider a diagram H : D → U and a V-valued weight
W, either covariant or contravariant inD as appropriate to the setting. Writing subscripts
to indicate whether the following are meant to be interpreted with respect to the canonical
U-enrichments orV-enrichments, we have

limW
V

H � limFW
U

H and colimW
V

H � colimFW
U

H.

Proof. The hypotheses of Theorem 7.6.3 apply to both the canonical U-enrichment
and to the V-enrichment of U defined by Theorem 3.7.11. Using these formulae, the
weighted limits and colimits in the two enriched contexts are defined by exactly the same
functor cotensor or tensor products. □

Under additional hypotheses designed to guarantee that certain weighted limits and
colimits are homotopically meaningful, Theorem 8.2.2 gives a “change of base” result
for computing homotopy limits and colimits. If V is cocomplete, a cosimplicial object
∆• : ∆ → V produces an adjunction sSet ⇄ V as described in 1.5.1. If this left adjoint is
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strong monoidal, then Theorem 3.7.11 implies thatU-enrichments, tensors, and cotensors
can be pulled back first toV and then to simplicial sets. IfV is assumed to be aV-model
category and U to be a U-model category and if both adjunctions are Quillen, then as
remarked at the end of Chapter 3, these structures guarantee that anyU-model category or
V-model category becomes a simplicial model category in a canonical way. We leave it to
the reader to observe that the natural definitions of homotopy limits and colimits in any of
these enriched contexts are tautologically equivalent.

8.3. Final functors in unenriched category theory

In some cases, it is possible to reduce a colimit over a particular diagram to a colimit
over a simpler diagram. For instance:

Lemma 8.3.1. IfD has a terminal object t and F : D →M, then colimD F � Ft.

Proof 1. Guess and check: it is straightforward to show that the obvious cone to Ft
has the desired universal property. □

Proof 2. The parallel pair ∐
f : d→d′

d
ιd //
ιd′◦ f
//
∐
d

d

extends to a split coequalizer diagram

∐
f : d→d′

d
ιd //
ιd′◦ f
//
∐
d

d
!
//

ιd→t

��
t

ιtss

where the ι’s denote coproduct inclusions. Hence t is the colimit of the parallel pair and
furthermore this colimit is preserved by any functor.1 □

Proof 3. The functor t : 1→ D is a final functor, as defined below. □

Definition 8.3.2. A functor K : C → D is final if for any functor F : D → M, the
canonical map

colim
C

FK
�
→ colim

D
F

is an isomorphism, both sides existing if either does. Dually, K is initial if for any F : D →
M, the canonical map

lim
D

F
�
→ lim

C
FK

is an isomorphism.

Remark 8.3.3. Final functors were originally called “cofinal,” motivated by the notion
of a cofinal subsequence (see Example 8.5.2). The terminology used here is the modern
categorical consensus, adopted because the directionality of “cofinal” is confusing and the
correct dual terminology is even more so.

As it stands, the third proof of Lemma 8.3.1 just rephrases the original claim. The
substance is on account of the following simple characterization of final functors.

Lemma 8.3.4. A functor K : C → D is final if and only if for each d ∈ D, the slice
category d/K is non-empty and connected.

1Such colimits are called absolute.



102 8. CATEGORICAL TOOLS FOR HOMOTOPY (CO)LIMIT COMPUTATIONS

Remark 8.3.5. A category is connected just when any pair of objects can be joined
by a finite zig-zag of arrows. Let π0 : Cat → Set be the “path components” functor that
sends a category to its collection of objects up to such zig-zags. This functor is left adjoint
to the inclusion Set → Cat, whose right adjoint is the functor that takes a category to its
underlying set of objects. A category C is non-empty and connected if and only if π0C is
the singleton set.

Proof of Lemma 8.3.4. Given F : D → M, a cone under F immediately gives rise to
a cone under FK. Conversely a cone under FK induces a unique cone under F in the case
where each d/K is non-empty and connected. Given a cone λc : FKc → m, define the leg
of the cone indexed by d by choosing any arrow d → Kc, which is possible since d/K
is non-empty, and composing its image under F with λc. Connectedness of d/K shows
that any two choices can be connected by a zig-zag of commutative triangles, the bases
of which commute with the maps to m because λ is a cone over FK. Because the sets of
cones under FK and F are isomorphic, so are the colimits.

For the converse, first note that for any X : C → Set, there is an isomorphism π0(elX) �
colimC X because each arrow connecting two objects in elX corresponds to a condition
demanding that these elements are identified in any cone under X. Recall from Example
7.1.11 that elD(d,K−) � d/K. Now suppose K is final. Then π0(d/K) � colimCD(d,K−) �
colimDD(d,−) � ∗, by inspection or the coYoneda lemma. Hence, d/K is non-empty and
connected. □

Proof 3, revised. When t : 1→ D is a terminal object, each d/t is the category 1. □

Final functors can reduce large colimits to small colimits or, in special cases, to small
limits:

Corollary 8.3.6. For any categoryD, the colimit of the identity functor 1D : D → D,
if it exists, is a terminal object of D, and conversely any terminal object defines a colimit
of 1D : D → D.

Proof. If D has a terminal object t, then t : 1 → D is final and hence colim 1D �
colim t � t. Conversely, if t is a colimit of the identity functor, the component of the
colimit cone at t is easily seen to be an idempotent e. But then e and 1t define the same
cone under the identity diagram, hence e = 1t, and it follows easily that t is terminal. □

Example 8.3.7. If D is a disjoint union of categories Dα, each containing a termi-
nal object, then the natural inclusion of the discrete category on these objects is final. In
particular, the colimit of a diagram of shape D is isomorphic to the coproduct of the im-
ages of the terminal objects in each component. We made use of this observation in our
explorations of the simplicial bar construction in section 4.4.

Example 8.3.8. Write 22 for the category •⇒ • of a parallel pair of arrows. The func-
tor 22 → ∆op with image [1] ⇒ [0] is final. Hence, the colimit of a simplicial object X is
just the coequalizer of the face maps X1 ⇒ X0, which produces the set of path components
of the geometric realization of X.

Example 8.3.9. The twisted arrow category introduced in Example 7.2.9 admits a
final functor K : C§ → twC, where C§ has an object for each object or morphism of C
and arrows so that C§ has the shape of the wedges displayed in (1.2.3). The functor K is
surjective on objects but its image contains very few morphisms. Nonetheless, it is final,
and hence coends can be computed as (ordinary) colimits over the twisted arrow category
or as colimits over C§, as described in [ML98, §IX.5].
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8.4. Final functors in enriched category theory

The notions of initial and final functors can be generalized to enriched category the-
ory. To simplify the discussion, we consider only cartesian closed symmetric monoidal
categoriesV. For suchV, the monoidal unit is terminal and hence there exists a constant
V-functor ∗ : D → V for any smallV-categoryD.

For sake of contrast, let us dualize. We say a V-functor K : C → D is initial if it
satisfies the equivalent conditions of the following theorem.

Theorem 8.4.1 ([Kel82, 4.67]). Suppose V is cartesian closed and K : C → D is a
V-functor. The following are equivalent:

(i) For any F : D →M, the conical limits lim∗ F � lim∗ FK are isomorphic, either
side existing if the other does.

(ii) For each d ∈ D, colim∗D(K−, d) = ∗.
(iii) The constant map ∗ : D → V is the left Kan extension of the constant map

∗ : C → V along K.

Proof. The conical colimit ofD(K−, d) is the functor tensor product

∗ ⊗Cop D(K−, d) � D(K−, d) ⊗C ∗

which also computes the left Kan extension of the constant functor ∗ : C → V along K.
Hence, the second and third conditions are equivalent. The third condition implies the first
by one of the duals of Lemma 8.1.4.

To prove the second condition given the first, we use the defining universal property of
the conical colimit and the fact that colim∗D(−, d) = ∗, as a consequence of the coYoneda
lemma. Then

V(colim∗D(K−, d), v) � lim∗V(D(K−, d), v) � lim∗V(D(−, d), v)

� V(colim∗D(−, d), v) � V(∗, v)
whence, by Lemma 3.5.12, the result. □

Example 8.4.2. If K : C → D has a rightV-adjoint R, then precomposition with K is
right V-adjoint to precomposition with R. The following sequence of isomorphisms and
Lemma 3.5.12 prove that K is initial:

M(m, lim∗ FK) � lim∗M(m, FK) � lim∗M(mR, F) � lim∗M(m, F) �M(m, lim∗ F).

8.5. Homotopy final functors

Motivated by the definitions in sections 8.3 and 8.4, we introduce the homotopical
version of initial and final functors. For this we need a homotopical notion: a simplicial set
is contractible if the unique map to the terminal object is a weak homotopy equivalence.

Definition 8.5.1. A functor K : C → D is homotopy final if the simplicial set N(d/K)
is contractible for all d ∈ D and homotopy initial if each N(K/d) is contractible.

A cofinal sequence defines a homotopy final subcategory of the associated ordinal
category.

Example 8.5.2. Let ω be the ordinal category 0→ 1→ 2→ · · · and let K : ω→ ω be
any final functor, equivalently, any functor whose object function is cofinal in the classical
sense. We claim ω is homotopy final. For each n ∈ ω, there is some m such that n < K(m),
and hence the slice category n/K is non-empty. For each such m, either K(m) = K(m + 1),
in which case m and m+1 index isomorphic objects of n/K, or K(m) < K(m+1), in which
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case there is a unique arrow from the former object to the latter in n/K. The category n/K
is equivalent to its skeleton, which is isomorphic to ω by the observation just made. The
nerve functor N : Cat → sSet takes equivalences of categories to homotopy equivalences
of simplicial sets because it takes natural transformations to homotopies (see the proof of
Lemma 8.5.3). Hence N(n/K) ≃ N(ω). But omega has an initial object, so there is a
homotopy from the constant endofunctor at the initial object to the identity endofunctor,
implying that N(ω) and N(1) are homotopy equivalent, and hence that N(n/K) ≃ N(ω) ≃
N(1) = ∆0. Thus a cofinal sequence in ω gives rise to a homotopy final functor.

The following lemma records one component of the argument we have just used.

Lemma 8.5.3. IfD is a category with an initial object, then ND is contractible.

Proof. If D has an initial object i, there is a natural transformation from the constant
functor at the initial object to the identity functor. A natural transformation α : F ⇒ G
between functors F,G : C ⇒ D can be encoded by a functor C × 2 → D restricting to F
and G on the subcategories corresponding to the two objects of the walking arrow category
2. Right adjoints of course preserve products; hence, taking nerves, natural transformations
become homotopies. In particular, the natural transformation from the constant functor to
the identity defines a simplicial homotopy equivalence between the geometric realizations
of the maps i : 1→ D and ! : D → 1. □

Example 8.5.4. Lemma 8.5.3 gives another proof that the space EG defined in Exam-
ple 4.5.5 is contractible. EG is the geometric realization of the nerve of the translation
groupoid of the discrete group G. The translation groupoid is the category with elements
of G as objects and a unique morphism in each hom-set; the intuition is the map g′ → g′′

represents the unique g ∈ G so that gg′ = g′′. This category is equivalent to the terminal
category and in particular has a initial object.

A category C is filtered if any finite diagram in C has a cone under it. Equivalently, C
is filtered if

(i) for each pair of objects c, c′ there is some c′′ together with maps c → c′′ and
c′ → c′′, and if

(ii) for each pair of morphisms c ⇒ c′ there is some c′ → c′′ such that the two
composites coincide.

Lemma 8.5.5. If K : C → D is homotopy final, then K is final. Conversely, if C is
filtered and K : C → D is a final functor, then K is homotopy final.

Proof. For any category C, π0C � π0NC. If K is homotopy final then each N(d/K) is
contractible and π0(d/K) � π0N(d/K) = ∗ implies that d/K is non-empty and connected.
Now suppose C → D is final and that C is filtered. Combining these facts, it is easy to
show that d/K is also filtered: condition (ii) is immediate and condition (i) follows because
a zig-zag connecting a pair of objects d → Kc and d → Kc′ defines a finite diagram in
C. The claim now follows from the classical result that nerves of filtered categories are
contractible: the main idea of the proof is that a class in the n-th homotopy group of a
simplicial set X can be represented by a map S → X where the geometric realization of S
is homotopy equivalent to S n and has only finitely many non-degenerate simplices. □

These definitions are justified by the following theorem:

Theorem 8.5.6 (homotopy finality). Let F : D → M be any diagram in a simplicial
model category. If K : C → D is homotopy final, then hocolimC FK → hocolimD F is a
weak equivalence.



8.5. HOMOTOPY FINAL FUNCTORS 105

Proof. We use the homotopical aspects of the bar construction detailed in 5.2.5. When
K is homotopy final, the natural map N(d/K) → N(d/D) is a weak equivalence because
both spaces are contractible. Using the isomorphisms N(−/K) � B(∗,C,D(−,K−)) and
N(−/D) � B(∗,D,D) of 4.2.6 and the fact that B(−,D,QF) preserves weak equivalences,
the top map in the following diagram is a weak equivalence.

B(B(∗,C,D(−,K−)),D,QF) ∼ //

� ��

B(B(∗,D,D),D,QF)
���

B(∗,C, B(D(−,K−),D,QF)) //

��

B(∗,D, B(D,D,QF))
��

B(∗,C,QFK) //

� ��

B(∗,D,QF)
���

hocolimC FK // hocolimD F

The associativity of the bar construction gives the vertical isomorphisms and hence the
middle weak equivalence. The left vertical map is defined using the natural augmenta-
tion from the simplicial object B•(D(−,Kc),D,QF) to QFKc; the right vertical map is a
special case of this. Furthermore, both augmented simplicial objects have forwards con-
tracting homotopies as detailed in Example 4.5.7. By Corollary 4.5.2, these maps define
weak equivalences B(D(−,K−),D,QF)→ QFK and B(D,D,QF)→ QF between point-
wise cofibrant diagrams, which are preserved by B(∗,C,−) and B(∗,D,−) by 5.2.5. Hence,
the vertical maps are weak equivalences and therefore so is the bottom map by the 2-of-3
property. □

An alternate proof of this theorem will be given at the end of section 11.5.

Exercise 8.5.7. Using Theorem 8.1.8, show that if K : C → D is any functor such that
for any diagram F : D → sSet, the natural map hocolimC FK → hocolimD F is a weak
equivalence, then K is homotopy final.

Corollary 8.5.8 (Quillen’s Theorem A). If K : C → D is homotopy final, then NC →
ND is a weak equivalence.

Proof. A map of simplicial sets is a weak equivalence just when the induced map of
geometric realizations is a weak equivalence. But |NC| = B(∗,C, ∗) � hocolimC ∗. So
the map in question |NC| → |ND| is just the map between the homotopy colimit of the

restricted diagram C
K
→ D

∗
→ Top and the homotopy colimit of ∗ : D → Top. □

Example 8.5.9. IfD has a terminal object t, the inclusion t : 1→ D is homotopy final
and hence the homotopy colimit of any diagram of shape D is weakly equivalent to the
image of t. For instance, the mapping cylinder, a model for the homotopy colimit of an
arrow f : X → Y in Top, deformation retracts onto Y; cf. 6.4.4.

The author learned the following example from Omar Antolı́n Camarena.

Example 8.5.10. If M is a commutative monoid, its group completion G can be con-
structed as a quotient of M × M by the relation (m, n) ∼ (m′, n′) if there is k ∈ M so that
m + n′ + k = m′ + n + k. The map m 7→ (m, 0) : M → G satisfies the expected universal
property.

Regarding M and G as one-object categories, the functor M → G is homotopy final
because the relevant slice category is filtered. Hence, Corollary 8.5.8 tells us that the
natural map BM → BG is a weak equivalence. For arbitrary (not necessarily commutative)
monoids M, the fundamental group of BM is the group completion, as can be directly
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verified, but having a weak equivalence BM → BG is quite special; in fact, while BG is
always a 1-type, Dusa McDuff proved that any connected homotopy type can be obtained
as the classifying space of a monoid [McD79].

Exercise 8.5.11. Give an example to show that the functor of Example 8.3.8 is not
homotopy final.

Example 8.5.12. Write m :
−→
∆ ↪→ ∆ for the inclusion subcategory containing all objects

but only the monomorphisms (face maps). We claim this inclusion is homotopy initial. To
show that each slice category m/[n] is contractible, first define an endofunctor S : m/[n]→
m/[n] that sends α : [k]→ [n] to the map Sα : [k+1]→ [n] with (Sα)(0) = 0 and (Sα)(i) =

α(i − 1) for i > 0. Write E : m/[n] → m/[n] for the functor constant at the map [0]
0
→ [n].

The maps d0 define the components of a natural transformation id ⇒ S and the maps 0
define a natural transformation E ⇒ S . Taking nerves, these natural transformations define
a zig-zag of homotopies from the identity to E, exhibiting contractibility of N(m/[n]).
Hence

−→
∆ ↪→ ∆ is homotopy initial. The dual inclusion is thus homotopy final, and Theorem

8.5.6 implies that the homotopy colimit of a simplicial object in a simplicial model category
is weakly equivalent to the homotopy colimit of the subfunctor that “forgets the degeneracy
maps.”

Our interest in this observation stems from the fact that for pointwise cofibrant simpli-
cial objects, the homotopy colimit of the restricted diagram is weakly equivalent to its fat
geometric realization, the functor tensor product with the restricted Yoneda embedding
−→
∆ → Set∆op

; see Example 11.5.6. The fat geometric realization is constructed like ordinary
geometric realization except that it forgets to collapse the degenerate simplices. It follows
from the 2-of-3 property that the homotopy colimit of a pointwise cofibrant simplicial ob-
ject in a simplicial model category is weakly equivalent to its fat geometric realization,
which is generally easier to compute.

Example 8.5.13. The diagonal map ∆ : ∆ → ∆ × ∆ is homotopy initial. To prove
this, we must show ∆/([p], [q]) is contractible. Extend the notation of 8.5.12 to define an
analogous functor S : ∆/([p], [q])→ ∆/([p], [q]) by

(α : [k]→ [p], β : [k]→ [q]) 7→ (Sα : [k + 1]→ [p], Sα : [k + 1]→ [q]).

Define E : ∆/[p], [q] → ∆/[p], [q] to be the functor constant at ([0]
0
→ [p], [0]

0
→ [q]).

As before there exist natural transformations id ⇒ S ⇐ E which exhibit the homotopy
contractibility of ∆/([p], [q]). The upshot is that the homotopy colimit of a bisimplicial
object in a simplicial model category is weakly equivalent to the homotopy colimit of its
diagonal.

Exercise 8.5.14. Let ∆∞ and ∆−∞ denote the wide subcategories of ∆ containing only
those maps that preserve the top and bottom elements, respectively, in each ordinal. Freely
adjoining a top or bottom element defines natural inclusions ∆ ↪→ ∆∞ and ∆ ↪→ ∆−∞.
Extending a cosimplicial object along one of these inclusions produces an augmentation
and either a forwards or backwards contracting homotopy.

Show that these inclusions are homotopy initial, proving the result promised in Re-
mark 4.5.4: the homotopy colimit of a simplicial object admitting an augmentation and
contracting homotopy is weakly equivalent to its augmentation.

To motivate the topic of the next chapter, we note that an alternate proof of the Ho-
motopy Finality Theorem 8.5.6 should be available. In the Reduction Theorem 8.1.8, we
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showed that the homotopy colimit of a diagram of the form C
K
→ D

F
→ M is isomor-

phic to the homotopy colimit of the diagram F weighted by N(−/K) : Dop → sSet. If
K is homotopy final, then the natural map N(−/K) → N(−/D) between the weights is a
weak equivalence. If we knew that weakly equivalent weights induced weakly equivalent
weighted colimits of pointwise cofibrant diagrams, we would be done.

It turns out this is not quite true; the weights must also be “fat” enough, or stated
precisely, the weights must be cofibrant in a suitable sense. Our hoped-for simple proof
will appear as an immediate corollary to a theorem (Theorem 11.5.1) in Chapter 11, once
we have the appropriate language to state and prove it. But in the next chapter we take
an important first step and prove this result for weighted homotopy limits and colimits,
generalizing Theorem 5.1.1 and Corollary 5.1.3 to enriched category theory. In particular,
we will show that for any diagram in a simplicial model category, any weighted homotopy
colimits formed with weakly equivalent weights are weakly equivalent.





CHAPTER 9

Weighted homotopy limits and colimits

In Chapter 5, we proved that the bar construction gives a uniform way to construct
homotopy limits and colimits of diagrams of any shape, defined to be derived functors of
the appropriate limit or colimit functor, in a simplicial model category. But, on account of
Corollary 7.6.4, such categories admit a richer class of limits and colimits—the weighted
limits and colimits for any simplicially enriched weight, computed as enriched functor
cotensor or tensor products.

In this chapter we will prove that the enriched version of the two-sided bar construc-
tion can be used to construct a derived functor of the enriched functor tensor product. This
provides a notion of weighted homotopy colimit that enjoys the same formal properties of
our homotopy colimit functor. The construction and proofs closely parallel those of Chap-
ter 5, though more sophisticated hypotheses will be needed to guarantee that the two-sided
bar construction is homotopically well behaved. These results, due to Shulman [Shu09],
partially motivated our earlier presentation.

The notion of derived functor used here is precisely the one introduced in Chapter 2.
This is to say, a derived functor of a V-functor between V-categories whose underlying
categories are homotopical is defined to be a derived functor of the underlying unenriched
functor. A priori, and indeed in many cases of interest, the point-set derived functor defin-
ing the weighted homotopy colimit will not be a V-functor. However under reasonable
hypotheses, its total derived functor inherits a natural enrichment—just not over V. This
will be the subject of the next chapter.

9.1. The enriched bar and cobar construction

Recall that the functor tensor product generalizes seamlessly to the enriched context.
The coend used to define the functor tensor product is replaced by the enriched coend, the
difference being that the coproduct indexed by sets of arrows is replaced by a coproduct
indexed by ordered pairs of objects and of tensors with the appropriate hom-object. A
similar modification defines the two-sided enriched bar construction associated to a pair
of V-functors G : Dop → V, F : D → M and a tensored and cotensored cocomplete
V-categoryM.

The simplicial two-sided bar construction extends the diagram inside the coequalizer
of (7.6.1) to a simplicial object in M. Note that because ∆ is unenriched, a simplicial
object in aV-category is the same thing as a simplicial object in the underlying unenriched
category.

Definition 9.1.1. Given a small V-category D, a tensored V-category M, and V-
functors F : D → M, G : Dop → V, the enriched simplicial bar construction is a
simplicial object B•(G,D, F) inM defined by

Bn(G,D, F) =
∐

d0,...,dn∈D

(
Gdn ×D(dn−1, dn) × · · · × D(d0, d1)

)
⊗ Fd0.

109
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For 0 < i < n, the ith face map Bn(G,D, F)→ Bn−1(G,D, F) is induced by the composition
map

◦ : D(di, di+1) ×D(di−1, di)→ D(di−1, di+1),
an arrow inV. For 0 ≤ i ≤ n, the ith degeneracy Bn(G,D, F)→ Bn+1(G,D, F) is induced
by the identity arrow ∗ → D(di, di). The outer face maps have similar definitions: the 0th
face map is induced by

(Gdn ×D(dn−1, dn) × · · · × D(d0, d1)) ⊗ Fd0
� � //

�

��

Bn(G,D, F)

���
�
�
�
�
�
�

(Gdn ×D(dn−1, dn) × · · · × D(d1, d2)) ⊗ (D(d0, d1) ⊗ Fd0)

1⊗ev

��
(Gdn ×D(dn−1, dn) × · · · × D(d1, d2)) ⊗ Fd1

� � // Bn−1(G,D, F)

where ev: D(d0, d1) ⊗ Fd0 → Fd1 is adjunct, in the adjunction defining the tensor, to the
arrow D(d0, d1) → M(Fd0, Fd1) specified as part of the data that makes F a V-functor.
The contravariantV-functor G plays the role of F in the definition of the nth face map.

It is straightforward to check that the face and degeneracy maps satisfy the desired
relations to make B•(G,D, F) a simplicial object inM. Dually:

Definition 9.1.2. Given V-functors G : D → V and F : D → M, the enriched
cosimplicial cobar construction C•(G,D, F) is a cosimplicial object inM. Using expo-
nential notation for the cotensor, the object of n-simplices is

Cn(G,D, F) =
∏

d0,...,dn

FdD(dn−1,dn)×···×D(d0,d1)×Gd0
n

Remark 9.1.3. Before defining the maps that make C•(G,D, F) a cosimplicial object
in M, recall that an arrow V → W in V induces an arrow mW → mV in M by the
defining universal property. The intuition is that cotensors are similar to homs; indeed if
V =M = Set, then mV =

∏
V m = Set(V,m). This is the essential reason why C•(G,D, F)

is cosimplicial, rather than simplicial.

As for the enriched simplicial bar construction, the degeneracy and inner face maps are
defined using theV-category structure onD, e.g., compositionD(di, di+1)×D(di−1, di)→
D(di−1, di+1) induces the ith face map Cn−1(G,D, F) → Cn(G,D, F). The nth face map
Cn−1(G,D, F)→ Cn(G,D, F) is induced by the map

Cn−1(G,D, F) // //

���
�
�
�
�
�
�
�

FdD(dn−2,dn−1)×···×D(d0,d1)×Gd0

n−1

coev
��

(FdD(dn−1,dn)
n )D(dn−2,dn−1)×···×D(d0,d1)×Gd0

�

��
Cn(G,D, F) // // FdD(dn−1,dn)×···×D(d0,d1)×Gd0

n

where cove: Fdn−1 → FdD(dn−1,dn)
n is adjunct, in the adjunction defining the cotensor, to

the arrow D(dn−1, dn) → M(Fdn−1, Fdn) specified as part of the data that makes F a V-
functor. The definition of the 0th face map is similar.
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Remark 9.1.4. IfD is unenriched, these definition agrees with the ordinary simplicial
bar construction and cosimplicial cobar construction introduced in 4.2.1 and 4.3.2.

Just as in the unenriched case, given any cosimplicial object ∆• : ∆ → V, we can
define geometric realization of simplicial objects and totalization of cosimplicial objects in
anyV-category.

Definition 9.1.5. Fixing a cosimplicial object ∆• : ∆ → V, the enriched bar con-
struction and enriched cobar construction are defined to be the functor tensor product
and functor cotensor product as appropriate:

B(G,D, F) := ∆• ⊗∆op B•(G,D, F) C(G,D, F) := {∆•,C•(G,D, F)}∆

Note that the left-hand and right-handV-functors G have conflicting variance.

Example 9.1.6. The enriched version of the two-sided bar construction can be used
to extend the constructions in Examples 4.2.4 and 4.5.5 of spaces BG = B(∗,G, ∗) and
EG = B(G,G, ∗) associated to a discrete group G to topological groups, represented as a
one-object Top-categories G equipped with an involution that is used to define inverses.

A continuous (topologically enriched) functor X : G → Top whose domain is a topo-
logical group encodes a G-space X. Its conical colimit, which can be defined because Top
is cartesian closed, is the orbit space of X. The results in the next section will tell us how
to construct instead the conical homotopy colimit, a model for the homotopy orbit space.

9.2. Weighted homotopy limits and colimits

Let M be a complete and cocomplete category that is tensored, cotensored, and en-
riched over a complete and cocomplete closed symmetric monoidal category (V,×, ∗). We
use the notation (MD)0 to distinguish the (unenriched) category of V-functors D → M
andV-natural transformations from the categoryMD of functors and natural transforma-
tions between the underlying categories ofD andM.

By Theorem 7.6.3, weighted colimits and weighted limits are computed by the func-
tors

− ⊗D − : (VD
op

)0 × (MD)0 →M and {−,−}D : (VD)op
0 × (MD)0 →M.

In order to discuss derived functors, we must have some notion of weak equivalence inV
and M. When the underlying categories V and M have a homotopical structure, these
functors may or may not preserve pointwise weak equivalences. The main theorem of
this section describes deformations that exist under suitable conditions that may be used to
construct a left derived functor of the weighted colimit bifunctor and a right derived functor
of the weighted limit bifunctor. We call this left derived functor the weighted homotopy
colimit and this right derived functor the weighted homotopy limit.

Based on previous experience in Chapter 5, we might guess part of the answer. The
colimit of F : D → M weighted by G : Dop → V is computed by the enriched functor
tensor product

colimG F � G ⊗D F := coeq

 ∐
d,d′∈D

(Gd′ ×D(d, d′)) ⊗ Fd ⇒
∐
d∈D

Gd ⊗ Fd

 .
Observe that the diagram contained inside the coequalizer is a truncation of the enriched
simplicial bar construction. On account of the coYoneda isomorphisms

(9.2.1) G ⊗D B(D,D, F) � B(G,D, F) � B(G,D,D) ⊗D F,
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we think of the enriched bar construction as a “fattened up” version of the enriched functor
tensor product. These isomorphisms say B(G,D, F) is the colimit of F weighted by a fat-
tened up weight B(G,D,D) or the colimit of a fattened up diagram B(D,D, F) weighted
by G. The remainder of our discussion is aimed at supplying conditions so that this con-
struction is homotopical, in which case it will follow from the isomorphisms (9.2.1) that
the enriched two-sided bar construction supplies a deformation for the weighted colimit
functor, and hence computes the appropriate left derived functor.

The main task is to understand the homotopical properties of the two-sided enriched
bar construction. As a first step, observe that the cosimplicial object ∆• : ∆ → V used to
define geometric realization and totalization extends to an adjunction

(9.2.2) | − | : sSet
//

⊥ V : V(∆•,−)oo

because V was supposed to be cocomplete (see 1.5.1). If we further suppose that this
left adjoint is strong monoidal, then by Theorem 3.7.11 the V-enriched categories V and
M become simplicially enriched, tensored, and cotensored. It follows from Corollary
3.8.4 that geometric realization preserves simplicial homotopy equivalences of the form
described in 3.8.2.

Furthermore, ifV is a monoidal model category and the adjunction (9.2.2) is Quillen
as well as strong monoidal, then any V-model category M becomes a simplicial model
category [Hov99, §4.2]. The definitions of monoidal model category and V-model cat-
egory will be given in 11.4.6 and 11.4.7. For now, we axiomatize a few consequences of
those definitions in analogy to our axioms for a simplicial model category in 3.8.6:

Lemma 9.2.3. A monoidal model category V, or a V-model categoryM in the case
whereV is a monoidal model category

(i) is complete and cocomplete
(ii) is tensored, cotensored, and enriched overV;

(iii) has subcategories of cofibrant and fibrant objects preserved, respectively, by tensor-
ing or cotensoring with any cofibrant object ofV;

(iv) admits a left deformation Q into the cofibrant objects and a right deformation R into
the fibrant objects;

(v) is a saturated homotopical category;
(vi) has the property that the internal hom preserves weak equivalences between cofibrant

objects in its first variable, provided the second variable is fibrant, and preserves
weak equivalences between fibrant objects in its second variable, provided its first
variable is cofibrant.

Examples of suchV include Top, sSet∗, and Top∗. This is how we concluded that the
convenient categories of spaces described in section 6.1 were simplicial model categories.
If the homotopical structures onV andM come from these model structures, then simpli-
cial homotopy equivalences are necessarily weak equivalences under these hypothesis.

The next step is to obtain an analog of Corollary 5.2.5, which gives conditions un-
der which the unenriched two-sided bar construction preserves weak equivalences in each
variable. In the enriched setting, the necessary hypotheses are somewhat more technical.

Lemma 9.2.4 ([Shu09, 23.12]). Suppose V is a monoidal model category with a
strong monoidal Quillen adjunction (9.2.2); M is a V-model category; the hom-objects
D(d, d′) ∈ V are cofibrant; and the unit maps ∗ → D(d, d) are cofibrations inV. Then

• B(−,D,−) : (VD
op

)0 × (MD)0 → M preserves weak equivalences between
pointwise cofibrant diagrams
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• B(−,D,D) : (VD
op

)0 → (VD
op

)0 and B(D,D,−) : (MD)0 → (MD)0 preserve
pointwise cofibrant diagrams

• C(−,D,−) : (VD)op
0 ×(MD)0 →M preserves weak equivalences between point-

wise cofibrant diagrams in the first variable and pointwise fibrant diagrams in
the second

• C(D,D,−) : (MD)0 → (MD)0 preserves pointwise fibrant diagrams.

Note that when V = sSet and M is a simplicial model category, the hypotheses on
D are automatically satisfied. When V = Top and M is a topological model category,
the hypotheses on D are satisfied when the hom-spaces are cell complexes and the unit
map is a relative cell complex. Replacing the usual model structure on Top by the mixed
model structure of Exercise 11.3.8, also a monoidal model category with a strong monoidal
Quillen adjunction (9.2.2), it suffices that the hom-spaces ofD are homotopy equivalent to
cell complexes.1

Proof sketch. The statement in [Shu09, §23] is more general, presenting a precise ax-
iomatization of the “goodness” conditions needed for B(−,D,−) to be homotopical. The
general strategy is the following: First use these axioms to show that, for pointwise cofi-
brant diagrams, the enriched simplicial bar construction is “Reedy cofibrant” in the sense
that the latching maps are “cofibrations” inM. Secondly, note that the axioms imply that
pointwise equivalences between pointwise cofibrant diagrams give rise to pointwise equiv-
alences between simplicial objects. Finally, show that the axioms imply that pointwise
weak equivalences between “Reedy cofibrant” simplicial objects realize to weak equiva-
lences. □

One issue remains in using the enriched bar construction to define a left derived func-
tor of the weighted colimit: our diagram F : D → M and weight G : Dop → V might
not be pointwise cofibrant. We have assumed that M and V are V-model categories,
which means that there exist left deformations into the subcategories of cofibrant objects.
However, these deformations are not necessarily V-functors, and hence cannot be used
to construct weakly equivalent pointwise cofibrant V-functors.2 It might be the case that
some deformation Q : M → M into the subcategory of cofibrant objects just happens to
be aV-functor, in which case we obtain the desired deformation onMD just by postcom-
position. Alternatively, this issue can be avoided in the following settings:

(i) When all objects ofM andV are cofibrant, of course there is no problem.
(ii) WhenD is unenriched, any unenriched functorD →M is equally aV-functor
D → M whose domain is implicitly the free V-category on D. So any defor-
mation Q : M→M, even if unenriched, will suffice.

(iii) When all objects ofV are cofibrant andM is a cofibrantly generatedV-model
category, Theorem 13.2.1 will show that there exist V-functorial left and right
deformations inM.

To unify these conditions, we formally suppose that there exists a functor Q : (MD)0 →

(MD)0 equipped with a natural weak equivalence Q ⇒ 1 such that the V-functors in its
image are pointwise cofibrant. We require similar hypotheses on VD

op
. For the reader’s

convenience, let us summarize the assumptions we have made.

Assumptions 9.2.5. The standing hypotheses are:

1Thanks to Angela Klamt for pointing this out.
2Note, we do not require a “pointwise cofibrant replacement” V-functor MD → MD, but we do need a

functorial way to replace aV-functor F ∈ MD by a weakly equivalentV-functor that is pointwise cofibrant.



114 9. WEIGHTED HOMOTOPY LIMITS AND COLIMITS

(i) (V,×, ∗) is a closed monoidal model category with a strong monoidal Quillen
adjunction | − | : sSet⇄ V : V(∆•,−).

(ii) M is a V-model category; in particular, M is enriched, tensored, and coten-
sored over V and over sSet, and simplicial homotopy equivalences are weak
equivalences inM.

(iii) There exist deformations forMD and VD
op

into pointwise cofibrant or fibrant
V-functors, as appropriate.

(iv) The hom-objects ofD are cofibrant and the unit maps are cofibrations inV.

Theorem 9.2.6 ([Shu09, 13.7,13.14]). Under the standing hypotheses, we have a left
deformation

Q × B(D,D,Q) : (VD
op

)0 × (MD)0 → (VD
op

)0 × (MD)0

for the enriched functor tensor product − ⊗D − and a right deformation

Q ×C(D,D,R) : (VD)op
0 × (MD)0 → (VD)op

0 × (MD)0

for the enriched functor cotensor product {−,−}D.

Proof. Exactly like the proof of Theorem 5.1.1. Note that the proof of Lemma 5.2.6
works equally with a pointwise cofibrant functor G in place of ∗. □

The following corollary is then immediate from Theorem 2.2.8.

Corollary 9.2.7 ([Shu09, 13.12,13.17]). Under the hypotheses of 9.2.5 B(Q,D,Q)
is a left derived functor of the weighted colimit bifunctor and C(Q,D,R) is a right derived
functor of the weighted limit bifunctor computing the weighted homotopy colimit and the
weighted homotopy limit. That is, given weights G ∈ VD

op
and H ∈ VD and a diagram

F ∈ MD, we have

hocolimG F := L colimG F � B(QG,D,QF)

holimH F := R limH F � C(QH,D,RF).

Remark 9.2.8. A point made in section 6.3 is even more salient here. By 9.2.6 and
9.2.7, the existence of any deformations into pointwise cofibrant and pointwise fibrant di-
agrams, no matter how complicated, means that if the given weights and diagrams happen
to be pointwise cofibrant or fibrant already, then the enriched two-sided bar or cobar con-
struction already has the correct homotopy type to compute the weighted homotopy colimit
or limit without making use of the deformations Q and R.

Furthermore, our proof, using the homotopical properties of the two-sided bar and
cobar construction as detailed in Lemma 9.2.4, shows that a pointwise weak equivalence
between pointwise cofibrant weights induces a weak equivalence between the associated
weighted homotopy limits or colimits. When V is the usual simplicial model category
of simplicial sets, all weights are pointwise cofibrant, so we have now proven the claim
made at the end of Chapter 8: weighted homotopy limits and weighted homotopy colimits
formed with pointwise weakly equivalent weights are weakly equivalent.

Warning 9.2.9. The simplification for the case of topological spaces described in Re-
mark 6.3.4 and proven in section 14.5, which allowed us to compute homotopy colimits
without first taking a pointwise cofibrant replacement of the diagram, does not appear to
extend to weighted homotopy colimits. As far as we know, it really is necessary to replace
a generic diagram by a pointwise cofibrant one. See Remark 14.5.10.
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Example 9.2.10. The homotopy colimit of a continuous functor X : G → Top, whose
domain is a topological group and whose target space X is a cell complex, is the space
B(∗,G, X) � colim∗(B(G,G, X)) of homotopy orbits. The homotopy limit, using the en-
riched analog of the isomorphism (7.7.5), is the space C(∗,G, X) � lim∗C(G,G, X) �
TopG(B(∗,G,G), X) of homotopy fixed points.

Example 9.2.11. Using the weighted colimit and limit formulae (7.6.7) for left and
right enriched Kan extension, we can define homotopy Kan extensions in enriched set-
tings satisfying the hypotheses of 9.2.5. Suppose we have aV-functor K : C → D between
smallV-categories so that the hom-objects of both C andD are cofibrant. Then the weights
for left and right Kan extension are pointwise cofibrant and we define, for F ∈ MC,

hoLanK F := LLanK F � L colimD(K−,−) F � B(D(K−,−),C,QF) and

hoRanK F := RRanK F � R limD(−,K−) F � C(D(−,K−),C,RF).

Note that the weighted homotopy colimit and limit functors defined by Corollary 9.2.7
require composition with the deformations Q and R. Hence, these point-set derived func-
tors are not necessarily V-functors. This rather unsatisfying state of affairs will be ad-
dressed in the next chapter.





CHAPTER 10

Derived enrichment

SupposeM is aV-model category with cofibrant replacement Q : M→M. As noted
above, on account of the free V-category–underlying category adjunction, even if Q is
not a V-functor, postcomposition transforms a V-functor F : D → M into a pointwise
cofibrant V-functor, QF : D → M, provided that the domain D is unenriched. In this
way, postcomposition defines a functor Q : (MD)0 → (MD)0 that replaces any diagram by
a pointwise weakly equivalent objectwise cofibrant V-functor. While this Q is sufficient
for the purposes of constructing derived functors of the weighted limit and colimit functors,
it is likely not aV-functor, and hence the derived functors constructed in this way will not
be enriched. For example, the standard procedure of replacing a space by a CW complex
is not continuous [Hat02, §4.1].1

Indeed, a reasonable case can be made that V-enrichments are too much to ask for:
after all derived functors are merely point-set level lifts of functors between homotopy cat-
egories, which we would not expect to be enriched. But on the contrary, in good situations
homotopy categories of enriched categories and total derived functors between them admit
canonical enrichments—just not over the closed monoidal categoryV that we started with.

Our presentation largely follows [Shu09, §16]. As a starting point for this discussion,
we state a theorem which we will generalize (and prove) below.

Theorem 10.0.1. IfM is a simplicial model category, then HoM is enriched, tensored,
and cotensored over the homotopy category of spaces.

By a result of Quillen [Qui67], the total derived functors of | − | ⊣ S form an adjoint
equivalence of homotopy categories. We write

H := Ho sSet � Ho Top

for the homotopy category of spaces, equivalent to the category of CW complexes and
homotopy classes of maps. TakingM = sSet, this result asserts thatH admits the structure
of a closed monoidal category. In this case, the monoidal structure on H is given by the
cartesian product (which is also the homotopy product; cf. Remark 6.3.1) with the singleton
serving as the monoidal unit. Its internal hom is somewhat more subtle. In this chapter, we
will see how such monoidal structures arise in general.

We close this chapter with a two-section epilogue exploring a notion of weak equiv-
alence that arises formally from enrichment over the family of homotopical categories
introduced in section 10.2. Under mild hypotheses, this notion of equivalence is quite
well-behaved and provides a useful stepping stone to the broader class of weak equiva-
lences previously studied, mirroring classical results in homotopy theory that describe the
relationship between homotopy equivalences and weak homotopy equivalences of topo-
logical spaces.

1Indeed, it is not a functor at all, but this is not the point here.
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10.1. Enrichments encoded as module structures

We have already defined the homotopy categories and total derived functors we now
assert are enriched. To prove this, we use a technique, previewed in section 3.7, for rec-
ognizing when a priori unenriched functors admit enrichments. The general strategy is as
follows: Point-set level enrichments can be encoded as module structures with respect to
a tensor or cotensor. These module structures consist of unenriched functors and natural
transformations satisfying suitable coherence conditions. In good situations, axiomatized
below, these functors can be derived, in which case we can use them to recognize when
other derived functors—including the defining tensors and cotensors themselves—admit
enrichments.

We leave aside the derived functors until the necessary enriched category theory is in
place. Recall an (unenriched) two-variable adjunction consists of bifunctors

F : M×N → P G : Mop × P → N H : Nop × P →M

that are pointwise adjoints in a compatible way, i.e., so that there exist hom-set isomor-
phisms

(10.1.1) P(F(m, n), p) � N(n,G(m, p)) �M(m,H(n, p))

natural in each variable. Our main examples will be a closed monoidal structure (in which
case G and H coincide) or a tensor-cotensor-hom two-variable adjunction.

Remark 10.1.2. In both of these examples, the categories involved are allV-categories
and the usual definition demands something stronger: that the functors are V-bifunctors
and that the isomorphisms (10.1.1) lie in the enriching category V. This will be an im-
portant consequence of the hypotheses we assume below—the derived tensor-cotensor-
hom two-variable adjunctions will consist of enriched bifunctors and enriched natural
transformations—but one of the main points is that we will not need to assume this hy-
pothesis. This enrichment will follow from coherence conditions with respect to module
structures onM, N , and P.

As always, let (V,×, ∗) be a closed symmetric monoidal category.

Definition 10.1.3. A closedV-moduleM consists of
• a two-variable adjunction (⊗, {}, hom): V ×M→M
• a natural isomorphism v ⊗ (w ⊗ m) � (v × w) ⊗ m for all v,w ∈ V and m ∈ M
• a natural isomorphism ∗ ⊗ m � m for all m ∈ M.

As the notation suggests, the two-variable adjunction should be thought of as a candi-
date tensor-cotensor-hom adjunction, but it is a priori unenriched. We saw in Lemma 3.7.7
that in a tensored and cotensoredV-category, the tensor is associative and unital. In other
words, a tensored and cotensoredV-category is a closedV-module. Conversely:

Proposition 10.1.4. A closed V-module M is uniquely a tensored, cotensored, and
enriched V-category in such a way that the given two-variable adjunction underlies the
tensor-cotensor-hom two-variable adjunction.

Proof. The proof, relying principally on Lemma 3.5.12, is similarly to many of the
proofs in section 3.7 and is left as an exercise for the reader. □

Note that we have elected to use the same notation for an enriched category and a
closed V-module. Dually, the enrichment can be encoded by a “cotensor V-module”
structure. We will have more to say about this dual encoding in Remark 10.1.6.
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Proposition 10.1.5. Let F : M → N be a functor between closed V-modules. The
following are equivalent:

• aV-functor F : M→ N with underlying functor F
• natural transformations α : v ⊗ Fm → F(v ⊗ m), associative and unital with

respect to the closed V-module structures on M and N in the sense that the
diagrams

1 ⊗ Fm α //

�
&&LL

LLL
LLL

LLL
F(1 ⊗ m)

�

��
Fm

v ⊗ (w ⊗ Fm) 1⊗α //

�

��

v ⊗ F(w ⊗ m) α // F(v ⊗ (w ⊗ m))

�

��
(v × w) ⊗ Fm α // F((v × w) ⊗ m)

commute with the specified isomorphisms.

Proof. If F is aV-functor, the map α is defined to be

v
ηv //M(m, v ⊗ m)

Fm,v⊗m // N(Fm, F(v ⊗ m))

where the first arrow is a component of the unit of the adjunction − ⊗ m ⊣ M(m,−). The
coherence conditions follow from naturality of this adjunction and a diagram chase.

Conversely, given such α, we must define morphismsM(m,m′)→ N(Fm, Fm′) inV
for each pair m,m′ ∈ M satisfying the two diagrams that encode the functoriality axioms.
The requisite morphisms are adjunct to the composite

M(m,m′) ⊗ Fm α // F(M(m,m′) ⊗ m) Fev // Fm′

where the map “ev” is adjunct to the identity arrow inV at the hom-objectM(m,m′). The
triangle for α implies the unit condition and the pentagon the associativity condition so that
these maps assemble into aV-functor.

Finally, we argue that the underlying functor of this V-functor is the original func-
tor F. We evaluate at an arrow f : m → m′ in the underlying category by precomposing
M(m,m′) → N(Fm, Fm′) with the representing morphism f : ∗ → M(m,m′). The re-
sulting arrow ∗ → N(Fm, Fm′) defines the image of f with respect to the underlying
functor. Its adjunct is the composite around the top right, which by naturality agrees with
the composite around the left bottom

∗ ⊗ Fm
f⊗id //

α

��

M(m,m′) ⊗ Fm

α

��
F(∗ ⊗ m)

F( f⊗id) //

Fev
��

F(M(m,m′) ⊗ m)

Fev
��

Fm
F f // Fm′

The left-hand evaluation map is exactly the unit isomorphism, so the composite down the
left-hand side is similarly the unit isomorphism. Hence, the adjunct of this composite is
precisely F f : ∗ → N(Fm, Fm′) as claimed. □

Remark 10.1.6. Dually, aV-functor can be uniquely encoded as a lax functor between
closed “cotensor V-modules.” This is particularly useful for right adjoints. Combining
Propositions 10.1.5 and 3.7.10, if a left adjoint preserves tensors up to coherent natural
isomorphism, i.e., if the α of Proposition 10.1.5 is an isomorphism, then any right adjoint
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inherits a canonical enrichment so that the resulting adjunction is a V-adjunction. The
dual theorem says that if a functor preserves cotensors up to coherent isomorphism, then
any left adjoint admits a canonical enrichment.

Similarly, a two variable V-adjunction can be encoded as a V-bilinear functor. We
leave the definition as an exploratory exercise for the intrepid; or see [Shu09, 14.8-14.12].

10.2. Derived structures for enrichment

Our aim is to use the definitions just presented to axiomatize the conditions necessary
to obtain derived enrichments. Before beginning, we need one final preliminary: an exten-
sion of Theorem 2.2.11, which told us that the total derived functors of a deformable ad-
junction are themselves adjoint, to two-variable adjunctions. Using the notation of (10.1.1)
above, supposeM, N , and P are homotopical categories such thatM and N have left de-
formations and P has a right deformation.

Definition 10.2.1. The two-variable adjunction (10.1.1) is deformable just when F is
left deformable and G and H are right deformable.2

Lemma 10.2.2 ([Shu09, 15.2]). If (F,G,H) : M×N → P is a deformable two-variable
adjunction, then the total derived functors constructed from the deformations form a two-
variable adjunction

(LF,RG,RH) : HoM× HoN → HoP

between the associated homotopy categories.

Proof. Writing Q for the left deformations on both M and N and R for the right
deformation on P, it follows from Theorem 2.2.8 that F(Q−,Q−),G(Q−,R−),H(Q−,R−)
are derived functors. Fixing m ∈ M, n ∈ N , p ∈ P, Theorem 2.2.11 gives us adjunctions

LF(m,−) ⊣ RG(m,−), LF(−, n) ⊣ RH(n,−), RG(−, p) ⊣ RH(−, p),

where, e.g., LF(m,−) is the total derived functor whose point-set level lift is F(Qm,Q−).
The uniqueness statement in Theorem 2.2.11 says that the hom-set isomorphisms exhibit-
ing these adjunctions are the unique ones compatible with the upstairs adjunctions. Thus,
the upstairs compatibility implies that these total derived adjunctions assemble into a two-
variable adjunction between the homotopy categories. □

Example 10.2.3. The axioms for a simplicial model category, as listed in Lemma 3.8.6,
or more generally for a monoidal model category or a V-model category, as described in
Lemma 9.2.3, demand that Q and R form deformations for the two-variable adjunction
(⊗, {}, hom).

Now that we know how to derive two-variable adjunctions, let us try to prove that H
is a closed symmetric monoidal category. By Lemma 10.2.2, the two-variable adjunction
(×, hom, hom) defining the closed monoidal structure on simplicial sets induces a total

derived two-variable adjunction (
L
×,Rhom,Rhom) onH where the homotopy product and

internal hom are defined by

X
L
× Y := QX × QY Rhom(X,Y) := hom(QX,RY).

2The left deformations onM and N become right deformations onMop and Nop.
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In this particular case, the left deformations are not necessary but we leave them in place
in order to give a proof that extends to the general case. We require an associativity iso-

morphism −
L
× (−

L
× −) � (−

L
× −)

L
× −. If the product of two cofibrant objects is again

cofibrant, then the obvious candidate map

X
L
× (Y

L
× Z) = QX × Q(QY × QZ)

1×q
−→ QX × (QY × QZ)

� (QX × QY) × QZ
(q×1)−1

−→ Q(QX × QY) × QZ = (X
L
× Y)

L
× Z

is an isomorphism in H . We also require a unit isomorphism ∗
L
× − � −. If the unit

object ∗ is cofibrant, or if tensoring with cofibrant objects preserves the weak equivalence
Q∗ → ∗, then the map

X
L
× ∗ = QX × Q∗

1×q
−→ QX × ∗ � QX

q
−→ X

is an isomorphism inH .
This situation is axiomatized in the following definition.

Definition 10.2.4. A closed symmetric monoidal homotopical category is a closed
symmetric monoidal category (V,×, ∗) that is also homotopical and is equipped with a
specified left deformation (Q : V → VQ, q : Q ⇒ 1) and right deformation (R : V →
VR, r : 1⇒ R) such that

(i) these functors define a deformation for the tensor-hom two-variable adjunction;
(ii) the tensor preserves cofibrant objects, i.e., the tensor restricts to a functor

− × − : VQ ×VQ →VQ;

(iii) if v is cofibrant the natural map Q ∗ ×v→ ∗ × v � v is a weak equivalence;
(iv) the internal hom from a cofibrant object to a fibrant object is fibrant;
(v) if v is fibrant, the natural map v � hom(∗, v)→ hom(Q∗, v) is a weak equivalence.

The symmetry isomorphism tells us that v × Q∗ → v is also a weak equivalence.
Conditions (iii) and (v) follow from (i) if the monoidal unit ∗ is a cofibrant object inV.

Example 10.2.5. A monoidal model category, axiomatized in 9.2.3 and defined in
11.4.6, is a closed monoidal homotopical category. In particular, sSet, sSet∗,Top,Top∗ are
all examples, as is the category Ch•(R) of unbounded chain complexes over any commu-
tative ring R.

Theorem 10.2.6 ([Shu09, 15.4]). The homotopy category of a closed symmetric mon-
oidal homotopical category is a closed monoidal category, with structures given by the
total derived functors of the upstairs structures.

Proof. The discussion commenced above proves that the total left derived functor
of the monoidal product defines a monoidal product for the homotopy category with Q∗
serving as the monoidal unit. In the notation of Definition 10.2.4, define the internal hom
to be hom(Q−,R−), the total right derived functor of the upstairs internal hom. By Lemma
10.2.2, these total derived functors define a closed monoidal structure on the homotopy
category. See also the proof of [Hov99, 4.3.2]. □

Remark 10.2.7. The proof just given made no use of the axioms (iv) and (v), but we
have good reason for their inclusion, explained in Remark 10.2.15.
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Remark 10.2.8. As a quick reality check, note that the hom-sets in the underlying
category of the enriched category HoV coincide with the original hom-sets:

(HoV)0(v,w) := HoV(∗,RV(v,w)) � HoV(∗
L
⊗ v,w) � HoV(v,w)

Of course this is necessarily the case for any closed monoidal category; cf. Lemma 3.4.9.

It is essential in what follows that the deformations of a closed symmetric monoidal
homotopical category be taken as part of the structure of that categoryV. In this context:

Definition 10.2.9. A V-homotopical category M is a tensored and cotensored V-
category whose underlying category M is homotopical and equipped with deformations
MQ,MR such that, together with the specified deformationsVQ,VR forV,

(i) the specified functors form a deformation for the unenriched two-variable adjunction
(⊗, {}, hom): V ×M→M;

(ii) the tensor preserves cofibrant objects, i.e., the tensor restricts to a functor

− ⊗ − : VQ ×MQ →MQ;

(iii) the natural map Q ∗ ⊗m→ ∗ ⊗ m � m is a weak equivalence for all m ∈ MQ;
(iv) the cotensor from a cofibrant object to a fibrant object is fibrant;
(v) the natural map m � {∗,m} → {Q∗,m} is a weak equivalence for all m ∈ MR

Example 10.2.10. A closed symmetric monoidal homotopical category V is a V-
homotopical category.

Example 10.2.11. AV-model category, axiomatized in 9.2.3 and defined in 11.4.7, is
aV-homotopical category. In particular, a simplicial model category is a sSet-homotopical
category.

The following result, whose proof extends the proof of Theorem 10.2.6, has Theorem
10.0.1 as a special case.

Theorem 10.2.12 ([Shu09, 16.2]). If M is a V-homotopical category, then HoM
is the underlying category of a HoV-enriched, tensored, and cotensored category with
enrichment given by the total derived two-variable adjunction

(
L
⊗,R{},Rhom): HoV × HoM→ HoM.

Proof. It follows from Definition 10.2.9 and Lemma 10.2.2 that the derived functors
of (⊗, {}, hom) define a two-variable adjunction (

L
⊗,R{},Rhom): HoV × HoM → HoM.

By Theorem 10.2.6, we know (HoV,
L
×, ∗) is a closed symmetric monoidal category. It

remains to show that this derived two-variable adjunction gives HoM the structure of a
tensored and cotensored HoV-category. We prove this by exhibiting HoM as a closed
HoV-module and appealing to Proposition 10.1.4.

For this, we must define natural isomorphisms

v
L
⊗ (w

L
⊗ m) � (v

L
× w)

L
⊗ m and ∗

L
⊗ m � m ∀ v,w ∈ HoV, m ∈ HoM.

For the latter, by 10.2.9.(iii) we have a natural weak equivalence

∗
L
⊗ m = Q ∗ ⊗Qm

∼
−→ ∗ ⊗ Qm � Qm

∼
−→ m
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in M which descends to the desired isomorphism. The former makes use of 10.2.9.(ii)
and the fact that cofibrant replacement in V defines a common left deformation for the
monoidal product and the tensor. The two non-trivial maps in the zig zag

Qv ⊗ Q(Qw ⊗ Qm)
∼
−→ Qv ⊗ (Qw ⊗ Qm) � (Qv × Qw) ⊗ Qm

∼
←− Q(Qv × Qw) ⊗ Qm

are weak equivalences because the bifunctors × and ⊗ preserve cofibrant objects. In this
way, the associativity isomorphism that exhibitsM and as a closedV-module descends to
make HoM a closed HoV-module. □

With this result we now understand why the homotopy categories of any simplicial
model category are enriched, tensored, and cotensored overH . Now we would like to see
under what conditions total derived functors becomeH-enriched.

Warning 10.2.13. The deformations attached to aV-homotopical category should be
regarded as a fixed part of its structure, much like enrichments are specified, rather than
chosen anew each time. The point is, the process of deriving the coherence isomorphisms
used to show that particular total derived functors admit enrichments is somewhat deli-
cate. The axioms of Definitions 10.2.4 and 10.2.9 are chosen so that there exist common
deformations for all of the relevant structures. See [Shu09, §16] for more on this point.

Proposition 10.2.14 ([Shu09, 16.4]). If F : M → N is a V-functor between V-
homotopical categories and that is left deformable and preserves cofibrant objects, then
its total left derived functor LF : HoM→ HoN is canonically HoV-enriched.

We will give two proofs, the first a direct and the second a more formal argument,
which provide different perspectives illustrating the same point.

Proof 1. Using Proposition 10.1.5, we can obtain a HoV-enrichment on LF by means
of a natural transformation

α̂ : v
L
⊗ LFm⇒ LF(v

L
⊗ m).

The obvious candidate is

Qv ⊗ QFQm
1×q
→ Qv ⊗ FQm

αQ,Q
→ F(Qv ⊗ Qm)

(Fq)−1

→ FQ(Qv ⊗ Qm).

The right map is a weak equivalence in N because we have assumed that the tensor on
M preserves cofibrant objects. If F preserves cofibrant objects the left map is also a weak
equivalence in N . Hence, in HoN , α̂ is isomorphic to αQ,Q and therefore satisfies the
appropriate coherence conditions to define an enrichment of LF. □

Proof 2. By hypothesis, the bifunctors −⊗ F− and F(−⊗−) are both homotopical on
VQ ×MQ. It follows that these composite functors admit total left derived functors

L(− ⊗ F−) = Q − ⊗FQ − and LF(− ⊗ −) = F(Q − ⊗Q−).

As remarked in the proof of Theorem 2.2.9, it is not automatically the case that the total left
derived functor of a composite functor agrees with the composite of the total left derived
functors of the components, even if all these derived functors exist. This does hold if
the first functor in the composable pair preserves cofibrant objects. For the right-hand
side, this was part of the hypotheses in the V-homotopical category M. For the left-
hand side, we include this condition as a specific hypothesis on F. In general a natural
transformation, such as α, admits a total left derived natural transformation whenever its
domain and codomain admit a common deformation, so the rest of the argument is formal.

□
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Remark 10.2.15. Because we have included the axioms (iv) and (v) involving coten-
sors in our definitions of closed symmetric monoidal homotopical category and V-homo-
topical category, a dual version of this result is available: if F is a V-functor between
V-homotopical categories that is right deformable and preserves fibrant objects then its
total right derived functor is canonically HoV-enriched.

Proposition 10.2.16 ([Shu09, 16.8]). If F : M ⇄ N : G is a V-adjunction between
V-homotopical categories and a deformable adjunction, then if either F preserves cofi-
brant objects or if G preserves fibrant objects, then there is a total derivedV-adjunction

LF : HoM⇄ HoN : RG.

When the hypotheses of Proposition 10.2.16 are satisfied we say the adjunction F ⊣ G
is V-deformable. The right-hand statement is only true in the presence of the cotensor
axioms (iv) and (v) of Definitions 10.2.4 and 10.2.9.

Exercise 10.2.17. Write out a (sketched) proof of this proposition in a way that high-
lights the main points of the argument.

We record a final result for completeness sake.

Proposition 10.2.18 ([Shu09, 16.13]). Suppose we have a two-variableV-adjunction

F : M⊗N → P G : Mop
⊗ P → N Nop ⊗ P →M

betweenV-homotopical categories whose underlying unenriched two-variable adjunction
is deformable and such that one of the three bifunctors preserves (co)fibrant objects, as
appropriate. Then the total derived functors form a two-variable HoV adjunction.

10.3. Weighted homotopy limits and colimits, revisited

We have seen that if V is a closed symmetric monoidal homotopical category, then
HoV is a closed monoidal category, and hence a suitable base for enrichment. Also,
if M is a V-homotopical category, then its homotopy category is HoV-enriched, ten-
sored, and cotensored. Furthermore, there exist elementary conditions under which HoV-
enrichments extend to total derived functors of V-functors between V-homotopical cate-
gories: the total left derived functor of a left deformableV-functor that preserves cofibrant
objects is HoV-enriched. Similarly, given a deformableV-adjunction, if either the left ad-
joint preserves cofibrant objects or the right adjoint preserves fibrant objects, then the total
derived functors define a HoV-adjunction; this is what it means to say the adjoint pair is
V-deformable.

Our goal is now to apply these results to the total derived functors of the weighted
homotopy colimit and weighted homotopy limit bifunctors constructed in Chapter 10. In
order to do so, we must combine the hypotheses from these chapters. The assumptions
of 9.2.5, in which we supposed that V is a monoidal model category and thatM is a V-
model category, imply that V is a closed symmetric monoidal homotopical category and
that M is V-homotopical. It remains only to provide a V-homotopical structure on the
diagram category (MD)0 for any small V-category D, which we do not assume supports
any relevant model structure. It turns out no additional hypotheses are needed, though this
claim will require a bit of justification.

Recall if M is a homotopical category then MD is a homotopical category with its
weak equivalences defined pointwise. Furthermore:

Lemma 10.3.1. IfM is a saturated homotopical category, thenMD is saturated.
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Proof. Because the weak equivalences in MD were defined pointwise, for each d ∈
D, the functor evd : MD →M is homotopical. Hence, we have a commutative diagram

MD
evd //

��

M

��
HoMD

evd // HoM

where the vertical arrows are the localizations defined after 2.1.6. The component at d of
any map which becomes an isomorphism in HoMD is therefore an isomorphism in HoM
and hence a weak equivalence if M is saturated. So MD is also saturated under these
hypotheses. □

The same argument works for the underlying category of an enriched functor category
M
D. Recall that simplicial homotopies in (MD)0 were defined using the V-tensor struc-

ture on diagrams, which is defined pointwise; cf. Remark 3.8.2. In particular, simplicial
homotopy equivalences in (MD)0 are weak equivalences if this is true forM.

It remains to define the deformations that makeMD a V-homotopical category. The
following is a direct consequence of the homotopical properties of the two-sided enriched
bar construction described in Lemma 9.2.4.

Lemma 10.3.2 ([Shu09, 20.8]). IfM and D are V-categories satisfying the assump-
tions of 9.2.5, thenMD is aV-homotopical category when equipped with either

(i) the left deformation B(D,D,Q−) and the right deformation R or
(ii) the right deformation C(D,D,R−) and the left deformation Q.

We call (i) and (ii) the barV-homotopical structure and the cobarV-homotopical
structure. Note, that this result does not rely on the existence of any model structure on
the diagram category (MD)0. This is an advantage of axiomatizing the conditions we need
to derive enrichment in the definition of aV-homotopical category. The following results,
which continue the same hypotheses, are immediate consequences.

Corollary 10.3.3 ([Shu09, 20.9]). The homotopy category of the category (MD)0
of V-functors and V-natural transformations is tensored, cotensored, and enriched over
HoV.

Corollary 10.3.4 ([Shu09, 21.1-2]). If W is a pointwise cofibrant weight, then the
total left derived functor of colimW and the total right derived functor of limW are HoV-
enriched.

Now suppose Φ : M⇄ N : Ψ is aV-deformable adjunction. Because leftV-adjoints
commute with the enriched bar construction and right V-adjoints commute with the en-
riched cobar construction, the induced V-adjunction ΦD : MD ⇄ ND : ΨD is also V-
deformable. In particular:

Theorem 10.3.5 ([Shu09, 22.2-3]). Let W be a pointwise cofibrant weight. Under the
standing hypotheses, there is a HoV-natural isomorphism

L colimW (LΦD(F)) � LΦ(L colimW F).

In words, total left derived functors of leftV-adjoints preserve weighted homotopy colim-
its.

A dual HoV-natural isomorphism shows that total right derived functors of right V-
adjoints preserve weighted homotopy limits.
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Proof. The only thing to check is that the derived functors can be composed. This is
straightforward (or see [Shu09, §21]). □

We conclude by mentioning a final result concerning enriched Kan extensions. The
proof makes use of the flexible handedness of Proposition 10.2.16: the homotopical be-
havior of precomposition, sometimes a right adjoint and sometimes a left adjoint, is much
easier to understand than that of either Kan extension.

Theorem 10.3.6 ([Shu09, 22.2-22.3]). If K : C → D is a V-functor between small
V-categories andV andM satisfy 9.2.5, then theV-adjunctions

LanK : MC ⇄MD : K∗ and K∗ : MD ⇄MC : RanK

areV-deformable.

More precisely, LanK ⊣ K∗ is V-deformable with respect to the bar V-homotopical
structures, and K∗ ⊣ RanK is V-deformable with respect to the cobar V-homotopical
structures. In the former case, this means that the point-set level left derived functor of
LanK , applied to F ∈ MC is

LLanK F � LanK B(C,C,QF) � D(K−,−) ⊗C B(C,C,QF)
� B(D(K−,−) ⊗C C,C,QF) � B(D(K−,−),C,QF),

which was the definition of the homotopy left Kan extension functor given in Example
9.2.11. Dually, using the deformations of the cobarV-homotopical structure, the point-set
level right derived functor of RanK is

RRanK F � RanKC(C,C,RF) � {D(−,K−),C(C,C,RF)}C

� C(D(−,K−) ⊗Cop C,C,RF) � C(D(−,K−),C,RF),

which recovers our formula for homotopy right Kan extension.
Because restriction along K is homotopical, the total left and right derived functors

of K∗ are both isomorphic to K∗. A priori, the derived enrichments produced by the two
V-deformable adjunctions might differ; however, as [Shu09, §22] explains, this turns out
not to be the case. Hence:

Corollary 10.3.7 ([Shu09, 22.5]). There is a derived HoV-adjunction

LLanK ⊣ RK∗ � K∗ � LK∗ ⊣ RRanK .

10.4. Homotopical structure via enrichment

We conclude this chapter with two short sections that explore homotopical structures
on the underlying category of an enriched category that arise from the enrichment in a
closed symmetric monoidal homotopical category. The highlight will be a generalization
of the classical comparison between the homotopy equivalences (the homotopical structure
determined by the topological enrichment) and weak homotopy equivalences of topologi-
cal spaces.

As a starting point, though not fully in the spirit of what is to follow, we note the
following somewhat curious result.

Lemma 10.4.1. If HoV is locally small, the homotopy category of anyV-homotopical
category is also locally small.
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Proof. LetM be aV-homotopical category. The claim holds because the underlying
category of the HoV-enriched category HoM is the homotopy category of the underlying
category of M. Tautologically both categories have the same objects. By definition, the
set of arrows from m to m′ in the underlying category of HoM is

HoV(∗,HoM(m,m′)) = HoV(∗,Rhom(m,m′)) � HoM(∗
L
⊗ m,m′) � HoM(m,m′) □

In some sense, we seem to have gotten something for nothing. To quote [Shu09]:
“The presence of enrichment often simplifies, rather than complicates, the study of homo-
topy theory, since enrichment over a suitable category automatically provides well-behaved
notions of homotopy and homotopy equivalence.”

To explore what this means, let us first simplify and suppose M is a tensored and
cotensored V-category, where V is a closed symmetric monoidal homotopical category,
but whereM is not known to be homotopical in its own right. By Theorem 10.2.6, HoV is

a closed symmetric monoidal category with monoidal product
L
× represented on the point-

set level by the bifunctor −
L
× − := Q − ×Q−. The natural map

X
L
× Y = QX × QY

q×q
−→ X × Y

descends along the localization functor γ : V → HoV to define a natural arrow

(10.4.2) γX
L
× γY → γ(X × Y)

that makes γ a lax monoidal functor. It follows from Lemma 3.4.3, that any V-enriched
category is canonically HoV-enriched.

Let hM be the HoV-category arising from aV-categoryM, with hom-objects defined
by applying the localization functor γ and composition given by the map

γM(y, z)
L
× γM(x, y)→ γ(M(y, z) ×M(x, y))→ γM(x, z)

in HoV. Note that the functor γ is the identity on objects. Thus, the hom-objects of hM
are represented by the same hom-objects of M, but the structure of the former enriched
category is given by maps in HoV, not inV. Employing the category theorists’ philosophy
that an object in a category is fundamentally a stand-in for its isomorphism class, the
objects in HoV can be thought of as weak equivalence classes of objects of V. For V =
sSet or Top, the hom-objects ofM are spaces while the hom-objects of hM are typically
thought of as homotopy types.

We are not interested in hM directly; rather, we care about its underlying category
hM with hom-sets

hM(x, y) := HoV(∗, hM(x, y)) = HoV(∗,M(x, y)).

Note this notation is consistent with the introduction to Chapter 3.

Definition 10.4.3. Call a morphism inM a V-equivalence if its image in hM is an
isomorphism.

Because isomorphisms satisfy the 2-of-6 property, the V-equivalences give any cate-
goryM enriched over a closed symmetric monoidal homotopical categoryV the structure
of a homotopical category. There is a canonical functorM → hM that we call “localiza-
tion.” This terminology will be justified by Theorem 10.4.6.
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Example 10.4.4. When V = Top, sSet, or Ch•(R), hM is the category whose mor-
phisms are given by taking points in the hom-spaces up to, respectively, homotopy, simpli-
cial homotopy, or chain homotopy. Hence, theV-equivalences are precisely the homotopy
equivalences, simplicial homotopy equivalences, or chain homotopy equivalences.

Just as any topological functor preserves homotopy equivalences (though not neces-
sarily weak homotopy equivalences), and any additive functor preserves chain homotopy
equivalences (though not necessarily quasi-isomorphisms), we can prove in general that
anyV-functor automatically preservesV-equivalences.

Lemma 10.4.5 ([Shu09, 17.4]). Any V-functor F : M → N between V-categories
preservesV-equivalences.

Proof. We claim that the functor underlying F extends along the localizations to pro-
duce a commutative diagram

M
F //

��

N

��
hM hF //___ hN

This assertion is obvious on objects. Given x, y ∈ M, the map hF is defined on hom-sets
by applying the functor HoV(∗,−) to F : M(x, y)→ N(Fx, Fy) as indicated

hM(x, y) = HoV(∗,M(x, y)) −→ HoV(∗,N(Fx, Fy)) = hN(Fx, Fy).

The rest of the argument is elementary: aV-equivalence inM becomes an isomorphism in
hM, hence remains an isomorphism in hN , and hence its image in N is aV-equivalence.

□

The V-equivalences makeM a homotopical category, but is it a V-homotopical cat-
egory? And if so, is the associated HoV-enrichment associated to the homotopy category
HoM related to hM? We have no reason to suppose thatM has well-behaved left or right
deformations, so we will attempt to provide aV-homotopical structure with all objects of
M fibrant and cofibrant. This is not as unreasonable as it sounds: the tensor and cotensor
with any v ∈ V, beingV-functors, preserve allV-equivalences and hence are homotopical.
Similarly, by definition, the internal hom hM(m,m′) = γM(m,m′) takes V-equivalences
to isomorphisms in HoV, so if V is saturated, then the internal hom also preserves weak
equivalences in both variables.

Supposing that the monoidal unit is cofibrant (or that the unit conditions 10.2.9 (iii)
and (v) are satisfied), it remains only to check that tensoring with or cotensoring into any
m ∈ M preserves weak equivalences between cofibrant objects inV. It turns out this holds
if theV-categoryM is locally fibrant, i.e., if the hom-objectsM(m,m′) are fibrant inV.

Theorem 10.4.6 ([Shu09, 17.5]). If M is locally fibrant and if the unit conditions
(iii) and (v) are satisfied, then the V-equivalences make M a saturated V-homotopical
category in such a way that we have an isomorphism hM � HoM of HoV-categories.
Therefore, hM is the localization ofM at theV-equivalences.

Proof. Suppose f : v → w is a weak equivalence between cofibrant objects. We use
the Yoneda lemma to show that f ⊗ m : v ⊗ m → w ⊗ m is an isomorphism in hM, and
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hence aV-equivalence. By naturality, the following diagram commutes inV.

M(w ⊗ m, n)

( f⊗m)∗

��

� // V(w,M(m, n))

f ∗

��
M(v ⊗ m, n)

�
// V(v,M(m, n))

The internal hom in V preserves weak equivalences between cofibrant objects in its first
variable when its second variable is fibrant. Hence, the right vertical map and thus also the
left vertical map is a weak equivalence. Applying γ : V → HoV, we obtain an isomor-
phism hM(w⊗m, n) � hM(v⊗m, n) in HoV. Because the map ( f ⊗m)∗ isV-natural, this
isomorphism is HoV-natural. Hence, the Yoneda lemma implies that f ⊗m : v⊗m→ w⊗m
is an isomorphism in hM, and hence f ⊗ m is aV-equivalence, as desired.

For the last part of the statement, because the deformations on M are taken to be
identities, the definitions of hom-objects in the HoV-categories hM and HoM agree

hM(m,m′) = γM(m,m′) =M(m,m′) = HoM(m,m′),

and tautologouslyM is saturated. □

This completes the justification of the discussion from the beginning of Chapter 3. If
M is a topologically enriched, tensored, and cotensored category, its homotopy products,
defined representably, are products in its homotopy category hM � HoM.

10.5. Homotopy equivalences vs. weak equivalences

Now suppose M is known to be a V-homotopical category. The weak equivalences
specified by its homotopical structure are likely distinct from the V-equivalences just
defined. Nonetheless, we will show that just as in classical homotopy theory, the V-
equivalences are a useful stepping stone to the weak equivalences. The following remark-
able theorem of Shulman is a generalization of classical results that describe the rela-
tionship between homotopy equivalences and weak homotopy equivalences of topological
spaces (see also Digression 11.3.13).

Theorem 10.5.1 ([Shu09, 18.1]). Suppose M is a V-homotopical category. Then
there is a HoV-functor ϕ : hM → HoM whose underlying unenriched functor commutes
with both localizations

(10.5.2) M

�� ##G
GG

GG
GG

G

hM
ϕ
// HoM

Furthermore:
(i) The restriction of ϕ to the fibrant-cofibrant objects is fully faithful.

(ii) If either Q preserves fibrant objects or R preserves cofibrant objects, then the restric-
tion of ϕ to the fibrant-cofibrant objects is an equivalence.

(iii) A weak equivalence between fibrant-cofibrant objects is aV-equivalence.
(iv) IfM is saturated then allV-equivalences are weak equivalences.

Note all three functors in (10.5.2) are identity-on-objects; the difference is in the mor-
phisms. The first localization “takes homotopy classes of maps.” The second localization
formally inverts the weak equivalences. In classical terminology, (i) says that maps in
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the homotopy category between fibrant-cofibrant objects are homotopy classes of maps,
and (ii) says that the homotopy category is equivalent to the category of homotopy classes
of maps between fibrant-cofibrant objects, supposing that fibrant-cofibrant replacements
exist.

Proof of Theorem 10.5.1. The functor ϕ is defined on hom-objects by the natural map

(10.5.3) hM(m,m′) =M(m,m′)→M(Qm,Rm′) = HoM(m,m′)

given by precomposing with Qm → m and postcomposing with m′ → Rm′. We leave it as
an exercise to check that this defines a HoV-functor.

For (i), if m is cofibrant and m′ is fibrant, then (10.5.3) is a weak equivalence and hence
an isomorphism in HoV; hence ϕ is fully-faithful. For (ii), if either Q preserves fibrant
objects or R preserves cofibrant objects, then every object inM is weakly equivalent to a
fibrant-cofibrant one and hence every object is isomorphic in HoM to one in the image of
hMQR. The restriction of ϕ is therefore an equivalence of HoV-categories.

For (iii), a weak equivalence between fibrant-cofibrant objects is an isomorphism in
HoM and hence also in hM because ϕ is fully faithful on this subcategory. Hence, such a
map is a V-equivalence. Finally for (iv), any V-equivalence inM is an isomorphism in
hM and hence an isomorphism in HoM, and hence a weak equivalence, ifM is saturated.

□

As a corollary, we note that in certain conditions,V-functors are extraordinarily easy
to derive.

Corollary 10.5.4 ([Shu09, 18.3]). SupposeM andN areV-homotopical categories
such that N is saturated. If every object ofM is fibrant, then any V-functor F : M → N
has a left derived functor. If every object ofM is cofibrant, then any suchV-functor has a
right derived functor.

Proof. Suppose all objects are fibrant. By Theorem 10.5.1, all weak equivalences be-
tween fibrant-cofibrant objects are V-equivalences, which any V-functor preserves. Be-
cause N is saturated, all V-equivalences in N are weak equivalences. It follows that F
is homotopical on the cofibrant objects, and hence is left deformable, and hence has a left
derived functor. □

In fact, any V-functor between V-homotopical categories whose target is saturated
has a middle derived functor. See [Shu09, §4] for the definition.
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CHAPTER 11

Weak factorization systems in model categories

Having exhausted the theory of derived functors, we shift our focus to model cate-
gories, the context in which they are most commonly constructed. This contextualization
will appear in section 11.3 where the definition of a model category will finally appear,
but first we focus on the parts of a model structure invisible to the underlying homotopical
category. We think this perspective nicely complements standard presentations of model
category theory, e.g., [DS95, Hir03, Hov99]. (The newer [MP12] bears a familial re-
semblance to our presentation.) Those sources allow our treatment here to be quite brief.
Where we have nothing of substance to contribute, rather than retrace well-trodden ground,
we leave the standard parts of the theory to them.

The reward for our work will come in the last section in which we prove a theorem
with a number of important consequences. Specifically, we describe the homotopical prop-
erties of the weighted limit and weighted colimit bifunctors in model category language.
Using this, we give a simple proof of the Homotopy Finality Theorem 8.5.6 and finally
show that the different “op” conventions for the homotopy limit and homotopy colimit
functors discussed in Remark 7.8.3 give weakly equivalent results. Finally, we prove that
several familiar constructions for particular homotopy colimits have the appropriate uni-
versal properties.

11.1. Lifting problems and lifting properties

Classically, cofibrations and fibrations, technical terms in the context of any model
structure, refer to classes of continuous functions of topological spaces characterized by
certain lifting properties. Our story begins by explaining the common features of any class
of maps defined in this way. We will given an “algebraic” characterization of such classes
in Chapter 12.

Let i and f be arrows in a fixed category M. A lifting problem between i and f is
simply a commutative square

·

i

��

u // ·

f

��
· v

//

??�
�

�
�

·

A lift or solution is a dotted arrow, as indicated, making both triangles commute. If any
lifting problem between i and f has a solution, we say that i has the left lifting property
with respect to f and, equivalently, that f has the right lifting property with respect to i.
We use the suggestive symbolic notation i l f to encode these equivalent assertions.

Example 11.1.1. A map of sets has the right lifting property against the unique map
∅ → ∗ if and only if the map is an epimorphism. A map of sets has the right lifting property
against the unique map ∗ ⊔ ∗ → ∗ if and only if the map is a monomorphism.

133
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Example 11.1.2. A discrete right fibration, defined in 7.1.9, is a functor that has the
right lifting property with respect to the codomain inclusion of the terminal category into
the walking arrow 1→ 2.

Suppose L is a class of maps in M. We write Ll for the class of arrows that have
the right lifting property against each element of L. Dually, we write lR for the class of
arrows that have the left lifting property against a given class R.

Example 11.1.3. Writing i0 and p0 for the obvious maps induced by the inclusion of
the 0th endpoint of the standard unit interval I, the Hurewicz fibrations are defined to be
{i0 : A → A × I}l and the Hurewicz cofibrations are l{p0 : AI → A}, where the classes
defining these lifting properties are indexed by all topological spaces A. Restricting to the
subset of cylinder inclusions on disks, {i0 : Dn → Dn × I}l is the class of Serre fibrations.

Any class of maps that is defined by a left lifting property is weakly saturated mean-
ing it is closed under the following constructions:

Lemma 11.1.4. Any class of arrows of the form lR is closed under coproducts, push-
outs, transfinite composition, retracts, and contains the isomorphisms.

A diagram whose domain is the ordinal α is called an α-composite if, for each limit
ordinal β < α, the subdiagram indexed by β is a colimit cone. An ω-composite might also
be called a countable composite. To say that lR is closed under transfinite composition
means that if each arrow in an α-composite between the images of some ordinal and its
successor is in lR, then the “composite” arrow from the image of zero to the image of α is
also in lR.

Proof. All of the arguments are similar. For instance, suppose j is a retract of i ∈ lR.
By precomposing a lifting problem with the retract diagram, displayed on the left below,
we obtain a solution as indicated

·

1

##

j

��

s1 // ·

i

��

r1 // ·

j

��
·

1

;;s2
// · r2

// ·

+

·

j

��

u // ·

r∈R

��
· v

// ·

⇝

·

1

##

j

��

s1 // ·

i

��

r1 // ·
j

��

u // ·

r∈R

��
·

1

;;s2
// · r2

//

77ooooooo
· v

// ·

So j lifts against R and is therefore in lR. □

Lemma 11.1.4 of course has a dual version describing the closure properties of classes
of arrows characterized by a right lifting property, but we prefer not to state it because we
do not know what to call the dual notion of transfinite composition.

If L and R are two classes of maps, we write L l R to mean that L ⊂ lR and equiv-
alently that R ⊂ Ll. Observe that the operators (−)l and l(−) form a Galois connection
with respect to inclusion.

It will be useful to note that lifting properties interact nicely with adjunctions.

Lemma 11.1.5. Suppose F : M ⇄ N : U is an adjunction and let A be a class of
arrows inM and B be a class of arrows in N . Then FA l B if and only ifA l UB.

Proof. An adjunction F ⊣ U induces an adjunction F : M2 ⇄ N2 : U between the
respective arrow categories; the adjoints are defined pointwise by postcomposition. In
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particular, any lifting problem Fi⇒ f in N has an adjunct lifting problem i⇒ U f inM.

·

Fi

��

u // ·

f

��
↭

·

i

��

u // ·

U f

��
· v

//
w

??�
�

�
�

· ·

w

??�
�

�
�

v
// ·

Furthermore, by naturality of the original adjunction, the transpose of a solution to one
lifting problem solves the other. □

Remark 11.1.6. Lemma 11.1.5 asserts that the following diagram is a pullback in Set

(FA)l

��

U //
⌟

Al

��
N2

U
//M2

We shall see in 12.6.4 that this assertion can be categorified.

The argument presented in the proof of 11.1.5 can be extended to two-variable adjunc-
tions. A two-variable adjunction does not induce a pointwise-defined two-variable adjunc-
tion between arrow categories. However, if the ambient categories have certain finite limits
and colimits, then the Leibniz construction1 produces a two-variable adjunction between
the arrow categories.

Construction 11.1.7 (Leibniz construction). Consider a two-variable adjunction

− ⊗ − : M×N → P {−,−} : Mop × P → N hom(−,−) : Nop × P →M

P(m ⊗ n, p) � N(n, {m, p}) �M(m, hom(n, p)).

IfP has pushouts andM andN have pullbacks, there is an induced two-variable adjunction

−⊗̂− : M2 × N2 → P2 ˆ{−,−} : (M2)op × P2 → N2 ˆhom(−,−) : (N2)op × P2 →M2

between the arrow categories. The left adjoint ⊗̂ is the pushout-product of i : m → m′ ∈
M2 and j : n→ n′ ∈ N2 as defined by the diagram

m⊗n

j∗
��

i∗ //

⌜

m′⊗n

�� j∗

��

m⊗n′ //

i∗ ,,

·
I

I

i⊗̂ j

$$I
I

m′⊗n′.

1The name refers to Leibniz’ formula for the boundary of the product of two polygons ∂(A × B) = (∂A ×
B) ∪∂(A×B) (A × ∂B); cf. Exercise 15.0.2.
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The right adjoints ˆ{, } and ˆhom, called pullback-cotensors and pullback-homs, are defined
dually for f : p→ p′ by the pullbacks in N andM

{m′, p}

ˆ{i, f }
JJ

$$J
JJ

i∗

''

f∗

  

· //

��

⌟
{m, p}

f∗
��

{m′, p′}
i∗
// {m, p′}

hom(n′, p)

ˆhom( j, f )
NN

&&N
N

N

j∗

))

f∗

##

·

��

//
⌟

hom(n, p)

f∗
��

hom(n′, p′)
j∗
// hom(n, p′).

Example 11.1.8 (degenerate cases). The pushout-product of a map j : n→ n′ with the
unique map ∅ → m is the map m⊗ j : m⊗n→ m⊗n′. The pullback-hom of the map j with
the unique map p → ∗ is the map j∗ : hom(n′, p) → hom(n, p). The pullback-cotensor of
the map ∅ → m with f : p→ p′ is the map f∗ : {m, p} → {m, p′}.

Exercise 11.1.9. Prove that ⊗̂, ˆ{, }, and ˆhom define a two-variable adjunction between
the arrow categories by writing down explicit hom-set bijections

P2(i⊗̂ j, f ) � N2( j, ˆ{i, f }) �M2(i, ˆhom( j, f )).

A warm-up exercise might be in order: Consider m⊗ n′
h
−→ p and let n

j
−→ n′. Show that the

transpose of m⊗ n
m⊗ j
−−−→ m⊗ n′

h
−→ p is the composite m

h
−→ hom(n′, p)

j∗
−→ hom(n, p), where

h is the transpose of h.

Lemma 11.1.10. LetA,B,C be classes of maps inM,N ,P, respectively. The follow-
ing lifting properties are equivalent

A⊗̂B l C ⇔ B l ˆ{A,C} ⇔ A l ˆhom(B,C).

Proof. Lifting problems i⊗̂ j ⇒ f transpose to lifting problems j ⇒ ˆ{i, f } and i ⇒
ˆhom( j, f ). The adjuncts of a solution to any one of these solve the other two. □

A powerful application of Lemma 11.1.10 is Theorem 11.5.1; an experienced reader
might wish to skip to there directly. But simpler applications are also of interest.

Example 11.1.11. The closed monoidal structure on Top defines a two-variable ad-
junction. Using exponential notation for the internal hom, the projection p0 : ZI → Z is
the pullback-hom of Z → ∗ with the map i0 : ∗ → I. As defined in Example 11.1.3, a map
j : A→ X is a Hurewicz cofibration if and only if

(11.1.12)

A

j
��

// ZI

p0= ˆhom(i0,!)
��

X

??~
~

~
~

// Z

or equivalently

A × I ∪A X

j×̂i0
��

// Z

!

��
X × I //

::u
u

u
u

u
∗

In particular, taking Z to be the mapping cylinder A × I ∪A X and the top right arrow to
be the identity, it is necessary that the map j×̂i0, which is the canonical inclusion of the
mapping cylinder into X × I, has a retraction. Indeed, because the mapping cylinder repre-
sents the functor Top → Set that takes a space Z to the set of lifting problems (11.1.12),
the existence of this retraction suffices to characterize the Hurewicz cofibrations [May99,
§6.4].
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11.2. Weak factorization systems

In a model category, the lifting properties defining the cofibrations and fibrations are
supplemented with a factorization axiom in the following manner:

Definition 11.2.1. A weak factorization system on a category is a pair (L,R) of
classes of morphisms such that

(factorization) every arrow can be factored as an arrow of L followed by an arrow of R,
(lifting) L l R, and

(closure) furthermore, L = lR and R = Ll.

Remark 11.2.2. Of course, the third axiom subsumes the second. Indeed, the third
axiom makes it clear that either class of a weak factorization system determines the other.

We list them separately to facilitate the comparison with an alternate definition:

Lemma 11.2.3 (retract argument). In the presence of the first two axioms, the third can
be replaced by

(closure′) the classes L and R are closed under retracts

Proof. Lemma 11.1.4 proves that (closure) ⇒ (closure′). The converse is the so-
called “retract argument,” familiar from the model category literature: Suppose k ∈ lR. In
particular, it lifts against its right factor in the factorization guaranteed by the first axiom.
Any solution w to this canonical lifting problem can be rearranged into a retract diagram.

(11.2.4)

·

k

��

ℓ∈L // ·

r∈R

��
·

1
//

w

??�
�

�
�

·

⇝

·

1

##

k

��

1
// ·

ℓ∈L

��

1
// ·

k

��
·

w //

1

;;·
r // ·

Because L is closed under retracts, it follows that k ∈ L. □

Example 11.2.5 (Thomas Goodwillie via MathOverflow). The category Set admits
exactly six weak factorization systems. Let A,E,I,M,N denote the classes of all maps,
epimorphisms, isomorphisms, monomorphisms, and maps with empty (null) domain and
non-empty codomain. Then

(A,I), (I,A), (E,M), (M,E), (A\N ,I ∪ N), and (M\N ,E ∪ N)

are weak factorization systems, the first three of which satisfy the stricter condition that
the postulated factorizations and liftings are unique.2

Example 11.2.6. In practice, most weak factorization systems are generated by a set of
arrows J in the following manner. The right class is Jl and the left class is l(Jl). Tau-
tologically l(Jl)lJl and Jl = (l(Jl))l. If the category satisfies certain set theoretical
conditions, the small object argument, which is the subject of Chapter 12, produces ap-
propriate factorizations, in which case the weak factorization system (l(Jl),Jl) is called
cofibrantly generated.

2The appellation “weak” is intended to distinguish from orthogonal factorization systems, sometimes
called simply “factorization systems,” which have unique factorizations and unique liftings. The prototypical
example is (E,M) on Set.
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11.3. Model categories and Quillen functors

Quillen’s closed model categories of [Qui67] are called model categories by the
modern literature. Because a given category can admit multiple model category structures,
we prefer to use the term model structure when referring to particular classes of maps that
define a model category.

The following definition, perhaps first due to [JT07], a source of several useful facts
about model categories, is equivalent to the usual one.

Definition 11.3.1. A model structure on a complete and cocomplete homotopical
category (M,W) consists of two classes of morphisms C and F such that (C∩W,F ) and
(C,F ∩W) are weak factorization systems.

The maps in C are called cofibrations and the maps in F are called fibrations. The
maps in C ∩W are called trivial cofibrations or acyclic cofibrations while the maps in
F ∩W are called trivial fibrations or acyclic fibrations. The model structure is said to
be cofibrantly generated if both of its weak factorization systems are.

Remark 11.3.2. The usual definition asks thatW satisfies the weaker 2-of-3 property.
By Remark 2.1.3, ifW does not also satisfy the 2-of-6 property, then the pair (M,W) will
not admit a model structure, so you would do well to stop trying to find one.

This issue resolved, the only remaining subtle point in the proof that this definition
is equivalent to the one the reader might have in mind is the demonstration that our weak
equivalences are closed under retracts. The following proof due to [JT07, 7.8] can also be
found in [MP12, 14.2.5], the argument in the former source transmitted via this author to
the latter.

Lemma 11.3.3. If (C ∩ W,F ) and (C,F ∩ W) are weak factorization systems on
a complete and cocomplete category, and if W satisfies the 2-of-3 property, then W is
closed under retracts.

Proof. Let f be a retract of w ∈ W, and suppose temporarily that f ∈ F . Factor w
as w = vu using either weak factorization system; by the 2-of-3 property, u ∈ C ∩W and
v ∈ F ∩W. Define arrows s and t

·

1
''

f

��

//

s
��>

>
>

> ·

u

��

// ·

f

��

·

v

��

t

??�
�

�
�

· //

1

77· // ·

the former by composing and the latter as a solution to the lifting problem between u ∈
C ∩W and f ∈ F . By commutativity of the two triangles ts = 1, which means that f is a
retract of v. As v ∈ F ∩W, f is a well by the dual of Lemma 11.1.4.
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Now we prove the general case, dropping the hypothesis that f is a fibration. Factor f
as f = hg with g ∈ C ∩W and h ∈ F and construct the indicated pushout

·

1
''

g

�� ⌜

// ·

i

��
w





r
// ·

g

��
· //

h

��

·

j

���
�
� ·

h

��
·

s //

1

77· // ·

By Lemma 11.1.4, i ∈ C∩W. The arrows w and sh form a cone over the pushout diagram,
so there is a unique morphism j as shown such that ji = w. By the 2-of-3 property, j ∈ W.
Similarly, gr and the identity form a cone over the pushout diagram, so there is a unique
morphism y shown below

·

1
''

g

�� ⌜

// ·

i

��

r
// ·

g

��
· x

//

h

��

·

j

���
�
� y

//___ ·

h

��
·

s //

1

77· // ·

such that yx is the identity. The lower two squares now display h as a retract of j. As
j ∈ W and h ∈ F , the previous argument shows that h ∈ W. But g is already inW, so by
the 2-of-3 property f = hg ∈ W as desired. □

When convenient, we use a tilde to decorate arrows that represent weak equivalences,
a tail to decorate cofibrations, and an extra tip to decorate fibrations. For instance, the
pair of factorizations provided by the two weak factorization systems of a model structure
might be displayed as a commutative square

·��
∼

����
��
��
� ��

��>
>>

>>
>>

��

·

�� ��>
>>

>>
>>

> ·

∼������
��
��
��

·

Exercise 11.3.4. Use Example 11.2.5 to show that Set admits only finitely many
model structures. How many? What are they?

Example 11.3.5. Quillen’s original manuscript [Qui67] establishes a model structure
on simplicial sets in which the cofibrations are the monomorphisms, the fibrations are the
Kan fibrations, and the weak equivalences are the weak homotopy equivalences. This
model structure is cofibrantly generated. The generating cofibrations are the set of inclu-
sions of the boundary of an n-simplex into that simplex, for each n. The generating trivial
cofibrations are the set of inclusions {Λn

k → ∆
n | n ≥ 0, 0 ≤ k ≤ n} of each horn into the
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appropriate simplex. The trivial cofibrations are called anodyne maps. The fibrant objects
are called Kan complexes.

Another model structure with the same cofibrations but whose fibrant objects are the
quasi-categories, is due to André Joyal and will be introduced in Part IV.

Example 11.3.6. There is a model structure on Top, also due to [Qui67], whose cofi-
brations are retracts of relative cell complexes, fibrations are Serre fibrations, and weak
equivalences are weak homotopy equivalences. The generating cofibrations are the inclu-
sions of the spheres of each dimension into the disks they bound. The generating trivial
cofibrations are described in Example 11.1.3.

Another model structure due to Arne Strøm is formed by the Hurewicz cofibrations,
Hurewicz fibrations, and homotopy equivalences [Str72].

Example 11.3.7. The category Ch•(R) of unbounded chain complexes of modules over
a ring R has a model structure, due in this context to Mark Hovey [Hov99, §2.3], whose
weak equivalences are quasi-isomorphisms and whose trivial fibrations and fibrations are
defined by the lifting properties {S n−1 → Dn | n ∈ Z}l and {0 → Dn | n ∈ Z}l. Here S n

is the chain complex with R in degree n and zeros elsewhere, and Dn has R in degrees n,
n − 1 with an identity differential.

In parallel with the topological setting, there is another model structure given by the
Hurewicz cofibrations, Hurewicz fibrations, and chain homotopy equivalences. These no-
tions are defined using an interval object. If the ring is non-commutative, this should be
defined to be the chain complex of abelian groups with Z in degree one, Z ⊕ Z in degree
zero, and 1 7→ (1,−1) as the only non-zero differential [MP12, §18].

Example 11.3.7 shows that classical homological algebra is subsumed by Quillen’s
“homotopical algebra.” There are many other model structures relevant to homological
algebra, for instance on chain complexes that are bounded above or bounded below, or for
unbounded chain complexes taking values in other abelian categories; see [CH02].

Exercise 11.3.8. Show that the categories Top and Ch•(R) each admit a third “mixed”
model structure with weak homotopy equivalences or quasi-isomorphisms and Hurewicz
fibrations. This observation was originally made by Michael Cole [Col06].

Example 11.3.9. There is a “folk model structure” on Cat whose whose weak equiva-
lences are categorical equivalences. The cofibrations are functors injective on objects, and
the fibrations are the isofibrations, i.e., functors lifting on the right against the inclusion,
into the free-standing isomorphism, of one of the two objects.

Exercise 11.3.10. There is a model structure on the category sSet-Cat of simplicially
enriched categories and simplicially enriched functors due to Julia Bergner [Ber07]. The
weak equivalences are the DK-equivalences introduced in section 3.5. The fibrant objects
are simplicial categories which are locally Kan, i.e., for which each hom-space is a Kan
complex. See Theorem 16.1.2.

Morphisms between model categories come in two flavors: left and right Quillen
functors. A left Quillen functor is a cocontinuous functor3 that preserves cofibrations and
trivial cofibrations. Dually, a right Quillen functor preserves limits, fibrations, and trivial
fibrations. Frequently, such functors occur in an adjoint pair in which case the pair is called
a Quillen adjunction.

3This hypothesis is perhaps not standard; however, we cannot think of any examples of interesting left
Quillen functors that fail to preserve colimits.
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Lemma 11.3.11. An adjunction F : M⇄ N : U between model categories is a Quillen
adjunction if any of the following equivalent conditions hold

• F is left Quillen
• U is right Quillen
• F preserves cofibrations and U preserves fibrations
• F preserves trivial cofibrations and U preserves trivial fibrations.

Proof. This is an immediate consequence of Lemma 11.1.5. □

Remark 11.3.12. We like emphasizing weak factorization systems in the context of
model structures for a few reasons. The overdetermination of the model category axioms
and the closure properties of the classes of cofibrations and fibrations are consequences of
analogous characteristics of the constituent weak factorization systems described in Re-
mark 11.2.2 and Lemma 11.1.4. The equivalence of various definitions of a Quillen ad-
junction has to do with the individual interactions between the adjunction and each weak
factorization system, as shown in Lemma 11.1.5. Finally, the small object argument, men-
tioned in Example 11.2.6, constructs a functorial factorization for a cofibrantly generated
weak factorization system; the model structure context is beside the point.

Digression 11.3.13 (the homotopy category of a model category). If a homotopical
category (M,W) admits a model structure, any model structure, then its homotopy cate-
gory admits a simple description, in precise analogy to that presented in Theorem 10.5.1.
Because we are not assuming thatM is enriched, the proofs are somewhat more delicate.
The appropriate notions of homotopy have to be conjured from mid air by factoring either
the diagonal or the fold map. But this story is by now quite standard, and we happily defer
to [DS95].

We should at least state the upshot. A model structure on (M,W) in particular gives
a notion of fibrant and cofibrant objects—more about which in just a moment. An object
is fibrant just when the map to the terminal object is a fibration and cofibrant just when
the map from the initial object is a cofibration. In a model category, it is an elementary
exercise to show that

• every object is weakly equivalent to one that is both fibrant and cofibrant.
With more care, one can show that

• weak equivalences between fibrant-cofibrant objects are precisely “homotopy
equivalences,”

where “homotopy” is an equivalence relation defined on such hom-sets with respect to
appropriate “cylinder” or “path” objects, as alluded to above.

In particular, HoM is equivalent to the homotopy category of the subcategory of
fibrant-cofibrant objects, and this latter homotopy category is obtained by just taking “ho-
motopy classes of maps” as arrows. This was precisely the conclusion of Theorem 10.5.1
(under somewhat different hypotheses).

Now we will provide the promised contextualization of the theory of derived functors.
Recall from 2.2.4 that a functor is left deformable if it is homotopical when restricted to
a subcategory of “cofibrant” objects. The following lemma implies that any left Quillen
functor is left deformable with respect to the cofibrant objects.

Lemma 11.3.14 (Ken Brown’s lemma). LetM andN be model categories and suppose
F : M → N sends trivial cofibrations between cofibrant objects to weak equivalences.
Then F is homotopical on the full subcategory of cofibrant objects.
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Proof. Suppose w : A → B is a weak equivalence between cofibrant objects. Factor
the map (w, 1) : A ⊔ B → B as a cofibration followed by a trivial fibration. The pushout
square shows that coproduct inclusions of cofibrant objects are cofibrations.

∅ // //
��

��

⌜

B
��

����
��

j

���
�
�
�
�

1

��

A ⊔ B
��

��?
??

??

A
??

??�����

i
//_____

w --

C

∼
q

�� ��?
??

??
?

B

Hence the maps i : A → C and j : B→ C are seen to be cofibrations, by commutativity of
the inner triangles, and also weak equivalences, by the 2-of-3 property applied to the outer
ones. In particular, we have constructed a diagram

A
��
∼

i ��?
??

??
?

w // B
��

∼
j����

��
��

C q

QQ

in which the maps i and j are trivial cofibrations and q is a retraction of j that factors w
through i.

The rest of the argument is elementary. By hypothesis, the maps Fi and F j are weak
equivalences as is the image of the identity at B. Hence Fq is a weak equivalence by the
2-of-3 property and consequently so is Fw by 2-of-3 again, as desired. □

Applying the cofibration–trivial fibration factorization to maps of the form ∅ → m, we
obtain cofibrant objects Qm together with a natural weak equivalence qm : Qm→ m. If the
factorization is functorial,4 as is commonly supposed to be the case, this procedure defines
a left deformation (Q, q). The upshot is that the left derived functor of any left Quillen
functor F is defined by FQ. Note further that left Quillen functors preserve cofibrant
objects, so composites of these left derived functors of left Quillen functors are again left
derived functors; cf. Theorem 2.2.9.

Dual arguments show that right Quillen functors are right deformable with respect to
the subcategory of fibrant objects, which they preserve. A right deformation is obtained by
applying the trivial cofibration–fibration factorization to maps to the terminal object.

Exercise 11.3.15. A Quillen equivalence is a Quillen adjunction F : M ⇄ N : U so
that either of the equivalent conditions are satisfied

(i) The total derived functors LF ⊣ RU form an equivalence of categories.
(ii) For any cofibrant m ∈ M and fibrant n ∈ N , a map Fm → n is a weak equiva-

lence in N if and only if its adjunct m→ Un is a weak equivalence inM.

Prove this.

4This notion will be defined in 12.1.1.
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11.4. Simplicial model categories

A proper definition of a simplicial model category is surely overdue. First, we need
one more ancillary notion, a left Quillen bifunctor, whose definition makes use of the
Leibniz construction 11.1.7. Using the notation appropriate to this setting:

Definition 11.4.1. A bifunctor − ⊗ − between model categories is a left Quillen bi-
functor if it preserves colimits in both variables and if the associated pushout-product
bifunctor −⊗̂− maps pairs of cofibrations to a cofibration that is acyclic if either of the
domain cofibrations are.

At first glance, this definition seems a bit odd. An important point is the following
lemma.

Lemma 11.4.2. Left Quillen bifunctors are homotopical on the subcategories of cofi-
brant objects and, furthermore, preserve cofibrant objects.

Proof. These claims follow from Example 11.1.8 and Ken Brown’s Lemma 11.3.14.
First note that the map ∅ → m ⊗ n is the pushout-product of the maps ∅ → m and ∅ → n;
hence, if the latter two are cofibrations, so is the former.

Now suppose i : m → m′ and j : n → n′ are weak equivalences between cofibrant
objects. The map i ⊗ j : m ⊗ n → m′ ⊗ n′ factors as i ⊗ n followed by m′ ⊗ j. So it suf-
fices to prove that tensoring with a cofibrant object preserves weak equivalences between
cofibrant objects. If i is a trivial cofibration, then i ⊗ n is the pushout-product of i with the
cofibration ∅ → n and is hence a trivial cofibration and in particular a weak equivalence.
The conclusion follows from Lemma 11.3.14. □

Right Quillen bifunctors are defined dually—the meaning of “dual” in this context
perhaps merits some explanation. Here a bifunctor, which we’ll call “hom,” contravariant
in its first variable and covariant in its second, is right Quillen if the associated “pullback-
hom” sends a cofibration in the first variable and fibration in the second to a fibration
that is acyclic if either of these maps is also a weak equivalence. The duality has to do
with the fact that a model structure onM gives rise to a model structure onMop with the
cofibrations and fibrations swapped.

Lemma 11.4.3. If (⊗, {, }, hom) is a two-variable adjunction, then ⊗ is a left Quillen
bifunctor if and only if {, } is a right Quillen bifunctor if and only if hom is a right Quillen
bifunctor.

In this case we say that (⊗, {, }, hom) is a Quillen two-variable adjunction.

Proof. Lemma 11.1.10 implies this result and also more refined statements à la Lemma
11.3.11. □

Definition 11.4.4. A simplicial model category is a model category M that is ten-
sored, cotensored, and simplicially enriched and such that (⊗, {, }, hom) is a Quillen two-
variable adjunction.

The three statements encoded in the assertion that (⊗, {, }, hom) is a Quillen two-
variable adjunction are frequently referred to as the SM7 axiom.

Exercise 11.4.5. Prove the assertions in Lemma 3.8.6 except (vi): that simplicial ho-
motopy equivalences are weak equivalences. This follows from Theorem 10.5.1 or a direct
argument that can be found, for instance, in [Hir03, 9.5.15-16].



144 11. WEAK FACTORIZATION SYSTEMS IN MODEL CATEGORIES

Quillen’s definition has been generalized by Hovey [Hov99, §4.2].

Definition 11.4.6. A monoidal model category is a closed (symmetric) monoidal
category (V,×, ∗) with a model structure so that the monoidal product and hom define a
Quillen two-variable adjunction and furthermore so that the maps

Q ∗ ×v→ ∗ × v � v and v × Q∗ → v × ∗ � v

are weak equivalences if v is cofibrant.

Definition 11.4.7. A V-model category is a model category M that is tensored,
cotensored, and V-enriched in such a way that (⊗, {, }, hom) is a Quillen two-variable ad-
junction and the maps

Q ∗ ⊗m→ ∗ ⊗ m � m

are weak equivalences if m is cofibrant.

Exercise 11.4.8. Using Definition 11.4.6 or Definition 11.4.7 prove the appropriate
case of Lemma 9.2.3.

The conditions on the cofibrant replacement of the monoidal unit (which are implied
by the Quillen two-variable adjunction if the monoidal unit is cofibrant) are included so
that a monoidal model category is a closed monoidal homotopical category and aV-model
category is a V-homotopical category. Ultimately these conditions are necessary for the
proofs of Theorems 10.2.6 and 10.2.12, which show that the homotopy categories are again
closed monoidal and enriched, respectively. See the discussion in section 10.2.

11.5. Weighted colimits as left Quillen bifunctors

To wrap up this chapter, we use our facility with weak factorization systems and two-
variable adjunctions to prove some cool results about weighted (and thus homotopy) limits
and colimits in simplicial model categories. For this we need one last preliminary. IfM
is a model category and D is a small category the projective model structure on MD

(which may or may not exist) has weak equivalences and fibrations defined pointwise and
the injective model structure on MD (which may or may not exist) has weak equiva-
lences and cofibrations defined pointwise. Projective model structures exist wheneverM
is cofibrantly generated; cf. Theorem 12.3.2. Injective model structures exist whenM is
additionally locally presentable, in which case we say that the model structure is combi-
natorial [Bek00] . This is the case for Quillen’s model structure on simplicial sets.

The following theorem of Nicola Gambino has an elementary proof. Nonetheless, it
has a number of powerful consequences, which we will devote the rest of this section to
exploring.

Theorem 11.5.1 ([Gam10]). IfM is a simplicial model category, D is a small cate-
gory, then the weighted colimit functor

− ⊗D − : sSetD
op
×MD →M

is left Quillen if the domain has the (injective, projective) or (projective, injective) model
structure. Similarly, the weighted limit functor

{−,−}D : (sSetD)op ×MD →M

is right Quillen if the domain has the (projective, projective) or (injective, injective) model
structure.
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Proof. Note we have used Theorem 7.6.3 to express weighted colimits as functor
tensor products and weighted limits as functor cotensor products. By Lemma 11.4.3 we
can prove both statements in adjoint form. The functor tensor product ⊗D has a right
adjoint (used to express the defining universal property of the weighted colimit)

M(−,−) : (MD)op ×M → sSetD
op

which sends F ∈ MD and m ∈ M toM(F−,m) : Dop → sSet.
To prove the statement when sSetD

op
has the projective and MD has the injective

model structure, we must show that this is a right Quillen bifunctor with respect to the
pointwise (trivial) cofibrations inMD, (trivial) fibrations inM, and pointwise (trivial) fi-
brations in sSetD

op
. Because the limits involved in the definition of right Quillen bifunctors

are also formed pointwise, this follows immediately from the corresponding property of the
simplicial hom bifunctor, which was part of the definition of a simplicial model category.
The other cases are similar. □

Remark 11.5.2. The previous argument works equally well if D is a small simplicial
category and the diagram categories are the categories of simplicial functors and simplicial
natural transformations. Because our applications will involve unenriched diagrams, we
have opted for the simpler statement.

This result has immediate consequences for the theory of derived functors including in
particular homotopy (co)limits—ordinary (co)limits being functor tensor products with the
terminal weight—giving alternate proofs of some of the key theorems from Part I and Part
II of this book. A special case of Theorem 11.5.1 asserts that homotopy colimits can be
computed by taking a projective cofibrant replacement of the weight and a pointwise cofi-
brant replacement of the diagram (our usual approach) or by taking a projective cofibrant
replacement of the diagram. The latter approach typically involves replacing certain maps
in the diagram by cofibrations, a well-known strategy for producing homotopy colimits in
particular cases.

For ease of reference, let us record this new observation as a corollary.

Corollary 11.5.3. Let M be a simplicial model category and let D be a small cat-
egory. If M is cofibrantly generated, then projective cofibrant replacement defines a left
deformation for colim: MD → M and hence the homotopy colimit of a diagram may be
computed as the colimit of any projective cofibrant replacement. Dually, ifM is combina-
torial, then injective cofibrant replacement defines a right deformation for lim: MD →M
and hence the homotopy limit of a diagram may be computed as the limit of an injective
fibrant replacement.

To apply Theorem 11.5.1, we need a better understanding of the projective cofibra-
tions.

Lemma 11.5.4. Let A → B be any cofibration in a model category M. Then the
induced map from the copowers D(d,−) · A → D(d,−) · B is a projective cofibration in
MD

To explain the notation, the copower bifunctor − · − : Set × M → M extends to a
bifunctor SetD ×M →MD, where morphisms inD act by reindexing coproducts.

Proof. It suffices to show that this map lifts against all pointwise trivial fibrations. By
the defining universal property of the copower and the Yoneda lemma, there is adjunction
D(d,−)·− : M⇄MD : evd whose right adjoint evaluates at an object d ∈ D. By definition
A→ B lifts against all trivial fibrations and the conclusion follows from Lemma 11.1.5. □
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Remark 11.5.5. Combining Lemma 11.5.4 and Lemma 11.1.4 allows us to recognize
a large class of projective cofibrations: any retract of a transfinite composite of pushouts
of coproducts of the maps of Lemma 11.5.4 lifts against any pointwise trivial fibration and
is hence a projective cofibration. Indeed, by Corollary 12.2.4, all projective cofibrations
admit this description.

Example 11.5.6. Let y :
−→
∆ → sSet denote the restriction of the usual cosimplicial

object to the wide subcategory of monomorphisms. We claim that y is projective cofibrant
with respect to the Quillen model structure on simplicial sets. Using Remark 11.5.5, we
define y to be the colimit of a sequence of pushouts of projective cofibrations

−→
∆ ([n],−) ·

(∂∆n → ∆n).
The initial map in this sequence is ∅ →

−→
∆ ([0],−). The second is constructed via the

pushout
∅
��

��
−→
∆ ([1],−) · ∂∆1

��

��

//

⌜

−→
∆ ([0],−) =: y0

��

��
−→
∆ ([1],−) · ∆1 // y1

The top horizontal “attaching map” is the obvious one: by the Yoneda lemma, this natural
transformation is determined by two points in the discrete simplicial set y0

1 =
−→
∆ ([0], [1]),

and we choose the elements corresponding to the faces of ∂∆1.
Observe that the simplicial set y1

2 has a non-degenerate 1-simplex corresponding to
each monomorphism [1] → [2]. These assemble into the boundary of a 2-simplex and in
this way can be used to define the attaching map for

−→
∆ ([2],−) · (∂∆2 → ∆2); the pushout

defines the functor y2. By construction, the simplicial set yn
n+1 contains a non-degenerate

∂∆n+1 whose consistent n-simplices correspond to the monomorphisms [n] → [n + 1].
These are used to freely attach an (n + 1)-simplex. By construction, y � colimn yn is thus
projectively cofibrant. Theorem 11.5.1 now proves the assertions of Example 8.5.12.

Example 11.5.7. Let D be the category b
f
←− a

g
−→ c indexing pushout diagrams and

let F : D → M take values in a cofibrantly generated simplicial model category. If Fa
is cofibrant and F f and Fg are cofibrations, then F is projectively cofibrant (and Fb and
Fc are cofibrant objects). To see this, we factor ∅ → F as a composite of three projective
cofibrations:

∅
��

��
D(b,−) · Fa

��
D(b,−)·F f

��

u //

⌜

D(a,−) · Fa
��

��
D(b,−) · Fb // F′

��

��

D(c,−) · Favoo
��
D(c,−)·Fg

��⌝
F D(c,−) · Fcoo
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The vertical arrows are cofibrations by Lemma 11.5.4 and Lemma 11.1.4. The attaching
maps u and v are adjunct, under different adjunctions, to the identity at Fa.

By this observation and Corollary 11.5.3, the ordinary pushout of a pair of cofibra-
tions between cofibrant objects is a homotopy pushout. Given a generic pushout diagram

Y
h
←− X

k
−→ Z its projective cofibrant replacement may be formed by taking a cofibrant

replacement q : X′ → X of X and then factoring the composites hq and kq as a cofibration
followed by a trivial fibration.

(11.5.8) Y ′

∼

����

X′

∼ q

��

oooo // // Z′

∼

����
Y Xhoo k // Z

By Corollary 11.5.3, the pushout of the diagram Y ′ ← X′ → Z′ is the homotopy pushout
of the original diagram.

Remark 11.5.9. If all that is desired of our notion of homotopy pushout is that it
preserves pointwise weak equivalences between diagrams (and not that homotopy pushouts
represent homotopy coherent cones) the hypothesis thatM is a simplicial model category
can be dropped: the ordinary pushout functor is homotopical when restricted to diagrams
of cofibrations between cofibrant objects.

To prove this, note that the argument just given shows that such diagrams are projec-
tively cofibrant. The pushout functor is easily seen to be left Quillen with respect to the
projective model structure: its right adjoint, the constant diagram functor, is manifestly
right Quillen. The conclusion follows by Ken Brown’s Lemma 11.3.14.

With more care, we can also drop the hypothesis that the model structure is cofibrantly
generated. Even if the projective model structure does not exist, the shape of the pushout
diagram allows us to construct functorial “projective cofibrant replacements” nonetheless.5

The proof in Corollary 14.3.2 and Remark 14.3.4 will give this extension and also show
that the pushout functor is homotopical under even more general conditions than described
here.

Example 11.5.10. The duals of Lemma 11.5.4 and Lemma 11.1.4 identify a large class
of injective fibrations. However, there is no characterization of all injective fibrations as in
Remark 11.5.5 because the hypotheses in the dual of Corollary 12.2.4 are never satisfied
in practice. Dualizing Example 11.5.7 or by a direct lifting argument, a diagram of shape

b
f
−→ a

g
←− c in which the objects are fibrant and the maps are fibrations is injectively fibrant.

Hence, the conclusion of Remark 11.5.9 can be dualized: in a combinatorial model cate-
gory, homotopy pullbacks can be computed by replacing the objects of a pullback diagram
by fibrant objects and the maps by fibrations. In fact, up to the caveats of Remark 11.5.9,
homotopy pullbacks can be computed in this manner in any model category, combinatorial
or otherwise; see section 14.3.

Example 11.5.11. Let us prove the claim asserted in Example 6.4.8, that the homotopy
colimit of a countable sequence of maps

(11.5.12) X0
f01 // X1

f12 // X2
f23 // · · ·

in a cofibrantly generated simplicial model category can be computed by replacing the
generating maps by a sequence of cofibrations between cofibrant objects and then forming

5The precise reason is that the pushout diagram is a Reedy category.
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the ordinary colimit. In topological spaces, each map fii+1 may be replaced by its mapping
cylinder. Gluing these together, the homotopy colimit is then the mapping telescope. We
will see in Exercise 14.3.6 that the hypotheses on the model structure can be dropped.

Let ω denote the ordinal category 0 → 1 → 2 → · · · and write F : ω → M for
the diagram (11.5.12). We will construct a projective cofibrant replacement of F by an
inductive process. For the initial step, we take a cofibrant replacement q0 : Q0

∼
−→ X0 of X0

and form the functor G0 := ω(0,−) ·Q0. By Lemma 11.5.4 and Lemma 11.1.4, this functor
is projectively cofibrant; by construction there is a natural transformation

G0

��

Q0

q0 ∼

��

Q0

���
�
� Q0

���
�
� · · ·

F X0
f01 // X1

f12 // X2
f23 // · · ·

in which the dotted arrows are defined to be the composites of the arrows to their left. Note
that ω(0,−) · Q0 is not yet a cofibrant replacement of F because only its initial component
is a weak equivalence.

For the next step, we use the factorization inM to form a cofibrant replacement of the
map f01q0:

Q0

q0 ∼

��

// g01 // Q1

q1 ∼

��
X0

f01 // X1

We then form a pushout inMω:

ω(1,−) · Q0
��

g01

��

//

⌜

G0 = ω(0,−) · Q0
��

��
ω(1,−) · Q1 // G1

Here the top horizontal “attaching map” is adjunct to the identity at Q0. The vertical maps
are projective cofibrations by Lemmas 11.5.4 and 11.1.4. The universal property of the
pushout defining the functor G1 furnishes a natural transformation

G1

��

Q0

q0 ∼

��

// g01 // Q1

q1 ∼

��

Q1

���
�
� · · ·

F X0
f01 // X1

f12 // X2
f23 // · · ·

in which the first two components are weak equivalences.
At step n, we define a functor Gn in an analogous fashion

Qn−1

qn−1 ∼

��

//gn−1,n // Qn

qn ∼

��

ω(n,−) · Qn−1
��

gn−1,n

��

//

⌜

Gn−1

��

��
Xn−1

fn−1,n // Xn ω(n,−) · Qn // Gn

By Lemma 11.1.4, the transfinite composite

∅ // // G0 // // G1 // // G2 // // · · · // // colimn Gn =: G
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is a projectively cofibrant functor with a natural weak equivalence to F.

G

q ∼

��

Q0

q0 ∼

��

// g01 // Q1

q1 ∼

��

// g12 // Q2

q2 ∼

��

// g23 // · · ·

F X0
f01 // X1

f12 // X2
f23 // · · ·

By Corollary 11.5.3, the colimit of G is the homotopy colimit of F.

Theorem 11.5.1 enables new proofs that certain weighted colimits compute homotopy
colimits. Granting for a moment the assertion about projective cofibrancy, Theorem 6.6.1
reappears as a corollary of Theorem 11.5.1.

Corollary 11.5.13 ([Hir03, 14.8.8]). N(−/D) : Dop → sSet and N(D/−) : D → sSet
are projective cofibrant replacements for the constant functors ∗. Hence, for any diagram
F of shapeD taking values in a combinatorial simplicial model category

hocolim F � colimN(−/D) QF and holim F � limN(D/−) RF.

Note that N(−/D)op is equally a projective cofibrant replacement for the constant
weight. This finally proves that any of the possible conventions discussed in Remark 7.8.3
give results with the same homotopy type.

Corollary 11.5.14. The homotopy colimit of a diagram of shapeD in a combinatorial
simplicial model category is computed by the weighted colimit with weight N(−/D) or
N(−/D)op of a pointwise cofibrant replacement. Dually, the homotopy limit of a diagram
of shape D is computed by the weighted limit with weight N(D/−) or N(D/−)op of a
pointwise fibrant replacement.

For similar reasons, the weight N(−/K) : Dop → sSet is projectively cofibrant. Hence
Ken Brown’s Lemma 11.3.14 and the Reduction Theorem 8.1.8 given an immediate proof
of the Homotopy Finality Theorem 8.5.6.

Alternate proof of Theorem 8.5.6. The weighted colimits of a pointwise cofibrant di-
agram weighted by weakly equivalent projective cofibrant weights are necessarily weakly
equivalent. If N(d/K) is contractible, then the natural map N(−/K) → N(−/D) is a weak
equivalence so the result follows. □

It remains only to explain why these weights are projectively cofibrant. We will sketch
the argument for N(D/−) : D → sSet; the other cases are similar. The proof uses the
strategy outlined in Remark 11.5.5 and implemented in Example 11.5.11. We factor ∅ →
N(D/−) as a composite of pushouts of coproducts of projective cofibrations, each of which
are built by applying Lemma 11.5.4 to the maps ∂∆n → ∆n, which are cofibrations in sSet.
Lemma 11.1.4 then implies that N(D/−) is projective cofibrant. We refer to this as a
cellular decomposition of N(D/−); we will have more to say about this terminology in
the next chapter.

This cellular decomposition attaches a copy of D(d,−) · ∂∆n → D(d,−) · ∆n for each
n-simplex in ND ending at d. By the Yoneda lemma, the inclusion map

D(d,−) · ∆n → N(D/−)

corresponds to the associated n-simplex in N(D/d) whose last object is the identity at d.
More details can be found in [Hir03, 14.8.5].





CHAPTER 12

Algebraic perspectives on the small object argument

The modern definition of a model category typically asks that the factorizations are
functorial and for good reason: the construction of derived functors of Quillen functors
described above requires a functorial cofibrant and fibrant replacement, which comes for
free with functorial factorizations. Depending on which examples of model categories
you have in mind, this functoriality hypothesis can seem restrictive. For example, it is
fairly clear how to replace a chain complex of abelian groups by a quasi-isomorphic chain
complex of free abelian groups, defining a cofibrant replacement for a model structure on
Ch≥0(Z), but the naı̈ve method of doing so is not functorial. Fortunately there is a general
argument, due to Quillen, that saves the day in many cases.

The small object argument, introduced by Quillen to construct factorizations for his
model structure on Top [Qui67, §II.3], is well treated in a number of sources [DS95,
Hir03, Hov99, MP12]. We review this construction in section 12.2, but our focus here
is somewhat different. We present a number of insights that we expect will be new to
most homotopy theorists deriving from recent work of Richard Garner—the “algebraic
perspectives” mentioned in the title. To whet the reader’s appetite we briefly mention one
corollary: a principle for recognizing when a map constructed as a generic colimit, such
as a coequalizer, of a diagram of cofibrations is again a cofibration, despite the quotienting
(see Lemma 12.6.13).

The key technical preliminary to this and similar results is an alternative “algebraic”
small argument that produces functorial factorizations which bear a much closer relation-
ship to their compulsory lifting properties. Indeed, these ideas can be extended to produce
functorial factorizations for model categories that are not cofibrantly generated—even in
the extended senses of this term on display in Example 12.5.11 and in Example 13.4.5.
See for instance [BR13], which describes how to construct factorizations for Hurewicz-
type model structures on topologically bicomplete categories.

12.1. Functorial factorizations

Before we describe the small object argument, we should be precise about what is
being asked for. For a reason that will become clear eventually, we prefer to call our model
category K in this chapter. Just as the functor category K2 is the category of commutative
squares in K , the functor category K3 is the category of pairs of composable arrows in
K and natural transformations of such. The three injections d0, d1, d2 : 2 → 3, whose
images omit the object indicated by the superscript, give rise to composition and projection
functors K3 → K2.

Definition 12.1.1. A functorial factorization is a section of the composition functor
K3 → K2, obtained by precomposing with d1 : 2→ 3.

We typically write L,R : K2 ⇒ K2 for the functors that take an arrow to its left and
right factors; these are the composites of the functorial factorization with the projections
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d2, d0 : K3 ⇒ K2. It is also convenient to have notation, say E : K2 → K , for the functor
that sends an arrow to the object through which it factors. In this notation, a functorial
factorization factors a commutative square

X u //

f
��

W

g

��
Y v

// Z,

regarded as a morphism (u, v) : f ⇒ g in K2, as

X u //

L f
��

f

��

W

Lg
��

g

��

E f
E(u,v) //

R f
��

Eg

Rg
��

Y v
// Z.

Note that L preserves domains and R preserves codomains of both objects and morphisms.
The injections d1, d0 : 1 ⇒ 2 induce functors dom, cod: K2 ⇒ K , and Definition 12.1.1
demands that dom L = dom and cod R = cod.

Remark 12.1.2. Slicing over the initial object defines a functor K → K2. Because L
preserves domains, the restriction of L to the full subcategory of objects sliced under the
initial object defines a functorK → K . Given a functorial factorization for the (cofibration,
trivial fibration) weak factorization system in a model category, this procedure defines
a cofibration replacement functor Q. The components of the functor R define a natural
transformation Q ⇒ 1. Hence, a functorial factorization for the model category gives rise
to a left deformation into the subcategory of cofibrant objects. A right deformation into
the subcategory of fibrant objects is obtained dually from a functorial factorization for the
(trivial cofibration, fibration) weak factorization system.

12.2. Quillen’s small object argument

Some model categories have natural occurring functorial factorizations but for many
examples a general procedure for producing factorizations is desired. If we are not pre-
sented with a naturally occurring functorial factorization, how might we conjure one out
of mid air? The key point is that for many weak factorization systems in model structures,
the fibrations or trivial fibrations are characterized by a right lifting property against a set
(rather than a proper class) of trivial cofibrations or cofibrations. Recall that such weak
factorization systems, introduced in 11.2.6, are called cofibrantly generated.

Example 12.2.1.

• The Kan fibrations in sSet are the maps {Λn
k → ∆

n | n ≥ 0, 0 ≤ k ≤ n}l.
• The trivial fibrations in the Quillen-type model structures on sSet or Top or

Ch≥0(R) are the maps {S n−1 → Dn | n ≥ 0}l for various interpretations of
spheres and disks; cf. 11.3.5,11.3.6, 11.3.7.

• The Serre fibrations in Top or Ch≥0(R) are the maps {i0 : Dn → Dn ⊗ I | n ≥ 0}l

for the appropriate interpretation of the unit interval and the tensor.
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• The trivial fibrations in the folk model structure on Cat are the surjective cat-
egorical equivalences, i.e., the maps {∅ → 1,1 ⊔ 1 → 2,22 → 2}l, this last
generator being the surjective functor mapping a parallel pair of arrows to the
walking arrow.

• The pointwise trivial fibrations in the projective model structure on sSetD are
the maps {D(d,−) · ∂∆n → D(d,−) · ∆n | d ∈ D, n ≥ 0}l.

Quillen’s small object argument proves that a set of maps J in a category satisfy-
ing a certain set theoretical condition generates a cofibrantly generated weak factorization
system (l(Jl),Jl) with a functorial factorization. An oft-forgotten corollary, Corollary
12.2.4, characterizes the left class of a cofibrantly generated weak factorization system.

Theorem 12.2.2 (Quillen’s small object argument). If K permits the small object ar-
gument for J , then there exists a functorial factorization making (l(Jl),Jl) a weak
factorization system.

What is meant by “permits the small object argument” varies depending on context;
see [DS95, Hir03, Hov99, MP12]. Here we will use this phrase as shorthand for the
following assumption. An object k ∈ K is κ-small, where κ is a regular cardinal, if the
representable K(k,−) : K → Set preserves α-composites for any limit ordinal α ≥ κ.
In topological contexts, it often suffices to consider compact objects, defined only with
reference to colimits of countable sequences; to say k is compact is to say whenever we
have a colimit diagram ω→ K as displayed

x0 → x1 → x2 → · · · → colim
n

xn = xω

then K(k, colimn xn) � colimnK(k, xn). This hom-set isomorphism says that any arrow
k → xω factors through some xn.

To avoid getting bogged down by set theoretical technicalities, here our language and
notation will tacitly suppose that we are in the compact case. There is little conceptual
difference in the general setting, though each appearance of the ordinal ω below will have
to be replaced with a larger ordinal as appropriate. See [MP12, §15.1] where this issue is
addressed carefully.

We say K permits the small object argument for J if K is cocomplete and if the
domains of the objects in J are compact.1

Proof of Theorem 12.2.2. Quillen’s small object argument constructs a functorial fac-
torization in which the left factor is formed from the arrows in J using the colimits de-
scribed in Lemma 11.1.4. It follows that the left factor is in the left class of the weak
factorization system. The right factor is shown to be in the classJl using the compactness
hypothesis.

Fixing an arrow f to be factored, form the coproduct, indexed firstly over arrows j ∈ J
and then over commutative squares from j to f , of the arrows j. There is a canonical map
from this coproduct to f defining the commutative square

(12.2.3) ·∐
j∈J

∐
Sq( j, f )

j

��

d f // ·

f

��
· c f

// ·

1In fact one can, and frequently does, get by with less—it suffices that K(k,−) commutes with colimits of
sequences comprised of arrows in l(Jl); cf., e.g., [Hov99, 2.4.1-2].
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Here d f and c f are shorthand for the canonical maps induced by the domain and codomain
components of the commutative squares. The step-one functorial factorization (L,R) is
defined by the pushout

·∐
j∈J

∐
Sq( j, f )

j

��

d f //

⌜

·

L f

��

·

f

��
·

b f //

c f

77·
R f // ·

By construction, the map L f is in l(Jl) but the map R f need not be inJl. To remedy
this, this process is repeated, but with the map R f in place of f ; thus, R f is factored as
R2 f ·LR f . The left factor in the step-two functorial factorization is the composite LR f ·L f ,
which is still in the class l(Jl) by 11.1.4; however the step-two right factor R2 f need not
be in Jl yet, so the map R2 f is then factored again. Iterating produces a factorization

dom f = x0
L f //

f //

x1
LR f //

R f

,,

x2
LR2 f //

R2 f

&&

x3
LR3 f //

R3 f
��

· · · // colimn xn = xω

Rω f
uuj j j j j j j j j

cod f

The horizontal ω-composite is still in l(Jl) by Lemma 11.1.4 and defines the left factor in
the functorial factorization. This time the right factor Rω f is in Jl. By compactness, the
domain component of any lifting problem factors through xn → xω for some n as displayed

·

j

��

// xω
Rω f

��
· v

// ·

=

·

j

��

u // xn //

Rn f

��

xω
Rω f

��
· v

// · ·

The left-hand square (u, v) : j ⇒ Rn f in the right-hand rectangle necessarily occurs as a
component of the coproduct whose pushout factors Rn f as LRn f followed by Rn+1 f . In
particular, one leg of this pushout square defines a map from the codomain of j to xn+1

·

j

��

u
))// ·∐

j∈J

∐
Sq( j, f )

j

��

//

⌜

xn

LRn f

��

xn

Rn f

��
· //

v

44·
bRn f // xn+1

Rn+1 f // ·

·

j

��

u // xn
LRn f //

Rn f��

xn+1 //

Rn+1 f

��

xω
Rω f

��
·

66mmmmmmm
v
// · · ·

which gives the desired lift. □

We leave the proof of the following corollary as an exercise:

Corollary 12.2.4. IfK permits the small object argument, then l(Jl) is the smallest
class of maps containing J and closed under the colimits listed in Lemma 11.1.4. More
specifically, any map in l(Jl) is a retract of a transfinite composite of pushouts of coprod-
ucts of maps inJ . This shows that l(Jl) is the weak saturation ofJ , the smallest weakly
saturated class containing J .

This result gives a description of both classes of the weak factorization system gener-
ated byJ . Elements of the right class are characterized by their lifting property againstJ .
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Elements of the left class are retracts of transfinite composite of pushouts of coproducts of
elements of J .

12.3. Benefits of cofibrant generation

Recall a model category is cofibrantly generated just when its two weak factorization
systems are. Cofibrantly generated weak factorization systems are surprisingly common.
One reason for their ubiquity is that cofibrantly generated weak factorization systems beget
other cofibrantly generated weak factorization systems. For instance, a cofibrantly gener-
ated weak factorization system can be lifted along an adjunction F : K ⇄M : U provided
that the ambient categories permit the small object argument. If J generates a weak fac-
torization system onK , then FJ generates a weak factorization system onM whose right
class is created by the right adjoint U; i.e., f ∈ FJl if and only if U f ∈ Jl (see Lemma
11.1.5).

For example suppose K has a weak factorization system generated by J and letD be
any small category. Fixing d ∈ D, there is an adjunction

(12.3.1) D(d,−) · − : K
//

⊥ KD : evdoo

whose right adjoint evaluates at d and whose left adjoint forms a copower with the repre-
sentable functor. IfK permits the small object argument, then so doesKD. Hence, there is
a weak factorization system onKD generated by the setD(d,−) ·J = {D(d,−) · j | j ∈ J}.
By Lemma 11.1.5 its right class consists of those maps whose component at d lies in the
right class of the weak factorization system generated by J .

The functor categoryKobD is isomorphic to the product of the categoryK indexed by
objects of D. This category has a cofibrantly generated weak factorization system whose
generating arrows are the natural transformations with j ∈ J in a single component and
with the identity at the initial object in each other component. This set generates a weak
factorization system onKobD whose left class consists of obD-indexed products of arrows
each in the left class and whose right class consists of obD-indexed products of arrows in
the right class.

There is a “many objects” version of the adjunction (12.3.1), in the form of an adjunc-
tion

Lan: KobD //
⊥ KD : evoo

whose right adjoint precomposes by the inclusion obD ↪→ D and whose left adjoint is
given by left Kan extension. The right adjoint has the effect of evaluating a functor at each
object and placing the results in the associated components of the left-hand product. The
categoryKD has a cofibrantly generated weak factorization system generated by the image
under the left adjoint of the set of maps generating the pointwise defined weak factorization
system onKobD. Using Theorem 1.2.1 to compute the left Kan extension, these generating
cofibrations have the form

JD := {D(d,−) · j | d ∈ D, j ∈ J}

By Lemma 11.1.5, the right class of the weak factorization system generated by JD con-
sists precisely of the natural transformations whose components are in the right class of the
weak factorization system generated by J on K .

This (nearly) proves:

Theorem 12.3.2. For any cofibrantly generated model category K that permits the
small object argument and any small category D, the functor category KD admits a pro-
jective model structure.
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Proof. If J is a set of generating trivial cofibrations and I is a set of generating cofi-
brations for the model structure on K , then JD and ID generate weak factorization sys-
tems whose right classes consist of the pointwise fibrations and pointwise trivial fibrations.
It remains only to verify that these weak factorization systems fit together to define a model
structure with pointwise weak equivalences, as in Definition 11.3.1. By a well-known ar-
gument [Hir03, 11.3.1-2] that we will prove in an enriched form in Theorem 13.5.1, it
remains only to check the “acyclicity condition”: i.e., to show that the elements in the left
class of the weak factorization system generated by JD are pointwise weak equivalences.

Write α for an element of l(Jl
D

). By adjunction, we know α lifts against any pointwise
fibration. In particular, if we factor α by applying the pointwise-defined functorial factor-
ization2 produced by the small object argument forJ onK (not the functorial factorization
produced by JD) then α lifts against its right factor, which is a pointwise fibration. Hence
α is a retract of its left factor which is a pointwise trivial cofibration, and in particular, a
pointwise weak equivalence. □

This proof used the idea that appeared in the retract argument (Lemma 11.2.3). If f
factors as r · ℓ and f lifts against r, then f is a retract of ℓ as displayed in (11.2.4).

Digression 12.3.3 (Bousfield localization). There is a fully developed machinery for
producing new model structures on the same category, called Bousfield localizations, from
a cofibrantly generated model structure satisfying additional set-theoretical hypotheses. A
left Bousfield localization is a model structure with the same cofibrations whose weak
equivalences contain the original weak equivalences. In particular, the identity defines a
left Quillen functor from the original model structure to its left Bousfield localization.

Existence results come in a number of forms. For one, we suppose that K is a com-
binatorial simplicial model category that is also left proper (see 14.3.5 for a definition).
Given any set S of cofibrations, there is a left Bousfield localization, again a left proper
combinatorial simplicial model category, whose weak equivalences are the S -equivalences
and whose fibrant objects are S -local objects that are fibrant in the original model struc-
ture. Writing HoK for the H-enriched category defined by the proof of Theorem 10.0.1,

an object k ∈ K is S -local if HoK(b, k)
f ∗
−→ HoK(a, k) is a homotopy equivalence for each

f : a → b in S . A map g : x → y is an S -equivalence if HoK(y, k)
g∗
−→ HoK(x, k) is a ho-

motopy equivalence for each S -local object k. Textbook sources include [Hir03, §§4-5],
[Lur09, §A.3.7], and [MP12, §§19.2, 19.4-5].

12.4. Algebraic perspectives

To introduce the algebraic perspective, let us go back to Quillen’s construction and try
to understand why it worked. Taking artistic license, we will refer to a set of arrows J as
the “generating trivial cofibrations” and the set Jl as the “fibrations,” though nothing we
will say depends in any way on the existence of an ambient model structure. A common
narrative is that the small object argument first produces a factorization whose left factor
is a trivial cofibration but whose right factor is badly behaved and the magic worked by
iteration and compactness somehow corrects this deficiency. But from our perspective,

2By postcomposition, a functorial factorization onK defines a functorial factorization onKD; in particular,
the functorial factorization constructed from J allows us to factor any natural transformation as a pointwise
trivial cofibration followed by a pointwise fibration. But these left and right factors might not lift against each
other because pointwise-defined lifts between their components need not assemble into a natural transformation.
This is why the projective cofibrations are not the pointwise cofibrations. We will have more to say about this in
Example 12.5.11.
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and presumably from Quillen’s, the small object argument is all about the fibrations from
the very start.

To see what we mean by this, let us return to step zero, which takes the map f to be
factored and produces the square (12.2.3). This square should be thought of as the “generic
lifting problem” that tests whether or not f is a fibration. Indeed, a single lift

(12.4.1) ·∐
j∈J

∐
Sq( j, f )

j

��

// ·

f

��
· //

ϕ f

??�
�

�
�

·

simultaneously solves all lifting problems, guaranteeing that f ∈ Jl. We might call ϕ f

a lifting function because this arrow specifies a solution to any lifting problem against a
generating trivial cofibration.

The step-one pushout translates this generic lifting problem into another generic lifting
problem whose domain component is the identity. By the universal property, a solution to
the lifting problem presented by the right-hand square

(12.4.2) ·∐
j∈J

∐
Sq( j, f )

j

��

//

⌜

·

L f

��

·

f

��
· // ·

R f //

??�
�

�
�

·

precisely specifies a lifting function. In words, we see that f is a fibration if and only if it
lifts against its left factor in the canonical lifting problem defined by its step-one functorial
factorization.

This turns out to be an extraordinarily useful observation. For any functorial factori-
zation—not just for the step-one factorization constructed as part of Quillen’s small object
argument—the functors L and R are equipped with canonical natural transformations to
and from the identity on K2, respectively, which we denote by ϵ⃗ : L ⇒ 1 and η⃗ : 1 ⇒ R.
The components of these natural transformations at f : X → Y are the squares

(12.4.3) X

L f

��

X

f

��

X

f

��

L f // E f

R f

��
E f

R f
// Y Y Y

In other words, L and R are pointed endofunctors ofK2, where we let context indicate in
which direction (left or right) the functors are pointed. An algebra for the pointed endo-
functor R is defined analogously to the notion of an algebra for a monad, except of course
there is no associativity condition. Similarly, a coalgebra for the pointed endofunctor L
is defined analogously to the notation of a coalgebra for a comonad. In the framework of
these definitions, the retract argument (11.2.4) takes the following form:

Lemma 12.4.4. f ∈ K2 is an R-algebra just when there exists a lift

(12.4.5) X

L f
��

X

f
��

E f
R f
//

t
>>}

}
}

}
Y
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Conversely, any choice of lift determines an R-algebra structure for f . Dually, i ∈ K2 is
an L-coalgebra just when there exists a lift

(12.4.6) A

i
��

Li // E f

Ri
��

Y

s

>>~
~

~
~

B

Conversely, any choice of lift determines an L-coalgebra structure for i.

A key point, which we will make use of later, is that any L-coalgebra lifts (canonically)
against any R-algebra. In other words, a choice of solutions for the generic lifting problems
(12.4.5) and (12.4.6) renders further choices unnecessary.

Lemma 12.4.7. Any L-coalgebra (i, s) lifts canonically against any R-algebra ( f , t).

Proof. Given a lifting problem, i.e., a commutative square (u, v) : i⇒ f , the functorial
factorization together with the coalgebra and algebra structures define a solution:

A u //

Li
��

i

��

X

L f
��

f

��

Ei
E(u,v) //___

Ri
��

E f

R f
��

t

OO�
�
�

B

s

OO�
�
�

v
// Y □

Specializing again, suppose (L,R) is constructed as in (12.4.2). By the discussion
there, the R-algebras are precisely the elements of the set Jl. It follows from Lemma
12.4.7 that the L-coalgebras are trivial cofibrations: they lift against the R-algebras and
hence the fibrations. Indeed, this is the reason why L f is a trivial cofibration: it is a (free)
L-coalgebra—but this is for later.

The reason that Quillen’s small object argument continues beyond step one is that R f
is not itself an R-algebra (a fibration), precisely because R is not a monad. If we could
somehow replace R by a monad without changing the algebras, this problem would be
solved: objects in the image of the monad are then free algebras for the monad. It turns out
that under certain set-theoretic hypotheses this is possible.

Digression 12.4.8 (the free monad on a pointed endofunctor). The free monad on a
pointed endofunctor R is a monad F = (F, η⃗ : 1⇒ F, µ⃗ : F2 ⇒ F) together with a universal
map of pointed endofunctors R ⇒ F. When the ambient category is complete and locally
small, the free monad has the property that the induced functor from the category of F-
algebras to the category of R-algebras is an isomorphism commuting with the forgetful
functors [Kel80, §22]. This is the property of interest.

How might the free monad F be constructed? One guess would be to form the colimit

1→ R→ R2 → · · · → colim Rn ?
� F

and use the defining universal property to try to construct the necessary multiplication map
µ⃗. But this does not work unless the two natural maps η⃗R,Rη⃗ : R⇒ R2 are equal, in which
case the pointed endofunctor R is called well-pointed.

The general construction iteratively “guesses” the value of the free monad and then
“corrects” it by forming coequalizers until this process converges. The first guess is R. The
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second is the coequalizer of η⃗R and Rη⃗, a quotient of R2. Further details can be found in
[Kel80].3

Example 12.4.9. The step-one right factor R fails to be well-pointed; indeed, this
failure precisely highlights the redundancy in Quillen’s small object argument. To fix
ideas, suppose J = {S n−1 → Dn}n≥0 includes “spheres” into “disks.” A map is in Jl

just when, for every sphere in its domain which becomes contractible in its base, there is a
lift of any specified contracting homotopy. The step-one factorization of f : X → Y glues
disks filling all such spheres in X, producing a new space E f . Step two of Quillen’s small
object argument repeats this process, gluing disks to spheres in E f to produce a new space
ER f . The map η⃗R includes E f into ER f as a component of the defining pushout. The map
Rη⃗ agrees with this inclusion on the subspace X but then maps each disk attached to some
sphere in X to the corresponding disk attached to the image of this sphere in E f .

12.5. Garner’s small object argument

At this point, an alternate “algebraic” small object argument, due to Garner [Gar07,
Gar09], diverges from Quillen’s construction. Recognizing that the algebras for the step-
one right factor are precisely the fibrations, Garner’s small object argument forms the free
monad on the pointed endofunctor R by means of the construction described in 12.4.8.
Because R is an endofunctor ofK2 that preserves codomains, its unit map (12.4.3) defines
a functorial factorization. Similarly, each stage of the free monad construction defines a
functorial factorization. Hence the free monad F is also the right factor in a functorial
factorization, whose left factor, defined by the unit map, we will call C.

The claim is that (C, F) is a functorial factorization for the weak factorization system
generated by J—but this appears a bit mad: the functor F and hence also C was con-
structed through a lot of quotienting, which makes it seem unlikely that the arrows C f
are trivial cofibrations. But this is actually true and for completely general reasons: the
pointed endofunctor C turns out to be a comonad. In particular, C f is a C-coalgebra and
C-coalgebras lift against F-algebras (fibrations) by Lemma 12.4.7.

Before we explain why this works, let us state the theorem.

Theorem 12.5.1 (Garner’s small object argument). IfK permits the small object argu-
ment then for any small set (or even small category) of arrows J , there exists a functorial
factorization (an algebraic weak factorization system) (C,F) generated by K whose un-
derlying weak factorization system is (l(Jl),Jl).

Ignore the parentheticals for now; we will return to them shortly. Here, “permits the
small object argument” means that either

(*) for each k ∈ K there is some regular cardinal κk so that K(k,−) preserves κk-
filtered colimits

(†) for each k ∈ K there is some regular cardinal κk so thatK(k,−) sends κk-filtered
unions ofM-subobjects to κk-filtered unions of sets, whereM is the right class
of some proper, well-copowered orthogonal factorization system (E,M) on K

Proper means that maps in the left class are epimorphisms and maps in the right class
are monomorphisms, though the converses need not apply. As a consequence, both the
factorizations and liftings for the weak factorization system (E,M) are unique; hence the
factorization system is orthogonal. Well-copowered means that every object has a mere

3The constructibility of the free monad will be important because it allows us to prove that the free monad
associated to the right factor in a functorial factorization is again the right factor in a functorial factorization.
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set of E-quotients up to isomorphism—this is the case in any category of interest. For
example, surjections and subspace inclusions define an orthogonal factorization system
with these properties on Top [Kel82, §6]. These conditions guarantee that the free monad
construction described in 12.4.8 converges.

Because our original pointed endofunctor preserved codomains, the free monad does
as well, defining a functorial factorization. However, we want more control over the left
factor. To achieve this, Garner lifts the free monad construction to the category of functorial
factorizations on K whose left factor is a comonad. It follows that the free monad so-
produced is the right factor of an algebraic weak factorization system, defined in 12.6.1;
in particular, the left factor is a comonad, and hence by Lemma 12.4.7 maps in its image
will lift against F-algebras and therefore be trivial cofibrations.

For this outline to make sense, the step-one left factor in the Quillen/Garner small ob-
ject argument would have to be a comonad—indeed this is the case! To see this, we return
once more to step zero. Write L0 for the functor that sends the arrow f to the left-hand
side of the square (12.4.1). We associate the generating arrows with their image inK via a
functor J → K2. Our favorite Theorem 1.2.1 allows us to recognize the functor L0 as the
left Kan extension of J → K2 along itself. By an easy formal argument, any endofunc-
tor constructed by forming the left Kan extension of some other functor along itself is a
comonad, called the density comonad [Dub70, §II.1]. The counit for this comonad is the
generic lifting problem displayed in (12.4.1). The step-one left factor L is just the pushout
of L0—or, if you prefer, its reflection via the (pushout square, identity-on-domain compo-
nent) orthogonal factorization system on K2—and hence inherits a comonad structure as
well.

Remark 12.5.2. Note that step zero of Garner’s small object argument, which takes a
left Kan extension of J → K2 along itself, works equally well if J is any small category
of arrows. The remaining steps refer only to the functor L0 so-produced and hence also
make sense when the generators are taken to be a small category of arrows and commuta-
tive squares. See Example 12.5.11 for an illustration.

Remark 12.5.3. Because the right functor is a monad and the left functor is a comonad,
the procedure described in Remark 12.1.2 can be used to obtain a cofibrant replacement
comonad and a fibrant replacement monad for any cofibrantly generated model category
that permits Garner’s small object argument. These functors can be used to construct point-
set level derived monad and comonad resolutions for any Quillen adjunction between two
such model categories (see [BR12]).

The upshot is that Garner’s small object argument presents an alternative to Quillen’s,
producing functorial factorizations appropriate for a cofibrantly generated weak factoriza-
tion system (or model structure) but unlike Quillen’s small object argument, this procedure
converges. As a result, the functorial factorization is “less redundant” and often easier
to explicitly describe. Furthermore, the close relationship between the functorial factor-
ization and the desired lifting properties means that Garner’s small object argument can
be more easily generalized to produce factorizations for non-cofibrantly generated weak
factorization systems.

Further details about this construction can be found in the original [Gar07, Gar09]
or in [Rie11a, Rie13]. Here, we prefer to develop familiarity with these ideas through
examples.

Example 12.5.4. Fix a commutative ring R and write Dn for the unbounded chain com-
plex with the ring R in degrees n and n − 1, with identity differential, and zeros elsewhere.
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The set with the right lifting property with respect to J = {0 → Dn}n∈Z in Ch•(R) is the
set of chain maps whose components are epimorphisms. These are the fibrations in the
Quillen-type model structure on this category described in 11.3.7.

Let us use Garner’s small object argument to factor f : X• → Y•. Observe that the
set of squares from 0 → Dn to f is isomorphic to the underlying set of the R-module Yn.
Hence, the step-one factorization has the form

(12.5.5) 0

��

//

⌜

X•

L f

��

X•

f

��
⊕n,Yn Dn // X• ⊕ (⊕n,Yn Dn)

R f
// Y•

In degree k, the chain complex ⊕n,Yn Dn is isomorphic to the direct sum of the free R-
modules on the underlying sets of Yk and Yk+1; the latter component is in the image of the
differential from degree k + 1.

Because the set of squares from 0 → Dn to the map R f is again isomorphic to the set
Yn, Quillen’s step-two factorization has the form

0

��

//

⌜

X• ⊕ (⊕n,Yn Dn)

LR f

��

X• ⊕ (⊕n,Yn Dn)

R f

��
⊕n,Yn Dn // X• ⊕ (⊕n,Yn Dn) ⊕ (⊕n,Yn Dn)

R2 f
// Y•

By contrast, Garner’s step-two factorization is formed by taking the coequalizer of the two
evident maps

X• ⊕ (⊕n,Yn Dn) // // X• ⊕ (⊕n,Yn Dn) ⊕ (⊕n,Yn Dn) //___ X• ⊕ (⊕n,Yn Dn)

But this factorization is (L,R) again! Hence, Garner’s small object argument converges at
step one. Indeed, observe that the map R f is already a pointwise surjection, and therefore
no further steps are needed to obtain a factorization with the desired lifting properties.

Remark 12.5.6 (simplified version of the algebraic small object argument). In general,
when the left class of the weak factorization system generated by J is contained in the
monomorphisms, Garner’s small object argument admits a particularly simple description,
as was noticed independently in the PhD thesis of Andrei Radulescu-Banu [RB99]; more
details can be found there. In this case, the role of the coequalizers taken at each step after
step one is precisely to avoid attaching redundant cells. Put another way, when the left
class is contained in the monomorphisms, each attaching map from the domain of some
j ∈ J factors (uniquely) through a minimal stage in the small object argument. At each
subsequent stage, the cell that is temporarily re-attached via this attaching map is identified
with the first cell so attached. Hence, the free monad construction is equally described as
follows: At step one, attach a cell for any commutative square from j to f . After this, attach
cells only for those squares that do not factor through a previous stage. In this way, it is
easy to see that Garner’s small object argument is just a “less redundant” form of Quillen’s
small object argument.

Example 12.5.7. Consider J = {∂∆n → ∆n}n≥0 in sSet. In this case, the left class of
the weak factorization system generated by J is the set of monomorphisms. To see this,
note that any monomorphism A → B has a canonical cellular decomposition A = A−1 →

A0 → A1 → A2 → · · · → Aω = B where An contains A and every n-simplex in B. Each
Ak−1 → Ak is a pushout of a coproduct of copies of the generator ∂∆k → ∆k, each attaching
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a k-simplex in B but not in A to its boundary in Ak−1. This shows that monomorphisms are
contained in the left class of the weak factorization system generated by J . The converse,
left to the reader, makes use of Corollary 12.2.4 and the closure properties of the monomor-
phisms in Set that derive from the existence of the (monomorphism, epimorphism) weak
factorization system.

In addition to Remark 12.5.6, a further simplification of the construction of the Garner
small object argument, particular to this example, is possible. This is best explained from
the point of view of one of the generating cofibrations, say ∅ → ∆0. Fix a map X → Y to
be factored. In the first step, lifting problems against ∅ → ∆0 induce us to attach all the
vertices of Y to X. In the second step, we do not reattach these vertices; instead we only
attach new vertices appearing in the codomain. But the codomain is unchanged. So the
generator ∅ → ∆0 makes no contribution after step one.

Now consider ∂∆1 → ∆1. In the first and second steps, it induces us to attaches
edges of Y to vertices appearing in the fiber. But in the third and subsequent steps, there
is nothing new to attach unless new vertices appear in the fiber, but they will not because
only ∅ → ∆0 produces new vertices (the other generators being identities on 0-simplices),
and this generator does not contribute after step one. Indeed, if we waited until step two
to attach any edges, it would suffice to consider lifting problems against ∂∆1 → ∆1 only
once.

Continuing this line of reasoning, it suffices to run Garner’s small object argument in
countably infinitely many steps, the (n + 1)th step attaching n-cells only.

Remark 12.5.8. Note there is still some redundancy in Garner’s small object argu-
ment: it attaches cells to every sphere, even if a “filler” is already present in the domain.
An algebra for the monad produced by this construction precisely exhibits the redundancy
of these attached cells, mapping each attached simplex to some pre-existing filler.

There are interesting weak factorization systems whose left class is not contained
within the monomorphisms.

Example 12.5.9. Consider the (cofibration, trivial fibration) weak factorization system
for the folk model structure on Cat. Its left class consists of functors that are injective
on objects; its right class consists of surjective equivalences of categories. This weak
factorization system is generated by a set of three functors {∅ → 1, 2 → 2,22 → 2}
described in 12.2.1.

By a careful4 argument similar to the one given above, Garner’s small object argument
is equivalent to one which considers only lifting problems against the first generator, then
those against the second, and then finally those against the third. Each process converges
after a single step, which means that each functorial factorization is constructed by a single
pushout of the coproduct over squares of the generator in question.

The functorial factorization produced by the small object argument is equivalent to the
usual mapping cylinder construction:

A
f //

i1
�� ⌜

B

��
A × I // A × I

∐
A B

4Care must be taken because the cofibrations in this case are not monomorphisms. However composites of
pushouts of coproducts of the first two generators are monomorphisms.
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Here I is the “free-standing isomorphism,” the category with two objects “0” and “1” and
a unique isomorphism between them. Concretely, A × I

∐
A B is the unique category with

objects A0
∐

B0 such that the functor ( f , id) to B is fully faithful. This cylinder object
defines a functorial factorization

A
f
−→ B 7→ A

i0
−→ A × I

∐
A

B
( f ,id)
−→ B

of a functor f as a cofibration followed by a trivial fibration.

Exercise 12.5.10. Compute the factorizations produced on Set by Garner’s small ob-
ject argument applied to each of the following single-element sets: {∅ → ∗} and {∗ → ∗⊔∗}.

Example 12.5.11. SupposeK permits the small object argument andJ is some set5 of
arrows so that Garner’s small object argument produces the functorial factorization (L,R).
Now consider the diagram category KD, where D is small, and form a new category of
arrows isomorphic to Dop × J whose objects have the form D(d,−) · j for d ∈ D and
j ∈ J and with morphisms g∗ : D(d′,−) · j → D(d,−) · j for each g : d → d′ in D. The
objects of this category coincide with the set of generating projective cofibrations JD, but
the presence of morphisms will alter the result of the algebraic small object argument.

Let us calculate this functorial factorization. Because morphisms in KD are natural
transformations we will call the map we wish to factor α. Step zero of the small object
argument defines a functor LD0 : (KD)2 → (KD)2 formed by taking the left Kan extension
of the inclusionDop × J → (KD)2 along itself. By Theorem 1.2.1, this yields

LD0 α �
∫ (d, j)∈Dop×J ∐

Sq(D(d,−)· j,α)

D(d,−) · j

�

∫ (d, j)∈Dop×J ∐
Sq( j,αd)

D(d,−) · j

where we have used the adjunction (12.3.1) to rename the indexing set. By Fubini’s theo-
rem and the fact the left adjoints preserve coends, this is

�

∫ d∈Dop

D(d,−) ·

∫ j∈J ∐
Sq( j,αd)

j


�

∫ d∈Dop

D(d,−) · L0αd

where the last isomorphism uses the definition of the step- zero comonad L0 constructed
forJ . When we evaluate this formula for LD0 α at a component c ∈ D, the coYoneda lemma
yields (LD0 α)c = L0αc. In other words, the step zero comonad produced by Dop × J on
KD is just the step zero comonad produced byJ applied pointwise. But all the other steps
in the small object argument are already pointwise colimits. So the upshot is that the small
object argument applied to Dop × J produces the functional factorization on KD defined
by pointwise application of the factorization generated by J .

Remark 12.5.12. Write RD for the monad produced by Example 12.5.11. What does
it mean to be an RD-algebra? As is always the case, an RD-algebra is precisely a map α

5This discussion easily extends to the case where J is itself a small category; cf. [Rie11a, 4.3].
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that has a solution to the generic lifting problem

·

LD0 α

��

// ·

α

��
· //

??�
�

�
�

·

By the universal property of the coend defining LD0 , a solution to this lifting problem exists
if and only if α : F ⇒ G lifts “coherently” against the generators D(d,−) · j. This means
that we must be able to choose solutions to each lifting problem so that the triangles of lifts

(12.5.13)

·

D(d′,−)· j

��

g∗ // ·
D(d,−)· j

��

// F

α

��
·

88ppppppp
g∗
// ·

@@�
�

�
� // G

↭

·

j

��

// ·

αd��

Fg // ·

αd′

��
·

??�
�

�
�

77ooooooo // ·
Gg
// ·

commute for each g : d → d′ inD.
By contrast, an algebra for the monad produced by JD, the underlying set of the

category Dop × J , is just a natural transformation whose components are in Jl; hence
each component lifts against J but these lifts are not necessarily natural. Cf. the proof of
Theorem 12.3.2 and Exercise 12.6.8.

WhenJ is a small category of arrows,Jl should be interpreted to be the class of maps
that lift coherently against J in the sense illustrated by the right-hand side of (12.5.13).
As illustrated by Remark 12.5.12 this class is smaller in general than the class of maps that
lift “incoherently” against the objects of the category J .

12.6. Algebraic weak factorization systems and universal properties

The functorial factorizations produced by Garner’s small object argument are part of
algebraic weak factorization systems. The general philosophy is that in an algebraic weak
factorization system, the functorial factorization is intimately related to the lifting proper-
ties that define the left and right classes.

Definition 12.6.1. An algebraic weak factorization system (C,F) on K consists of
a comonad C = (C, ϵ⃗, δ⃗) and a monad F = (F, η⃗, µ⃗) on K2 such that

• the pointed endofunctors (C, ϵ⃗) and (F, η⃗) form a functorial factorization and
• the canonical map (δ, µ) : CF ⇒ FC is a distributive law.

The original definition is due to Marco Grandis and Walter Tholen under the name
“natural weak factorization system” [GT06]. The second condition was added by Garner
and holds for free in every example we know. The natural transformations δ and µ are the
codomain and domain components, respectively, of δ⃗ and µ⃗. These maps give the arrows
in the image of C and F their free coalgebra and algebra structures:

dom f

C f

��

C2 f // EC f

FC f

��

E f

CF f

��

E f

F f

��
E f

δ f

;;w
w

w
w

w
E f EF f

µ f

;;x
x

x
x

x

F2 f
// cod f

An algebraic weak factorization system should be thought of as extra structure ac-
companying an ordinary weak factorization system, including in particular a well-behaved



12.6. ALGEBRAIC WEAK FACTORIZATION SYSTEMS AND UNIVERSAL PROPERTIES 165

functorial factorization. Note that any functorial factorization (C, F) for which C f lFg for
all maps f and g—as is the case for an algebraic weak factorization system by the existence
of free (co)algebra structures and Lemma 12.4.7—determines an underlying weak factor-
ization system whose left and right classes can be deduced from the retract argument. We
will say more about underlying weak factorization systems momentarily.

Here, the important point is that Garner’s small object argument produces an algebraic
weak factorization system satisfying two universal properties.

Theorem 12.6.2 ([Gar09, 4.4]). If K permits the small object argument, then any
small category of arrows J produces an algebraic weak factorization system (C,F) such
that

• there is a universal functor J → C-coalg over K2

• there is a canonical isomorphism of categories F-alg � Jl over K2

The functor J → C-coalg assigns C-coalgebra structures to the generating cofibra-
tions. Its universal property is instrumental to the work of [Rie11a, Rie13]; we will give
the barest hint of its meaning in 12.8 and its applications in section 12.9. Here we will
focus on the second universal property. As a first step we must define the category Jl.

Definition 12.6.3. If J → K2 is some subcategory of arrows, frequently discrete,
write Jl for the category whose objects are pairs ( f , ϕ f ), where f ∈ K2 and ϕ f is a lifting
function that specifies a solution

·

j

��

a // ·

f

��
·

b
//

ϕ f ( j,a,b)
�

�

??�
�

·

to any lifting problem against some j ∈ J in such a way that the specified lifts commute
with morphisms in J in the sense illustrated by the left-hand diagram of (12.5.13). A
morphism ( f , ϕ f ) → (g, ϕg) is a morphism f ⇒ g in K2 commuting with the chosen lifts
in the sense illustrated by the right-hand diagram of (12.5.13)

We will let context disambiguate between the category and the class of maps Jl,
the latter consisting of the objects in the image of the forgetful functor associated to the
former; this notion most frequently refers to the class of maps. The proof of the second
universal property of Theorem 12.6.2 is via the discussion of “generic lifting problems” in
section 12.4. By constructionJl is isomorphic to the category of algebras for the step-one
right factor. Because F is the free monad on this pointed endofunctor, it follows that Jl is
isomorphic to the category of F-algebras.

We say an algebraic weak factorization system is cofibrantly generated when it is
produced by the unenriched (and later, in Chapter 13, also the enriched) version of Gar-
ner’s small object argument. Our use of this terminology can be thought of as a categorifi-
cation of the previous notion, that adds extra structure (the (co)monad and the category of
(co)algebras) and new examples (such as Example 12.5.11, revisited in Example 12.6.7).
Supporting our expansion of this terminology is the fact that the theorems of Chapter 11
admit the obvious categorifications. For example, we can extend 11.1.6:
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Lemma 12.6.4. Suppose F : M ⇄ N : U is an adjunction, and let J be any small
category of arrows in K . The following diagram of categories is a pullback

(12.6.5) (FJ)l

��

U //
⌟

Jl

��
N2

U
//M2

Example 12.6.6. LetJD = {D(d,−) · j | j ∈ J , d ∈ D} be the set of generators forKD

defined in the proof of 12.3.2, where J is a set of arrows in K . Then by adjunction, the
category Jl

D
is isomorphic to the category of natural transformations whose components

are equipped with lifting functions against J .

Example 12.6.7. Now extend the set JD to the categoryDop ×J defined in Example
12.5.11. The category (Dop×J)l is the category of natural transformations equipped with
natural lifts against J in the sense described there.

Depending onD and J this category might have many forms. For example, consider
the folk model structure on Cat with generating cofibrations I described in Example 12.5.9
and a single generating trivial cofibration J = {∗ → I} as described in Example 11.3.9.
The 2-category CatD of functors, natural transformations, and modifications inherits a
model structure with its fibrations and weak equivalences defined representably [Lac07].
The constituent weak factorization systems in this model structure are proven to be non-
cofibrantly generated in the classical sense, but they are in this new sense. These (algebraic)
weak factorization systems are generated byDop × J andDop × I.

Exercise 12.6.8. LetD be a small category. Find generators for an algebraic weak fac-
torization system on SetD whose right class consists of epimorphisms admitting a section
(in SetD).

For technical set-theoretical reasons, weak factorization systems are more often cofi-
brantly generated than “fibrantly generated.” For this reason, coalgebras for the comonad
of an algebraic weak factorization system tend to be rather more complicated than algebras
for the monad. The simplicity of the following example is not typical.

Example 12.6.9. Let C be the comonad generated by {∂∆n → ∆n}n≥0 on sSet. A map
is a C-coalgebra if and only if it is a monomorphism, in which case it admits a unique
C-coalgebra structure. Write A → E f → B for the factorization of a monomorphism f
described in Example 12.5.7. The C-coalgebra structure is given by a map B → E f with
the following description. This map fixes the simplicial subset A. Each vertex of B not
contained in A is sent to the vertex attached in step one of the small object argument. Each
1-simplex not in A is sent the unique 1-simplex attached in step two to the vertices to which
we have just mapped its boundary. And so on.

Part of the complication arises from a subtlety in the definition of the underlying weak
factorization system of an algebraic weak factorization system. At issue is that in gen-
eral neither the categories of algebras for the monad or coalgebras for the comonad of an
algebraic weak factorization system (C,F) are closed under retracts as is required by the
definition of 11.2.3. This has to do with Lemma 12.4.4 and Lemma 12.4.7: (co)algebra
structures for the pointed endofunctors of a functorial factorization are necessary and suf-
ficient for a map to have the appropriate lifting property.

With this in mind, the left and right classes of the underlying weak factorization
system are defined to be the retract closures of the classes of maps admitting C-coalgebra
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and F-algebra structures. In other words, the left and right classes consist of all maps that
admit (C, ϵ⃗)-coalgebra structures and (F, η⃗)-algebra structures. When (C,F) is cofibrantly
generated, F-alg is closed under retracts since the category Jl is. Thus all maps in the
right class are algebras for the monad. But even in the cofibrantly generated case, it is not
necessarily true that all left maps are comonad coalgebras.

Exercise 12.6.10. Describe the algebras and coalgebras for the algebraic weak fac-
torization systems from Exercise 12.5.10. For the latter example, find another “naturally
occurring” algebraic weak factorization system with the same underlying weak factoriza-
tion system. (Hint: its factorization is in some sense “dual” to the factorization in the first
example.)

We call an element of the left class of the underlying weak factorization system of
an algebraic weak factorization system (C,F) cellular if it admits the structure of a C-
coalgebra. In Example 12.6.9 all left maps are cellular but in general this is not the case.

Example 12.6.11. The map 0 → R generates an algebraic weak factorization system
on ModR whose right class consists of the epimorphisms and whose left class consists
of those injective maps with projective cokernel. By contrast, the cellular maps are the
injective maps with free cokernel. Unlike in Example 12.6.9, coalgebra structures are not
unique.

Example 12.6.12. The name “cellular” was motivated by the algebraic weak factoriza-
tion system (C,F) generated by {S n−1 → Dn}n≥0 on Top. We will prove in Theorem 12.8.4
that the C-coalgebras are the relative cell complexes and coalgebra structures are cellular
decompositions; generic elements in the left class are retracts of relative cell complexes.

It is reasonable to ask why it is worth distinguishing cellular cofibrations from generic
cofibrations. Appealing to authority, we might note that Quillen’s original definition of
a model category differs from the modern notion because it does not require the cofibra-
tions and fibrations to be closed under retracts, presumably with Example 12.6.12 in mind.
Another justification is given by the closure properties expressed by the following lemma,
which categorifies (and extends) Lemma 11.1.4.

Lemma 12.6.13. Let (C,F) be any algebraic weak factorization system. The category
of C-coalgebras contains the isomorphisms in K and is closed under pushouts, colimits
in K2, and (transfinite) vertical composition in the sense that each of these maps inherits
a canonical C-coalgebra structure. Furthermore, the C-coalgebra structures assigned to
pushouts, colimits, and composites are such that the pushout square, colimits cone, and
canonical map from the first arrow in the composable pair to the composite are maps of
C-coalgebras.

Proof. It is easy to see that isomorphisms admit a unique C-coalgebra structure. We
leave it as an exercise to the reader to verify that the pushout (in K) of a C-coalgebra is
again (canonically) a C-coalgebra. Closure under colimits in the arrow category is a con-
sequence of the general categorical theorem that says that the forgetful functor C-coalg→
K2 creates all colimits [ML98, VI.2]. Closure under vertical composition will be dis-
cussed in section 12.7. □

One of these closure properties has obvious applications in model category theory. It
is well known that colimits of cofibrations are not necessarily cofibrations. However if the
(cofibration, trivial fibration) weak factorization system is an algebraic weak factorization
system and if the cofibrations in the diagram admit C-coalgebra structures so that the maps
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in the diagram are maps of C-coalgebras, then the colimit admits a canonical C-coalgebra
structure and is in particular a (cellular) cofibration. Note these remarks hold for all col-
imits in the arrow category, including coequalizers, which seem less likely to preserve
cofibrations.

Example 12.6.14. The cofibrations, displayed vertically, in the pushout diagram

Dn

��

S n−1

��

//oo

⌜⌝

∗

��
S n Dnoo // // S n

in Quillen’s model structure on Top are cellular and both commutative squares, being
pushout squares, are maps of C-coalgebras by Lemma 12.6.13. Hence the pushout is also
a cofibration.

Similarly, the cofibrations in the pushout diagram

Dn ∗

��

//oo

⌜⌝

∗

Dn S n−1oo // ∗

are cellular, but in this case neither square is a map of C-coalgebras. There are multiple
cellular decompositions possible for the middle map; e.g., we might attach a single n-cell
to the point. But neither of the outside vertical maps are obtained by attaching an n-cell;
hence the squares are not maps of coalgebras and indeed the pushout in this case is not a
cofibration.

The final closure property of Lemma 12.6.13 is worthy of closer consideration.

12.7. Composing algebras and coalgebras

The categories C-coalg and F-alg associated to any algebraic weak factorization sys-
tem are in fact double categories; in particular, each is equipped with an associative “ver-
tical” composition law for (co)algebras and (co)algebra maps. Furthermore, and somewhat
unexpectedly, this vertical composition law on either C-coalg or F-alg completely deter-
mines the algebraic weak factorization system, allowing one to recognize examples that
“occur in the wild” by examining the category of algebras or coalgebras only. In particu-
lar, this leads to an alternative form of Garner’s small object argument, which we illustrate
below by means of the relative cell complexes described in Example 12.6.12.

We will not go into detail about how this composition is defined in general (for this see
[Rie11a, §2.5], [Rie13, §5.1]), contenting ourselves instead with an illustrative example.

Example 12.7.1. Suppose (C,F) is generated by a small categoryJ , so that F-alg� Jl
over K2; recall the notation introduced in 12.6.3. The vertical composition of F-algebras
is defined as follows. If ( f , ϕ f ), (g, ϕg) ∈ Jl � F-alg with cod f = dom g, define a lifting
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function ϕg • ϕ f for the composite g f by

(12.7.2) ϕg • ϕ f ( j, a, b) := ϕ f ( j, a, ϕg( j, f a, b))

·

j

��

a // ·

f

��
·

g

��
·

ϕg( j, f a,b)

77ppppppp
b

//

ϕ f ( j,a,ϕg)

@@�
�

�
�

�
�

�
�

·

Observe that this definition is strictly associative.
This vertical composition preserves morphisms of algebras in the following sense. If

(u, v) : f ⇒ f ′ and (v,w) : g ⇒ g′ are algebra maps, then so is (u,w) : g f ⇒ g′ f ′ when
these composites are assigned the algebra structures just defined. This is what it means for
Jl to be a double category. Indeed, (12.6.5), already a categorification of 11.1.6, can be
“doubly categorified”: it is a pullback of double categories.

The following theorem describes a composition criterion due to Garner that allows
one to recognize algebraic weak factorization systems “in the wild.”

Theorem 12.7.3 ([Rie11a, 2.24]). Let F be a monad onK2 that preserves codomains.
If the category F-alg admits a vertical composition law that gives this category the structure
of a double category, then this structure defines an algebraic weak factorization system
with monad F. Conversely, the category of algebras for the monad of an algebraic weak
factorization system always has this structure.

Example 12.7.4. The Moore paths functorial factorization of [Mal73, May75] is an
algebraic weak factorization system occurring “in the wild.” The maps admitting algebra
structures for the pointed endofunctor underlying its right factor are precisely the Hurewicz
fibrations. The category of algebras for the monad admits a vertical composition law, which
composes transitive path lifting functions; see [BR13, §3].

Remark 12.7.5. As suggested by this example, the composition criterion presented
by Theorem 12.7.3 is particularly useful in the non-cofibrantly generated case. The cate-
gory of algebras for an algebraic weak factorization system may be pulled back along the
right adjoint of an adjunction, generalizing Lemma 12.6.4; the pullback inherits a vertical
composition law. This putative category of algebras is monadic if and only if its forget-
ful functor admits a left adjoint, in which case this category specifies an algebraic weak
factorization system.

Example 12.7.6. The Hurewicz fibrations, the fibrations for the Strøm model struc-
ture on Top (see Example 11.3.6), are defined by a right lifting property against a proper
class of maps (see Example 11.1.3). Indeed this model structure is not cofibrantly gener-
ated [Rap10]. Nevertheless, the algebraic perspective can be used to construct appropriate
functorial factorizations. The interest in this construction is not for the Strøm model struc-
ture, for which other factorizations (such as the one described in Example 12.7.4) exist, but
for generalized Hurewicz-type model structures on topologically bicomplete categories.

The key insight is that there is a generic lifting problem characterizing the Hurewicz
fibrations. Using exponential notation for the cotensor, we can define the mapping path
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space associated to f : X → Y to be the pullback

N f

ϕ f

��

χ f //
⌟

Y I

p0

��
X

f
// Y

Note that this homotopy limit, constructed in Example 6.5.2, makes sense in any topologi-
cally bicomplete category. It turns out that the map f is a Hurewicz fibration if and only if
there exists a solution to the equivalent generic lifting problems

N f
ϕ f //

i0
��

X

f

��
↭

N f
ϕ f //

i0
�� ⌜

X

L f

��

X

f

��
N f × I

<<y
y

y
y

y

χ f

// Y N f × I

χ f

77// E f
R f //

??~
~

~
~

Y

The proof of this claim stems from the observation that N f represents the functor Topop →

Set that sends a space A to the set of lifting problems between i0 : A→ A × I and f .
By this observation and the Yoneda lemma, it follows that the category of algebras

for the pointed endofunctor R is isomorphic to the category Jl, where J is the category
whose objects are arrows i0 : A → A × I and whose morphisms are defined so that the
domain-projection functor J → Top is an equivalence. Because Top satisfies a particular
set theoretical hypothesis, we can form the free monad F on R as described in 12.4.8. On
account of the isomorphism F-alg� Jl and Example 12.7.1, the category of F-algebras
admits a vertical composition law. Hence, Theorem 12.7.3 implies that this monad is the
right factor of an algebraic weak factorization system. By construction, the algebras for
the monad are the Hurewicz fibrations; hence, the coalgebras for the comonad are trivial
cofibrations in the model structure. See [BR13] for a complete discussion.

12.8. Algebraic cell complexes

Let (L,R) be any functorial factorization on K . As mentioned in Remark 12.7.5,
by Jon Beck’s monadicity theorem, the forgetful functor from the category of algebras
for the pointed endofunctor R to K2 is monadic if and only if it admits a left adjoint,
in which case the monad of this adjunction is the free monad on R. In this way, we can
think of the algebraic small object argument as a construction of an adjoint for the forgetful
functor associated to the right factor in the step-one factorization. More generally, Theorem
12.7.3 allows us to recognize when a monadic or comonadic category over K2 encodes
an algebraic weak factorization system. Depending on how the category of algebras or
coalgebras is presented, the most intricate stage in the proof is likely the construction of
the appropriate adjoint. In this section, we will explore these ideas in an important special
case.

Consider the set {S n−1 → Dn}n≥0 of generating cofibrations for Quillen’s model struc-
ture on topological spaces. By the first universal property of Theorem 12.6.2, these maps
are canonically coalgebras for the comonad C of the algebraic weak factorization system
generated by this set. It follows from Lemma 12.6.13 that all relative cell complexes are
cellular cofibrations: a relative cell complex structure factors a given map as a sequential
composite of pushouts of coproducts of these canonical C-coalgebras and each of these
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pieces inherits a canonical C-coalgebra structure.6 What is less obvious is that all cellular
cofibrations are relative cell complexes. This is what we will show via a clever encoding
of the algebraic small object argument following work of Thomas Athorne [Ath12].

A stratum is a space X together with a set S of cells en, which are understood to come
with specified attaching maps S n−1 → X of appropriate dimension. The space X is also
referred to as the boundary of the stratum. Its associated body is the space formed by the
pushout ∐

en∈S
S n−1 //

⌜��

X

��∐
en∈S

Dn // X

Speaking colloquially, we may refer to the map X → X as the stratum, but the cells and
attaching maps should also be specified. We might think of X → X as an element of Top2

and the stratum structure an an extra bit of coalgebraic data; indeed, we will shortly make
use of the forgetful functor Strata→ Top2.

A morphism of strata (X, S )→ (X′, S ′) is a continuous map f : X → X′ together with
a set function g : S → S ′ such that the attaching map for g(en) is the composite of f and
the attaching map for en.

Example 12.8.1. Each S n−1 → Dn is canonically a stratum with a single cell and the
identity attaching map.

Note that the category of strata is closed under pushouts and colimits in Top2 [Ath12,
3.3-4], the same closure properties of Lemma 12.6.13 bar one. This leads us to define an
algebraic cell complex.

Definition 12.8.2. An algebraic cell complex (Xk, S k) is a countable sequence of
strata that is connected (the body of each stratum of the sequence is the boundary of the
next) and proper (no attaching map factors through a previous boundary).

In other words, an algebraic cell complex is a relative cell complex with a specified
cellular decomposition. Morphisms of algebraic cell complexes must preserve these de-
compositions. More precisely, a morphism of algebraic cell complexes ( fk, gk) : (Xk, S k)→
(X′k, S

′
k) is a collection of morphisms of strata that is compatible in the sense that the map

fk+1 : Xk+1 → X′k+1 is the pushout of fk : Xk → X′k and the morphisms induced by the map

6The sequential composite does so because it can be expressed as a colimit of a diagram of C-coalgebras

·

f1

��

·

f2 f1

��

·

f3 f2 f1

��

·

f4 f3 f2 f1

��

··· ·

colim=··· f4 f3 f2 f1

��
·

f2
// ·

f3
// ·

f4
// · ··· ·
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of cells gk : S k → S ′k as displayed below.∐
S k

S n−1

⌜gk

��

||zzz
zz

// Xk

}}zz
zz
zz

fk

��

∐
S k

Dn //

gk

��

Xk = Xk+1

fk+1

���
�
�
�
�
�

∐
S ′k

S n−1

}}{{{
{{

//

⌜

X′k

}}||
||
||

∐
S ′k

Dn // X′k = X′k+1

With these definitions, one can check that the category of algebraic cell complexes is
closed under pushouts, colimits in Top2, and vertical composition [Ath12, 4.5-8]. This last
proof requires a bit of point-set topology, as becomes apparent when we try to compose a
stratum (Y,T ) onto an algebraic cell complex (Xk, S k) whose body colimk Xk is Y . Because
the maps Xk → Xk+1 are closed T1-inclusions and the boundaries of cells are compact,
each attaching map S n−1 → Y factors uniquely through some Xk where k is minimal. This
partitions the set T of cells for Y into sets T = T0 ⊔ T1 ⊔ T2 ⊔ · · · of cells which could be
attached to X0, X1, X2, . . . The vertical composite of the algebraic cell complex (Xk, S k) with
(Y,T ) is the algebraic cell complex (Zk, S k ⊔ Tk) where Z0 = X0 and the subsequent Zk are
defined to be the obvious pushouts. The vertical composite of two algebraic cell complexes
is formed by iterating this procedure for each stratum in the second cell complex.

Each algebraic cell complex is a relative cell complex in and furthermore any relative
cell complex underlies an algebraic cell complex. The algebraic small object argument
reappears in the proof of the following theorem.

Theorem 12.8.3 (Athorne). The forgetful functor U : AlgCellCx → Top2 from alge-
braic cell complexes to the arrow category for spaces has a right adjoint C.

Proof. The first step is to note that the forgetful functor U : Strata→ Top2 has a right
adjoint L. It sends a map f : X → Y to the stratum whose boundary is the space X and

whose set of cells is isomorphic to the union over {S n−1 jn
−→ Dn}n≥0 of the sets Sq( jn, f ).

The body of L f is obtained via the left-hand pushout∐
n,Sq( jn, f )

S n−1

∐
n,Sq( jn , f )

��

//

⌜

X

L f

��

X

f

��∐
n,Sq( jn, f )

Dn // X
R f
// Y

The right-hand square displays the counit of the adjunction.
To define the right adjoint to U : AlgCellCx → Top2, one might try to iterate this

procedure, forming an algebraic cell complex whose first stratum is L f , whose second is L
applied to the map R f : X → Y , and so on. However, this sequence of strata is not proper
unless we explicitly exclude from each step any cells whose attaching map factors through
some previous boundary. This modification precisely distinguishes Garner’s small object
argument from Quillen’s (see Remark 12.5.6) and also produces the desired result here. In
summary, C takes f to the algebraic cell complex (Xk, S k) with X0 = X; S 0 = ⊔nSq( jn, f );
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X1 equal to the body of L f ; S 1 equal to the subset of
∐

n Sq( jn,R f ) of squares whose
attaching maps do not factor through X0; and so on. □

In other words, the algebraic small object argument reflects an arrow f into the cat-
egory of relative cell complexes formed from the maps S n−1 → Dn, at least when we
remember the coalgebraic data determining each cellular decomposition. Considered care-
fully, this argument essentially establishes the first universal property of Theorem 12.6.2.

Theorem 12.8.4 (Athorne). The adjunction U : AlgCellCx⇄ Top2 : C is comonadic.
Hence, AlgCellCx is the category of coalgebras for the comonad of the algebraic weak
factorization system generated by {S n−1 → Dn}n≥0.

Proof. Comonadicity follows from one of Beck’s theorems; see [Ath12, §6]. As is
evident from the proof of Theorem 12.8.3, the comonad is the one arising from the small
object argument applied to the set {S n−1 → Dn}n≥0; hence, the category of algebraic cell
complexes is equivalent to the category of coalgebras for the comonad of the algebraic
weak factorization system generated by this set. Alternatively, this last fact could be de-
duced from the dual of Theorem 12.7.3. Clearly, the comonad on Top2 induced by the
adjunction preserves domains. We have seen that its category of coalgebras, here the cat-
egory of algebraic cell complexes, admits a vertical composition law. Hence, the cate-
gory of algebraic cell complexes encodes the data of an algebraic weak factorization sys-
tem. Furthermore, AlgCellCx is universal among categories of coalgebras for an algebraic
weak factorization system admitting a map from {S n−1 → Dn}n≥0 over Top2 [Ath12, 8.4].
Hence, Theorem 12.6.2 implies that this category encodes the algebraic weak factorization
system generated by this set. □

The following rephrasing of Theorem 12.8.4 justifies our use of “cellular” for the
arrows in the left class of an algebraic weak factorization system admitting a coalgebra
structure for the comonad.

Corollary 12.8.5. The cellular cofibrations for the algebraic weak factorization sys-
tem generated by {S n−1 → Dn}n≥0 on Top are precisely the relative cell complexes.

12.9. Epilogue on algebraic model categories

It is clear that in any cofibrantly generated model category that permits the small object
argument, the constituent weak factorization systems can be upgraded to algebraic weak
factorization systems which might be denoted by (Ct,F) and (C,Ft). But we have not
really explored the role that algebraic weak factorization systems play in model categories.
This is a rather long story [Rie11a, Rie13]; here we content ourselves with just a brief
taste. A main theme is that, as a consequence of a generalized version of the first universal
property in Theorem 12.6.2, a number of complicated algebraic structures are determined
by a simple “cellularity condition” having to do with the generating (trivial) cofibrations.
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Here is a very simple example of this principle. If the generating trivial cofibrations
are cellular cofibrations,7 then there exists a canonical natural transformation

dom
}}

∼

Ct

}}{{
{{
{{
{ !!

C

!!C
CC

CC
CC

·
ξ //

F !! !!C
CC

CC
CC

C ·

∼
Ft}}}}{{

{{
{{
{{

cod

which defines a natural solution to the lifting problem between the trivial cofibration and
the trivial fibration obtained by applying the two functorial factorizations to a given map.
This natural transformation does much more: Firstly it specifies a natural solution to any
lifting problem between an (algebraic) trivial cofibration and an (algebraic) trivial fibration.
It also determines functors Ct-coalg→ C-coalg and Ft-alg→ F-alg that map the categories
of algebraic trivial (co)fibrations into the categories of algebraic (co)fibrations. We call a
model category equipped with algebraic weak factorization systems (Ct,F) and (C,Ft) and
a map of this form an algebraic model category.

Writing Q for the cofibrant replacement monad derived from C and R for the fibrant
replacement monad derived from F, there is a canonical lifting problem

QX
��

∼

��

// QRX

∼

����
RQX //

χX

;;w
w

w
w

RX

comparing the two fibrant-cofibrant replacements of an object X. In an ordinary model
category, the lifting properties imply that there exists a comparison arrow from RQX to
QRX. In an algebraic model category, there are canonical lifts that assemble into a natural
transformation χ : RQ ⇒ QR. This turns out to be a distributive law of the monad R over
the comonadQ, which implies that R lifts to a monad on the categoryQ-coalg of algebraic
cofibrant objects, Q lifts to a monad on the category R-alg of algebraic fibrant objects,
and the algebras for the former and coalgebras for the latter coincide, defining a category
of algebraic fibrant-cofibrant objects [Rie11a, 3.5].

7The generating trivial cofibrations can always be replaced by other generators for an algebraic weak fac-
torization system with the same underlying weak factorization system so that this is the case [Rie11a, 3.8].



CHAPTER 13

Enriched factorizations and enriched lifting properties

Often the context in which one runs the small object argument is an enriched category.
These enrichments need not necessarily be topological in flavor—for instance Ch•(R) is
enriched over ModR, provided the ring R is commutative—though we shall see below that
the case of a simplicial model category is particularly well-behaved. As defined above,
Quillen’s and Garner’s small object arguments fail to produce enriched functors, but only
because the initial step, which forms the coproduct of generating arrows indexed over the
sets of commutative squares from each generator to the map to be factored, is not enriched,
as illustrated by Example 3.7.17.

In this chapter, we prove that a modified version of either Garner’s or Quillen’s con-
struction does produce an enriched functorial factorization. We call this the enriched small
object argument. By design, the right factor produced by the enriched small object argu-
ment is a member of the right class of the original cofibrantly generated weak factorization
system. If a certain condition is satisfied, then the left factor is a member of the left class.
In this case, the unenriched factorizations of the cofibrantly generated weak factorization
system can be replaced by enriched factorizations whenever it is convenient.

Perhaps more interesting is the case when the condition needed to guarantee compat-
ibility of the left factor produced by the enriched small object argument fails. When this
happens, the class of maps satisfying an enriched lifting property against the generating
arrows J is strictly smaller than the class satisfying usual unenriched lifting property. In
this context, the enriched Quillen small object argument is badly behaved—the maps in the
image of the left factor need not lift against the maps in the image of the right factor—but
the enriched Garner small object argument can be integrated with enriched lifting proper-
ties to produce enriched weak factorization systems.

The enriched weak factorization system (l(Jl),Jl) differs from the usual cofibrantly
generated weak factorization system (l(Jl),Jl). In general, the enriched version will
have a larger left class and a smaller right one. As the reader might now expect, the
enriched notions of lifting are similarly well-behaved with respect to adjunctions and so
on; we present enriched analogs of a number of the results from Chapters 11 and 12. In
summary, we claim that the new enriched theory, while less familiar, is fundamentally no
more mysterious than the classical one.

The theory of enriched weak factorization systems developed here is the key to a
comparison between the two classical model structures on the category of unbounded chain
complexes of modules over a commutative ring described in Example 11.3.7. Interestingly,
one of these is not cofibrantly generated in the unenriched sense but becomes so in the
enriched sense. We preview the comparison here and refer the reader to [BMR13] for the
full story.
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13.1. Enriched arrow categories

It has been a while since we have required a serious consideration of enrichment, so we
take a moment to recall a few preliminaries. Let V be a complete and cocomplete closed
symmetric monoidal category with monoidal unit ∗. Let K be a complete and cocomplete
category. When K is a V-category, so is its arrow category K2. As per usual, we write
K(x, y) to denote the hom-object in V of morphisms from x to y in K . The hom-object

between j0
j
→ j1 and f0

f
→ f1 in K2 is defined by the following pullback inV:

(13.1.1) Sq( j, f ) //

��

⌟
K( j0, f0)

f∗
��

K( j1, f1)
j∗
// K( j0, f1)

When K is tensored and cotensored overV, the category K2 is also, with the tensors and
cotensors defined pointwise (see Remark 3.8.2). These facts generalize to the categoryKD

of diagrams of any shape; in the general case, the hom-objects in KD are defined using an
end (7.3.2) inV.

Recall from Definition 3.4.5 that a morphism from x to y in the underlying category of
theV-categoryK is an arrow f : ∗ → K(x, y) inV. WhenK is tensored, this corresponds,
by adjunction, to an arrow f : x � ∗ ⊗ x→ y in K . Because there is no ambiguity, we give
these maps the same name.

Remark 13.1.2. Elements in the underlying set of the hom-object (13.1.1) are maps
∗ → Sq( j, f ) inV, which correspond precisely, by the defining universal property and the
Yoneda lemma, to commutative squares in K from j to f . That is to say

Sq( j, f ) = V(∗,Sq( j, f )).

More precisely, assuming K is tensored, the map (u, v) : ∗ → Sq( j, f ) in V classifies a
commutative square (u, v) : j ⇒ f in K in the sense that the commutative square factors,
as displayed below, as the composite of the component of the counit of the adjunction
− ⊗ j : V2 ⇄ K2 : Sq( j,−) at f and the map defined by tensoring ∗ → Sq( j, f ) with j.

j0

j

��

u

))// Sq( j, f ) ⊗ j0

Sq( j, f )⊗ j

��

// f0

f

��
j1

v

55// Sq( j, f ) ⊗ j1 // f1

Henceforth, for convenience, we will suppose that K is complete and cocomplete,
tensored, cotensored, and enriched. Recall from Theorem 7.5.3 that it follows that ordinary
(co)limits inK become conical (co)limits, that is, satisfy an enriched universal property. In
particular, for any small category D, the colimit and limit functors areV-functors KD →
K . By Corollary 7.6.4, any K satisfying these hypotheses admits all V-weighted limits
and colimits, constructed out of conical (co)limits and (co)tensors. This is precisely what
it means to say that K is V-bicomplete. We leave it to the reader to formulate the more
precise statements of the results that follow required for contexts in which certain weighted
limits or weighted colimits might not exist.
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13.2. Enriched functorial factorizations

To simplify the statement of our main result, we sweep set-theoretic considerations
under the rug and allow the meaning of “permits the small object argument” to vary as
appropriate for the version of the small object argument we wish to run. The precise
hypotheses are unchanged from Theorems 12.2.2 and 12.5.1.

The following folklore result is due in various forms to many people. See in particular
[Hir03, 4.3.8], [RSS01, 6.3], and [Shu09, 24.2]. The proof for the algebraic small argu-
ment extends to the case where the generators are taken to be a small category of arrows.

Theorem 13.2.1 (enriched small object argument). LetK be aV-bicomplete category
permitting the small object argument and letJ be any small set of arrows. If for all f ∈ K2

(⋆) the map Sq( j, f ) ⊗ j is in l(Jl) whenever j ∈ J

then there exist V-enriched functorial factorizations for the weak factorization system
(l(Jl),Jl), constructed by the enriched version of either Quillen’s or Garner’s small
object argument.

Proof. The construction of each factorization is analogous. For ease of exposition,
we call elements of the left class “trivial cofibrations” and elements of the right class “fi-
brations.”

Write L0 : K2
→ K

2 for the V-enriched pointwise left Kan extension of J → K2

along itself defined by
L0 f =

∐
j∈J

Sq( j, f ) ⊗ j.

Write (L,R) for the step-one factorization constructed by factoring the canonical square
L0 f ⇒ f , whose components are adjunct to the identity map on Sq( j, f ), through the
indicated pushout:

(13.2.2) ·

L0 f

��

//

⌜

·

L f

��

·

f

��
· // ·

R f
//

??�
�

�
�

·

Because L f and R f are formed from tensors and conical colimits in K , this construction
definesV-functors L,R : K2 ⇒ K2.

We claim that if the dashed lift in (13.2.2) exists, then f is a fibration. A lift in a square
(u, v) : j ⇒ f is obtained by precomposing (13.2.2) with the map induced, as described in
Remark 13.1.2, by (u, v) : ∗ → Sq( j, f ) followed by the inclusion into the appropriate
component of the coproduct. Conversely, (⋆) implies that L0 f is a trivial cofibration, and
hence by Lemma 11.1.4 the same is true of L f . It follows that f is an algebra for the
pointed endofunctor R if and only if f is a fibration.

By easy abstract nonsense involving the universal property of enriched left Kan exten-
sion, theV-functor L0 is a comonad; indeed it is the enriched density comonad associated
to the functor J → K2 [Dub70, §II.1]. It follows that L is also a comonad, by direct
argument or by abstract nonsense involving the (pushout square, identity-on-domain) or-
thogonal factorization system on K2. Because K permits the small object argument, the
argument of [Gar09, 4.22] allows us to apply [Gar09, 4.21] to conclude that the algebraic
small object argument converges, producing an algebraic weak factorization system (C,F)
such that the category of F-algebras is isomorphic, over K2, to the category of R-algebras.
The arrow C f is a C-coalgebra and consequently against any fibration; hence C f is a trivial
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cofibration. Furthermore, the free monad on a pointed endofunctor construction, employ-
ing theV-functors L and R and various conical colimits in K , producesV-functors C and
F, as claimed.

Similarly, the functors in the functorial factorization produced by Quillen’s small ob-
ject argument, but with L0 in place of the usual coproduct over squares at each step, are
V-functors. Write (Lω,Rω) for this factorization. Because each map in the image of L is
a trivial cofibration, it follows that Lω f , defined to be a countable composite of such, is a
trivial cofibration. It remains only to show that Rω f is a fibration. Given any lifting prob-
lem (a, b) : j ⇒ Rω f , the map a factors through some Rn f by the compactness hypothesis
of Theorem 12.2.2. Hence, the lifting problem (a, b) : j⇒ Rω f factors as:

j0

j

��

// ∐
j∈J

Sq( j,Rn f ) ⊗ j0

∐
j∈J

Sq( j,Rn f )⊗ j

��

// xn

Rn f

��

LRn f // xn+1 //

Rn+1 f

��

xω

Rω f

��
j1 // ∐

j∈J
Sq( j,Rn f ) ⊗ j1 //

66llllllllll
f1 f1 f1

The map LRn f is the pushout of the second vertical map along the second top horizontal
map inside the second square from the left. The other leg of this pushout cone is the dotted
diagonal arrow. This pushout gives rise to a solution to the lifting problem (a, b) in the
usual manner. □

Remark 13.2.3. Without the hypothesis (⋆), the argument in the proof of Theorem
13.2.1 still implies that F f and Rω f are fibrations. However, C f and Lω f might not be
trivial cofibrations. We will see in Proposition 13.4.2 that regardless of whether or not (⋆)
holds, the maps in the images of C and F lift against each other. However, this might not
be true of the maps in the image of Lω and Rω for the reasons explained in Remark 13.4.4.

We anticipate that most applications of Theorem 13.2.1 will be in the context of a
model structure. For the reader’s convenience, we state an immediate corollary in that
language. The main point is that the condition (⋆) holds if tensoring with any object ofV
preserves cofibrations and trivial cofibrations. This is the case, in particular, if the tensor-
cotensor-hom is a Quillen two-variable adjunction (or even if the correct two-thirds of this
SM7 axiom hold), as is necessarily true for instance if K is aV-model category, and if all
objects ofV are cofibrant.

Corollary 13.2.4. Suppose K is a V-bicomplete category and a cofibrantly gener-
ated model category for which v ⊗ − is a left Quillen functor for each v ∈ V. Then if K
permits the small object argument, there existV-enriched functorial factorizations for the
model structure. In particular, if K permits Garner’s small object argument, then it has a
V-enriched cofibrant replacement comonad and fibrant replacement monad.

An example will illustrate how the factorizations produced by the enriched small ob-
ject argument differ from their unenriched analogs.

Example 13.2.5. Let R be a commutative ring and consider the category Ch•(R) and
the generators J = {0 → Dn}n∈Z of Example 12.5.4. The category Ch•(R) admits many
enrichments. Here we will consider its enrichment over ModR. The set of chain maps
between two fixed chain complexes has an R-module structure with addition and scalar
multiplication defined as in the codomain. This enriched category has tensors and coten-
sors, obtained by applying the functors M⊗R− and ModR(M,−) associated to an R-module
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M objectwise. One way to prove all these facts simultaneously is to appeal to Theorem
3.7.11: Ch•(R) is a closed monoidal category and there is a strong monoidal adjunction
ModR ⇄ Ch•(R) whose left adjoint embeds an R-module as a chain complex concentrated
in degree zero and whose right adjoint takes 0-cycles.

An easy calculation shows that the R-module of commutative squares from 0 → Dn

to X• → Y• is Yn; its underlying set is then the underlying set of this R-module, as noted
in Example 12.5.4. The modification performed by the enriched small object argument
replaces the direct sum over the underlying set of Yn in (12.5.5) with a tensor with the
R-module Yn. Write Dn

Yn
for the chain complex Yn ⊗ Dn. It has the R-module Yn in degrees

n and n − 1, with identity differential, and zeros elsewhere. For the reasons explained in
Example 12.5.4, the enriched algebraic small object argument converges at step one to
produce the functorial factorization

(13.2.6) X• // X• ⊕ (⊕nDn
Yn

) // Y•

Unlike the rather unwieldy functorial factorization produced by Quillen’s small object
argument in this case, this factorization is quite familiar: it is the mapping path space
factorization described for this model structure in [MP12, 18.3.7].

Note however that the condition (⋆) is not satisfied by non-projective R-modules. In-
deed, when Y is not degreewise projective, the first map in the factorization (13.2.6) is not
a trivial cofibration (quasi-isomorphism and pointwise injection with projective cokernel)
in the Quillen-type model structure. Instead (13.2.6) factors any map X• → Y• as a trivial
cofibration followed by a fibration for the Hurewicz-type model structure on Ch•(R). We
will expand upon this point when we return to this example in 13.4.5, where we prove that
while J generates the weak factorization system for Quillen-type fibrations in the usual
sense, it also generates the weak factorization system for Hurewicz-type fibrations in the
ModR-enriched sense.

To make sense of the just-mentioned notion of an enriched weak factorization system,
we must first introduce enriched lifting properties.

13.3. Enriched lifting properties

The algebraic small object argument allows us to expand the notion of cofibrantly gen-
erated (algebraic) weak factorization system to allow the generators to be a small category,
rather than simply a set, of arrows. These morphisms can be used to impose coherence
conditions on the right class of maps so-classified, as illustrated in 12.5.12 and 12.6.8.

We now argue that the notion of “cofibrantly generated” might also be productively
expanded to allow the lifting properties of 11.2.6 to be interpreted in an enriched sense. A
primary example is the weak factorization system in Ch•(R) just mentioned, whose right
class is the class of Hurewicz fibrations. This weak factorization system is not cofibrantly
generated in the classical sense, at least for the ring Z [CH02, 5.12]; Hurewicz fibrations
cannot be characterized by a right lifting property against a set of arrows. However, they are
precisely the class of maps satisfying a ModR-enriched lifting property against a particular
set of maps, indeed the same generating set of Example 13.2.5.

To understand what this means, it is productive to think algebraically. To say a set of
arrows J generates a weak factorization system (L,R) is to say that a map f : X → Y is
in the right class R if and only if certain additional structure exists, namely, solutions to
any lifting problem between J and f . For example, in the category of spaces, if we take
J = {∅ → ∗}, then this data takes the form of a specified fiber point above each y ∈ Y .
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By contrast, we say that f satisfies the enriched lifting property against J when this
lifting data can be enriched, i.e., described by appropriate morphisms in the base category
V. Here, f satisfies the Top-enriched lifting property against ∅ → ∗ just when it admits
a continuous section. As before, to say that a set J generates a weak factorization system
(L,R) in the enriched sense means that f ∈ R if and only if it satisfies the enriched lifting
property against J .

We now give the formal definition.

Definition 13.3.1. Let j : j0 → j1 and f : f0 → f1 be arrows in a V-category K . We
say that j and f satisfy theV-enriched lifting property and write jl f to mean that there
is a section to the canonical map

(13.3.2) K( j1, f0)

%%KK
KKK

KKK
KK

f∗

##

j∗

&&
Sq( j, f )

��

//
⌟

hh

?
D

H
KN

K( j0, f0)

f∗
��

K( j1, f1)
j∗
// K( j0, f1)

or equivalently in the case where K is tensored, by Exercise 11.1.9, that there exists a
solution to the generic lifting problem

(13.3.3) Sq( j, f ) ⊗ j0 //

Sq( j, f )⊗ j

��

f0

f

��
Sq( j, f ) ⊗ j1 //

::u
u

u
u

u
u

f1

For any set of arrowsJ , we writeJl for the (unenriched) category of arrows equipped
with a lifting function in the sense of (13.3.2) or (13.3.3). As the context dictates, we also
allowJl to denote the objects in the image of the forgetful functorJl → K2, i.e., for the
class of morphisms admitting the enriched right lifting property against each j ∈ J .

Applying the underlying set functor, we see that any f ∈ Jl is also in Jl; put
more categorically, the forgetful functor Jl → K2 factors through the forgetful func-
tor Jl → K2. However, a map satisfying the ordinary right lifting property against J
need not satisfy the enriched right lifting property. The underlying Set-based version of
(13.3.2) asserts that any lifting problem between j and f has a solution. The topological
version, say, asserts that there is a continuous function, the dotted arrow in (13.3.2) above,
specifying solutions to lifting problems.

Example 13.3.4. Let R be a commutative ring. The right class of the weak factoriza-
tion system on ModR satisfying the right lifting property against 0 → R consists of the
epimorphisms. The right class satisfying the ModR-enriched lifting property consists of
those epimorphisms admitting a section that is a map of R-modules. This claim follows
from the fact that 0 and R represent the terminal and identity ModR-functors, respectively.
Given an R-module homomorphism f : M → R, the R-module of commutative squares
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from 0→ R to f is just N. Hence, in this case, the diagram (13.3.3) reduces to

0

��

// M

f
��

N

>>~
~

~
~

N

which says exactly that f admits a section in ModR.

Exercise 13.3.5. Show thatV-adjunctions respect enriched lifting properties. That is,
suppose the adjunction F ⊣ U of 12.6.4 isV-enriched and show that (FJ)l is the pullback
of Jl along U.

Definition 13.3.1 can be used to explain the condition (⋆) appearing in the statement
of the enriched small object argument: under this hypothesis, the enriched lifting property
and the unenriched lifting property define the same class of maps.

Lemma 13.3.6. Let (L,R) be a weak factorization system in a tensoredV-categoryK .
If

(⋆) for each v ∈ V, the functor v ⊗ − preserves the left class
then every map which has the right lifting property with respect to L also has the V-
enriched right lifting property with respect to L, i.e., Ll = Ll. In particular, LlR.

Proof. The hypothesis implies that any f ∈ Ll lifts against the left-hand arrow of
(13.3.3) for any j ∈ L. □

Example 13.3.7. Consider J = {∅ → ∆0} in the category of simplicial sets. By the
Yoneda lemma, maps in Jl are surjective on 0-simplices. By the simplicially enriched
Yoneda lemma, maps in Jl are split epimorphisms. Note that the weakly saturated class
generated by ∅ → ∆0 is not closed under tensors, so Lemma 13.3.6 does not apply.

By contrast, the weakly saturated closure of I = {∂∆n → ∆n}n≥0 is closed under
tensors, so Lemma 13.3.6 implies that Il = Il. The definition (13.3.2) gives the following
characterization of the trivial fibrations in Quillen’s model structure on simplicial sets: a
map X → Y is a trivial fibration if and only if the pullback hom

(13.3.8) X∆
n
→ X∂∆

n
×Y∂∆n Y∆

n

is a split epimorphism for each n. Because Quillen’s model structure is a simplicial model
structure, the trivial fibrations satisfy an even stronger condition: each of the maps (13.3.8)
is itself a trivial fibration.

As illustrated by Examples 13.3.4 and 13.3.7, when the condition (⋆) fails, the classes
Jl and Jl differ. The remainder of this section is devoted to comparing the enriched and
unenriched lifting property in this general case.

Exercise 13.3.9. Show that in a cotensored V-category the conditions specified by
(13.3.2) and (13.3.3) are weakly saturated in the first variable, that is, closed under iso-
morphisms, coproducts, pushouts, retracts, and transfinite composition. Conclude that any
map in the left class of the (unenriched) weak factorization system generated by J will
also satisfy the enriched lifting property against those maps that have the enriched lifting
property against J .

Employing our symbolic notation, the conclusion of Exercise 13.3.9 is that

(13.3.10) l(Jl)lJl.
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The proposition encoded by (13.3.10) implies that l(Jl) ⊂ l(Jl), but the inclusion is
not generally an equality. The class on the right-hand side satisfies one additional closure
property not enjoyed by the left-hand side, namely closure under tensors with objects of
V.

Lemma 13.3.11. If K is aV-category, then any class of maps of the form lR contains
the isomorphisms and is closed under retracts, finite composition, and tensors with objects
of V, whenever they exist. If in addition K is a cotensored V-category, then lR is also
closed under coproducts, pushouts, and transfinite composition.

In proving this lemma, which should be compared with Lemma 11.1.4, we also solve
Exercise 13.3.9. Recall that when K is a cotensored V-category, Theorem 7.5.3 implies
that ordinary colimits inK satisfy an enriched universal property, expressed by an isomor-
phism inV.

Proof. It suffices to show, for a fixed morphism f , that the class of morphisms j
satisfying jl f has these closure properties. The class lR is defined to be an intersection
of conditions of this form. The arguments are enrichments of the proofs in the unenriched
case. We illustrate with three examples.

Suppose that jl f and that K admits tensors by A ∈ V. We claim that the map
K(A⊗ j1, f0)→ Sq(A⊗ j, f ) has a section. By the universal property of the tensor inK and
K

2, the domain is naturally isomorphic to V(A,K( j1, f0)) and the codomain is naturally
isomorphic to V(A,Sq( j, f )); naturality implies that the comparison map is isomorphic
to the image of K( j1, f0) → Sq( j, f ) under the V-function V(A,−). Now the desired
conclusion is clear.

Now suppose that we have a composable pair of morphisms j0
j
−→ j1

k
−→ j2 so that jl f

and kl f . We define the map Sq(k j, f ) → K( j2, f0) and leave to the reader the straightfor-
ward verification that it is the desired section. As illustrated by (12.7.2) in the dual situa-
tion, the procedure to define a lift of k j against f is to first use the lifting property of j to de-
fine a lifting problem between k and f and then appeal to the lifting property of k. Formally,
we note that the pullback square defining Sq(k j, f ) factors along k∗ : K( j2, f1)→ K( j1, f1)
through the pullback square defining Sq( j, f ). Hence, the pullback of this k∗ defines a map
Sq(k j, f )→ Sq( j, f ). This map combined with the enriched lifting property of j produces
the domain leg of a cone over the pullback defining Sq(k, f ); the other leg, as we would
expect from the unenriched argument, is the codomain projection from Sq(k j, f ).

Sq(k j, f )

##

//

%%K
K

K
K

K
Sq( j, f )

%%KK
KK

KK
KK

K

Sq(k, f )

��

//
⌟

K( j1, f0)

��
K( j2, f1) // K( j1, f1)

The desired section is the composite of this map Sq(k j, f ) → Sq(k, f ) with the section
supplied by the enriched lifting property of k.

Now supposeK is cotensored overV and that we are given maps jl f and kl f , where
j and k are no longer assumed to be composable. Making use of theV-enriched universal
property of coproducts inK andK2, we have isomorphisms commuting with the canonical
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maps

K( j1
∐

k1, f0) �

��

K( j1, f0) × K(k1, f0)

��
Sq( j

∐
k, f ) � Sq( j, f ) × Sq(k, f )

(The proof of this assertion makes use of the fact that the product of pullbacks is the
pullback of products.) In particular, the right-hand map is a product of the maps for j and
k; the product of the sections guaranteed by their enriched lifting properties produces the
section needed to show that ( j

∐
k)l f . □

13.4. Enriched weak factorization systems

Enriched functorial factorizations and enriched lifting properties combine to define an
enriched weak factorization system. Let K be aV-category.

Definition 13.4.1. AV-enriched weak factorization system onK is a pair (L,R) of
classes of maps together with an enriched functorial factorization L,R : K2 ⇒ K2 so that

(i) the images of L and R land in L and R, respectively, and
(ii) L = lR and R = Ll.

Equivalently, in the presence of (i), (ii) can be replaced by the weaker LlR coupled
with the requirement that both classes are closed under retracts. Using this observation,
the reader should convince him or herself that an enriched weak factorization system is in
particular an ordinary weak factorization system.

The enriched algebraic small object argument described in Theorem 13.2.1 produces
V-functorial factorizations for cofibrantly generated enriched weak factorization systems,
whether or not the hypothesis (⋆) of that theorem is satisfied.

Proposition 13.4.2. LetK be aV-bicomplete category permitting the algebraic small
object argument. Then any set of maps J generates aV-enriched weak factorization sys-
tem (l(Jl),Jl). Furthermore, this weak factorization system coincides with the ordinary
weak factorization system generated by J if and only if the left class of the unenriched
weak factorization system is closed under tensors.

Proof. Let (C,F) be theV-enriched functorial factorization produced by the proof of
Theorem 13.2.1. The monad F is designed so that its algebras are precisely maps g such
that jlg for all j ∈ J ; hence F f , as a free F-algebra, lies inJl. A representable version of
the construction of Lemma 12.4.7 can be used to show that C f has the enriched left lifting
property against the objects of Jl � F-alg. Writing E = cod C = dom F, the enriched
functorial factorization produces a map Sq(C f , g) → K(EC f , Eg). Precomposing with
the C-coalgebra structure for C f and postcomposing with the F-algebra structure for g
produces the desired section of (13.3.2). □

Remark 13.4.3. When F = (F, η⃗, µ⃗) is produced by the V-enriched algebraic small
object argument, the entire monad of 12.6.1 is a V-monad, i.e., F is a V-functor and η⃗
and µ⃗ areV-natural transformations. In this case, the category of F-algebras is canonically
V-enriched [Bun69, 2.2]. We conjecture that Jl is also canonically a V-category, the
hom-objectsJl( f , g) defined to be the subobject of Sq( f , g) constructed as the limit of the
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diagram ∏
j∈J
V(Sq( j, f ),Sq( j, g))

,,YYYYYY
Y

Sq( f , g)

22eeeeeeeeeee
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YY
∏
j∈J
V(Sq( j, f ),K( j1, g0))∏

j∈J
V(K( j1, f0),K( j1, g0))

22eeeeee

Furthermore, we suspect that the isomorphism of underlying categories Jl � F-alg ex-
tends to an isomorphism ofV-categories. However, we have not checked the details.

By contrast, when the hypothesis (⋆) of Theorem 13.2.1 is not satisfied, i.e., when the
enriched and unenriched right lifting properties againstJ differ, the functorial factorization
constructed by the enriched version of the Quillen small object argument is poorly behaved.

Remark 13.4.4 (on the enriched Quillen small object argument). Let (Lω,Rω) denote
the V-functorial factorization constructed by the enriched Quillen small object argument.
By Lemma 13.3.11, the image of the left factor Lω lies in the class l(Jl), but when (⋆) is
not satisfied, this class is strictly larger than l(Jl).

Consequently, to guarantee that maps in the image of Lω lift against maps in the image
of Rω, we would have to show that each Rω f satisfies the enriched lifting property against
J . However, the “smallness” hypothesis for Quillen’s construction is insufficient to guar-
antee that this is the case. Even assuming that the enriched representable functors on the
domains of each j ∈ J preserved sequential colimits, it does not necessarily follow that
the map Sq( j,Rω f )→ K(dom j, dom Rω f ) factors through some finite stage of the colimit
defining Quillen’s factorization. “Smallness” is an assertion about the elements of the ob-
ject K(dom j, dom Rω f ), not about its sub-objects; the object Sq( j,Rω f ) is in general too
big to conclude anything useful about its image.

Example 13.4.5. Let R be a commutative ring and consider the set J = {0 → Dn}n∈Z

of maps in Ch•(R). The unenriched weak factorization system generated by J is the (triv-
ial cofibration, fibration) weak factorization system for the Quillen-type model structure
on Ch•(R), while the ModR-enriched weak factorization system is the (trivial cofibration,
fibration) weak factorization system for the Hurewicz-type model structure. To prove this
latter claim, note that an extension of the argument given in Example 13.3.4 proves that
elements of the right class of Jl are maps admitting a section given by a map of graded
R-modules. By [MP12, 18.3.6] this condition characterizes the class of Hurewicz fibra-
tions. We conclude that the trivial cofibrations and fibrations in this model structure form
a ModR-enriched algebraic weak factorization system.

As observed in Example 13.2.5, the functorial factorization produced by the enriched
algebraic small object argument is the factorization through the mapping path space, con-
structed using as interval the chain complex with a single generator in degree one and two
in degree zero, with boundary map taking the former generator to the difference of the latter
two. A dual construction factors a map of chain complexes through the mapping cylinder
[MP12, 18.3.7]. Because the first weak factorization system specified an ModR-enriched
algebraic weak factorization system, the latter also has this property. In this way, we have
enriched both weak factorization systems for the Hurewicz-type model structure.

It turns out that the (cofibration, trivial fibration) weak factorization system for the
Hurewicz-type model structure is also cofibrantly generated, in the sense of Proposition
13.4.2. The generating cofibrations I = {S n−1 → Dn}n∈Z turn out to be the same maps
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used for the Quillen-type model structure in the unenriched case; see [BMR13] for proof.
Furthermore, the functorial factorization produced by the ModR-enriched algebraic small
object argument is isomorphic to the mapping cylinder factorization. The intrepid reader
is encouraged to verify that the enriched algebraic small object argument converges in step
two and write down inverse isomorphic lifts comparing the two functorial factorizations.

In the next section, we will explore the benefits of the observation just made.

13.5. Enriched model categories

In the context of model category theory, cofibrant generation is commonly invoked
to transfer pre-existing model structures along an adjunction. This technique was used to
prove Theorem 12.3.2, constructing the projective model structure. As justification for our
expansion of the notion of a “cofibrantly generated” weak factorization system, as encoded
by Proposition 13.4.2, from its classical usage to the enriched one, we now present the
enriched analog of a frequently cited theorem of Kan [Hir03, 11.3.1-2].

Theorem 13.5.1. Suppose F : M ⇄ N : U is a V-adjunction between V-bicomplete
categories, and suppose thatM has a model structure whose constituent weak factorization
systems are cofibrantly generated in theV-enriched sense by I and J . Then if N permits
the small object argument and if

(†) U takes maps in l(FJl) to weak equivalences
then N has a model structure that is cofibrantly generated in theV-enriched sense by FI
and FJ , whose weak equivalences and fibrations are created by U.

Because any functor preserves retracts, it suffices to restrict the condition (†) to the
class FJ-cell of transfinite composites of pushouts of coproducts of tensors of maps in
FJ with objects of V. The condition (†), which demands that certain maps are weak
equivalences, is called the “acyclicity condition.”

Proof. By Proposition 13.4.2, FI and FJ generate V-enriched weak factorization
systems (l(FIl), FIl) and (l(FJl), FJl) onN . Recall thatV-enriched weak factoriza-
tion systems are also ordinary weak factorization systems and hence suitable for defining
a model structure. By hypothesis, the classes Jl and Il define the fibrations and trivial
fibrations in the model structure onM. By Exercise 13.3.5, the classes FJl and FIl are
the pullbacks of these classes along U. We call these the fibrations and trivial fibrations
in N . This is what it means to say the right adjoint U creates the fibrations and trivial
fibrations.

Let W be the class of weak equivalences created by U, i.e., the class of maps in N
which U sends to weak equivalences in M. To show that W defines a model structure
whose weak factorization systems are (l(FIl), FIl) and (l(FJl), FJl) it remains, by
Definition 11.3.1, to show that these classes are compatible. Specifically, we must show
that l(FJl) = l(FIl) ∩W and that FIl = FJl ∩W.

In fact, by a standard argument [Hov99, 2.1.19] , it suffices to prove only three of
the four inclusions asserted by these equalities. Suppose f ∈ FJl ∩W. By adjunction
FJl f implies that JlU f . So U f is a fibration and weak equivalence, which means
that IlU f and hence that FIl f . Thus (FJl ∩ W) ⊂ FIl. Conversely, if f ∈ FIl,
then U f ∈ Il, which is the intersection of Jl with the class of weak equivalences inM.
Hence, f ∈ FJl ∩W and we have shown that FIl = FJl ∩W.

It remains only to prove that l(FJl) ⊂ l(FIl) ∩ W. By hypothesis (†), we need
only show that l(FJl) ⊂ l(FIl). As a consequence of the closure properties asserted by
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Lemma 13.3.11, it suffices to show that FJ ⊂ l(FIl), i.e., that FJlFIl. By adjunction,
f ∈ FIl if and only if U f ∈ Il ⊂ Jl, because I and J define a model structure on
M. Transposing back across the V-adjunction, we conclude that FJll f , and hence that
FJlFIl, as desired. □

Note that our notion of a model structure on a V-category built from enriched weak
factorization systems is distinct from the usual definition of a V-model category: in par-
ticular, for this new notion,V does not have to be a model category itself! We should say
a few words towards the comparison in the case whereV is a monoidal model category, so
that both Definition 11.4.7 and the definition encoded by the statement of Theorem 13.5.1
makes sense. In general, neither notion implies the other.

Suppose K is a V-bicomplete category, with (⊗, {, }, hom) the tensor-cotensor-hom
two-variable adjunction. Observe that the comparison mapK( j1, f0)→ Sq( j, f ) of (13.3.2)
is exactly the map ˆhom( j, f ) defined by 11.1.7. When K is a V-model category, the map

ˆhom( j, f ) is a trivial fibration whenever j and f are in the left and right classes of the same
weak factorization system. If all object ofV are cofibrant, then this implies that ˆhom( j, f )
has a section so that jl f . This can also be deduced from Lemma 13.3.6, which applies
to both weak factorization systems, under the slightly weaker hypothesis that tensoring
with each object of V defines a left Quillen functor. If the model structure is cofibrantly
generated, Theorem 13.2.1 providesV-enriched factorizations. In summary:

Theorem 13.5.2. If tensoring with objects of V defines a left Quillen functor, any
cofibrantly generated V-model structure can be “fully enriched”: the (trivial) cofibra-
tions and (trivial) fibrations form V-enriched weak factorization systems, with functorial
factorizations produced by theV-enriched Quillen or Garner small object argument.

When some objects of V are not cofibrant, the fact that K is a V-model category
does not imply that the left and right maps in its weak factorization systems satisfy the
enriched lifting property with respect to each other: the trivial fibration ˆhom( j, f ) need not
be a split epimorphism. Conversely, if K is a model category whose weak factorization
systems areV-enriched, the comparison maps ˆhom( j, f ) are split epimorphisms whenever
j is a trivial cofibration and f is a fibration or j is a cofibration and f is a trivial fibration.
In particular, the map ˆhom( j, f ) lifts on the right against all objects ofV, not just cofibrant
ones. However, this does not imply that ˆhom( j, f ) is a trivial fibration, so K need not be a
V-model category.

13.6. Enrichment as coherence

Our aim in this final short section is to describe a result of Garner that unifies the
enriched lifting properties introduced in this chapter with the “coherent” lifting proper-
ties (defined with respect to a generating category of arrows) introduced in the previous
chapter: in certain cases, enrichments can be encoded in the unenriched setting by adding
morphisms to the generating category. The context for this result is a closed symmetric
monoidal category V that has a small dense subcategory. A subcategory A ⊂ V of a co-
complete category V is dense if the identity at V is a left Kan extension of the inclusion
A → V along itself. In this case, a corollary of 1.2.1 is that every object of V can be
expressed canonically as a colimit of objects in A. Equivalently, A ⊂ V is dense if and
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only if the restricted Yoneda embedding

V // SetA
op

v { a 7→ V(a, v)

is fully faithful. For example, the full subcategory of representables, i.e., the image of the
Yoneda embedding ∆→ sSet, is a dense subcategory of the category of simplicial sets.

Proposition 13.6.1 (Garner). Suppose V admits a small dense subcategory A and
suppose K is a V-bicomplete category that permits the small object argument. Let J be
a small category of arrows in K . Then the V-enriched algebraic small object applied
to J produces the same factorization as the unenriched algebraic small object argument
applied to the categoryA×J with objects {a⊗ j | a ∈ A, j ∈ J} and morphisms given by
tensor products of maps inA and J .

Proof. We will show that the categories (A × J)l and Jl are isomorphic; a more
precise argument shows that they are isomorphic as double categories, which suffices, by
Theorem 12.7.3, to prove that the algebraic weak factorization systems these categories
encode are the same. Suppose f ∈ Jl. This means that, for each j ∈ J , the map
K( j1, f0) → Sq( j, f ) admits a section, and these sections are natural in J . Because V →
SetA

op
is fully faithful it follows that

V(a,K( j1, f0))→V(a,Sq( j, f ))

admits a section, natural in J andA. By adjunction, this means that the map

K(a ⊗ j1, f0)→ K2(a ⊗ j, f ) = Sq(a ⊗ j, f )

admits a section, natural in J andA. But this says exactly that f ∈ (A⊗J)l. □

This gives a conceptual justification for the result of 12.5.11: the construction given
there is enriched over SetA. Similarly, simplicial enrichments can be produced by running
the unenriched algebraic small object argument with the category formed by tensoring the
generating cofibrations with the category ∆.

Example 13.6.2. Consider the generating set J = {∅ → ∆0} in the category of sim-
plicial sets. The enriched algebraic small object argument applied to J produces the “co-
graph” factorization X → X ⊔ Y → Y .

The category ∆ × J is isomorphic to ∆; the image of the forgetful functor ∆ × J →
sSet2 is the full subcategory spanned by the maps ∅ → ∆n. By density, the left Kan
extension of this functor along itself is the functor cod: sSet2 → sSet2 that projects to the
codomain and then slices under the initial object. This defines the step-zero functor for the
algebraic small object argument. From this observation, it is an easy exercise to see that the
functorial factorization produced by applying Garner’s construction to the category ∆ × J
is again the co-graph factorization.





CHAPTER 14

A brief tour of Reedy category theory

A Reedy category is a category whose objects are filtered by degree together with
extra structure that makes it possible to define diagrams inductively. To illustrate how this
might be useful in homotopy theory, consider a simplicial space X. The objects in the
indexing category ∆op are naturally filtered by dimension. Write skn|X| for the n-truncated
geometric realization, i.e., for the functor tensor product ∆•≤n ⊗∆op

≤n
X≤n of 4.4.3. As n

increases, the spaces skn|X| gives better approximations to the geometric realization: a
direct argument shows that the colimit of the sequence

(14.0.1) sk1|X| → sk2|X| → sk3|X| → · · ·

is |X|. We would like to find conditions under which it is possible to prove that this colimit
is homotopy invariant.

To start, we should try to understand each map skn−1|X| → skn|X|. If the simplicial
space X were discrete, we would say the latter space is formed by gluing in a copy of the
topological n-simplex |∆n| for each non-degenerate n-simplex of X. In general, the map
skn−1|X| → skn|X| is a pushout of a map defined in reference to the subspace LnX ⊂ Xn of
degenerate n-simplices.

In the topological case, the latching space LnX is simply the union of the images of
the degeneracy maps si : Xn−1 → Xn. By the simplicial identities, each degeneracy map
admits a retraction, and it follows that the topology on Xn−1 coincides with the subspace
topology for each of its images. The map skn−1|X| → skn|X| is the pushout

|∆n| × LnX
∐

|∂∆n |×LnX
|∂∆n| × Xn //

in×̂ℓn

�� ⌜

skn−1|X|

��
|∆n| × Xn // skn|X|

of the pushout-product of the inclusions in : |∂∆n| → |∆n| and ℓn : LnX → Xn. In words, an
n-simplex is attached along its boundary for points in the complement of LnX. For points in
LnX, these attached simplices map degenerately onto (n− 1)-simplices previously attached
to the (n − 1)-truncated geometric realization.

Because Top is a simplicial model category, if each LnX → Xn is a cofibration, then
the left hand map is a cofibration and hence its pushout is as well. In this case, the dia-
gram (14.0.1) is projectively cofibrant by Example 11.5.11, and hence by Corollary 11.5.3
its ordinary colimit is a homotopy colimit. In this way, we have proven that geometric
realization preserves weak equivalences between simplicial objects whose latching maps
LnX → Xn are cofibrations. Such simplicial objects are called Reedy cofibrant.

In section 14.1, we continue our consideration of simplicial objects to give a geometric
grounding to the formal definition of the latching and dually defined matching objects.
In section 14.2, we generalize the diagram shape, debuting Reedy categories and Reedy
model structures. After a whirlwind introduction to these notions, we devote sections 14.3,

189
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14.4, and 14.5 to applications, tying up several loose ends from Parts I and II of this book.
There has been a cross-pollination between this chapter and the expository article [RV13c],
which gives a much more comprehensive development of Reedy category theory from the
perspective of weighted limits and colimits.

14.1. Latching and matching objects

The proof given in the introduction generalizes immediately to simplicial objects val-
ued in any simplicial model category, provided we can work out how to define the latching
objects categorically. Our definition actually makes sense for simplicial objects valued in
any model category; the reason one might ask the target to be a simplicial model category
is for the homotopical content of the preceding argument.

We will define matching objects first because the geometric intuition is slightly sim-
pler. The nth matching object of a simplicial object X is an object together with a map
mn : Xn → MnX which we think of as describing the “boundary data” for the object of
n-simplices. Geometrically, we think of elements of the object Xn as having the “shape” of
an n-simplex; with this intuition, the image under the nth matching map mn should have
the shape of its boundary, given by (n − 1)-simplices glued together appropriately.

We can make this intuition precise through a definition by means of a weighted limit.
Recall, the weight for a weighted limit of a simplicial object has the form of a functor
∆op → Set, i.e., is given by a simplicial set. The limit of a simplicial object X weighted by
the simplicial set ∆n is the object Xn, by the Yoneda lemma (see Example 7.1.4).

Definition 14.1.1. The nth matching object MnX of a simplicial object X is the
weighted limit lim∂∆

n
X. The nth matching map mn : Xn → MnX is the map induced

by the map of weights ∂∆n → ∆n.

Example 14.1.2. When X is a simplicial set, lim∂∆
n

X is the set of maps of simplicial
sets ∂∆n → X by (7.1.3). Precisely in accordance with our geometric intuition, the nth
matching object of a simplicial set X is the set of (n − 1)-spheres in X.

We can use the cocontinuity of the weighted limit bifunctor in the weight to obtain a
description of MnX as an ordinary limit. This is the content of Exercise 7.2.11. A weighted
limit whose weight is a colimit is equal to the limit of the limits weighted by each weight in
the colimit diagram. The boundary of the n-simplex is formed by gluing together its faces,
n + 1 (n − 1)-simplices, along their boundary (n − 2)-simplices. These faces correspond to
monomorphisms in ∆. Hence, we have

(14.1.3) ∂∆n � colim

 ∐
[n−2]↣[n]

∆n−2 //
··· //

∐
[n−1]↣[n]

∆n−1


where the colimit diagram has a morphism between the coproducts corresponding to each
monomorphism [n − 2]↣ [n − 1]. By cocontinuity of the weighted limits, we deduce that

MnX � lim

 ∏
limits[n−1]↣[n]Xn−1

//
//···

∏
[n−2]↣[n]

Xn−2

 .
The latching object can be defined dually as a weighted colimit; in this case, the weight

should be a covariant functor ∆→ Set. We dualize (14.1.3) by exchanging ∆ for ∆op; this
replaces contravariant representables by covariant representables and monomorphisms by
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epimorphisms. Define

∂∆n � colim

 ∐
[n]↠[n−2]

∆([n − 2],−) //
··· //

∐
[n]↠[n−1]

∆([n − 1],−)


where the morphisms between the coproducts correspond to epimorphisms [n − 1] ↠
[n−2]. Note that the covariant representable ∆([n],−) forms a canonical cocone under this
colimit diagram.

Definition 14.1.4. The nth latching object LnX of a simplicial object X is the weighted
colimit colim∂∆n X. The nth latching map ℓn : LnX → Xn is the map induced by the map
of weights ∂∆n → ∆([n],−).

Once again, we can use the cocontinuity of the weighted colimit bifunctor to check
that Definition 14.1.4 is the correct “object of degenerate n-simplices.” By this cocontinuity
and the coYoneda lemma

LnX � colim

 ∐
[n]↠[n−2]

Xn−2
//

··· //
∐

[n]↠[n−1]
Xn−1

 .
If, as in the introduction, X is a simplicial space, then this formula says that the space LnX is
formed by gluing together a copy of the space Xn−1 for each degeneracy map [n]↠ [n− 1]
along the images of the spaces Xn−2 corresponding to compatibly defined degeneracy maps
[n − 1]↠ [n − 2].

14.2. Reedy categories and the Reedy model structures

The category ∆op is an example of what is now called a Reedy category. The epony-
mous model structure on simplicial objects taking values in any model category was intro-
duced in an unpublished but nonetheless widely disseminated manuscript written by Chris
Reedy [Ree74]. Reedy notes that a dual model structure exists for cosimplicial objects,
which, in the case of cosimplicial simplicial sets, coincides with a model structure intro-
duced by Bousfield and Kan to define homotopy limits [BK72, §X]. The general definition,
unifying these examples and many others, is due to Kan and appeared in the early drafts of
the book that eventually became [DHKS04]. Various draft versions circulated in the mid
1990s and contributed to the published accounts [Hir03, chapter 15] and [Hov99, chapter
5]. The final [DHKS04] in turns references these sources in order to “review the notion of
a Reedy category.”

Definition 14.2.1. A Reedy category is a small categoryD equipped with
(i) a degree function assigning a non-negative integer to each object,

(ii) a wide subcategory
−→
D whose non-identity morphisms strictly raise degree, and

(iii) a wide subcategory
←−
D whose non-identity morphisms strictly lower degree

so that every arrow factors uniquely as an arrow in
←−
D followed by one in

−→
D.

It follows from the axioms that any map in a Reedy category factors uniquely through
an object of minimal degree, and furthermore that this factorization is the Reedy factor-
ization, as a map in

←−
D followed by a map in

−→
D.

Remark 14.2.2. This definition is what some category theorists would call “evil”—it
is not invariant under equivalence of categories. The axioms imply that a Reedy cate-
gory must be skeletal and contain no non-trivial automorphisms. By contrast, the notion
of a generalized Reedy category introduced by Clemens Berger and Ieke Moerdijk is



192 14. A BRIEF TOUR OF REEDY CATEGORY THEORY

preserved by categorical equivalence and includes several new examples of interest to ho-
motopy theory, such as Segal’s category Γ or Alain Connes’ cyclic category Λ [BM11].

Exercise 14.2.3. Show that (
←−
D,
−→
D) defines an orthogonal factorization system. This

observation forms the basis for the equivalent definition of a Reedy category given in
[Lur09, A.2.9.1].

Finite products of Reedy categories are Reedy categories, with the degree function
defined by summing the degrees of the coordinates. If D is a Reedy category, then so is
Dop with the categories

←−
D and

−→
D exchanged, which is both a blessing and a curse. The

blessing is that both ∆ and ∆op are Reedy categories. The curse is that we care about both
examples so there is a good possibility to mix up which morphisms are “degree decreasing”
and which are “degree increasing.”

Example 14.2.4. The category ∆ is a Reedy category with degree function the obvious
one, with

←−
∆ the subcategory of epimorphisms, and with

−→
∆ the subcategory of monomor-

phisms. Any map in ∆ can be factored uniquely through an object of minimal degree;
the first factor in this factorization is necessarily an epimorphism, and the second is a
monomorphism.

Note that there are maps in ∆ for which the source has a smaller degree than the target
but which are not monomorphisms. However, cannot include these morphisms in

−→
∆ if the

unique factorization axiom is to be satisfied.

To alleviate confusion, we will try and emphasize the role played by the degree func-
tion and de-emphasize the role played by the categories

−→
D and

←−
D. To any Reedy category

there exist subcategories D≤n of objects of degree less than or equal to n. For D = ∆op

we haveD≤n = ∆op
≤n, precisely in accordance with our previous notation. Restriction along

the inclusion D≤n ↪→ D produces an n-truncation functor, defined on the category of D-
shaped diagrams valued in M, which has left and right adjoints given by left and right
Kan extension. The composite monad onMD is called skn and the composite comonad is
called coskn, as described in 1.1.9.

Let X : D → M. Because X is covariant, we write Xd for the value of X at d ∈
D, extending the usual notation for cosimplicial objects. Generalizing the definitions for
simplicial objects, there are latching and matching objects corresponding to each d ∈ D

that come equipped with latching and matching maps LdX
ℓd
−→ Xd md

−−→ MdX. We use the
direction of the latching and matching maps to help us remember how they are defined.
Because the latching map points toward Xd, the latching object is defined as a colimit;
dually, the matching object is a limit. Because the purpose of the Reedy category axioms
are to permit us to define diagrams inductively, both LdX and MdX should be definable in
reference to objects of degree strictly less than deg(d) = n.

Definition 14.2.5. The dth latching object of X ∈ MD is

LdX := colim
(
−→
D<n/d

U // D
X //M

)
and the dth matching object is

MdX := lim
(

d/
←−
D<n

U // D
X //M

)
.

The domains of the forgetful functors appearing in these definitions are slice categories
whose objects are restricted to degree less than n and whose maps are restricted to

−→
D and
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←−
D, respectively. The canonical cones with summit Xd under the colimit and over the limit
define the latching and matching maps.

Exercise 14.2.6. Show that LdX � colim∂D(−,d) X and MdX � lim∂D(d,−) X, where
∂D(−, d) and ∂D(d,−) are the subfunctors of the representable functors consisting of the
maps whose Reedy factorization is through an object of degree strictly less than n. For the
proof, it might help to observe that

−→
D<n/d is a final subcategory ofD<n/d, and dually that

d/
←−
D<n is an initial subcategory of d/D<n.

Note that the latching object LdX and matching object MdX can be defined with respect
to the (n − 1)-truncation of the diagram X. An important consequence of these definitions
is that to extend a diagram D<n → M to a diagram D≤n → M is precisely to choose a
factorization of LdX → MdX for each d of degree n. The reader is encouraged to work out
(or look up) how this works. Here, we are most interested in the model structure. Given a
map X → Y inMD, define the dth relative latching map and dth relative matching map
by

LdX

��

//

⌜

Xd

��

��

Xd

$$

��

  A
A

A
A

A

LdY

++

// ·

  A
A

A
A ·

��

//
⌟

MdX

��
Yd Yd // MdY

Theorem 14.2.7 ([Hov99, 5.2.5]). LetM be a model category, and let D be a Reedy
category. There is a model structure on MD with pointwise weak equivalences, whose
cofibrations are the maps X → Y such that each relative latching map LdY

∐
Ld X Xd → Yd

is a cofibration in M, and whose fibrations are the maps X → Y such that each relative
matching map Xd → Yd ×MdY MdX is a fibration inM.

In particular, X is Reedy cofibrant if each LdX → Xd is a cofibration. Now that this
term has finally been defined, it might be a good time to revisit the proof of Lemma 5.2.1.

Example 14.2.8. The category 0← 1→ 2 indexing pushout diagrams admits multiple
Reedy category structures. One of these assigns each object the degree indicated by its
label. There is a single non-identity degree increasing map and a single non-identity degree

decreasing map. Now let b
f
←− a

g
−→ c be a pushout diagram in a generic model category

M. The 0th and 1st latching objects are initial, while the 2nd latching object is a. Hence,
this diagram is Reedy cofibrant if and only if a, b, and c are cofibrant objects and a

g
−→ c is

a cofibration. There is another Reedy structure for which Reedy cofibrant diagrams have
the form described in Example 11.5.7.

Exercise 14.2.9. The ordinal category ω generated by the graph 0 → 1 → 2 → · · ·
has a Reedy structure in which the degree of each object accords with the labels given here.
Show that a countable sequence (11.5.12) is a model category is Reedy cofibrant just when
each object is cofibrant and each map is a cofibration.

An inductive argument, starting from the observation that the latching objects in de-
gree zero are always initial and the matching objects in degree zero are always terminal,
shows that Reedy cofibrant diagrams are pointwise cofibrant and dually that Reedy fibrant
diagrams are pointwise fibrant.
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Lemma 14.2.10. Any Reedy cofibrant diagram is pointwise cofibrant.

Proof. Let X : D →M be Reedy cofibrant. It clearly suffices to show that the latching
objects LdX are cofibrant for each d ∈ D. We do so by induction on degree. The latching
object for any degree-zero object is initial and hence automatically cofibrant. Consider an
object d with degree n and suppose we have shown all lower-degree latching objects are
cofibrant. The category

−→
D<n/d admits a filtration

F d
0 → F

d
1 → · · · → F

d
n−1 =

−→
D<n/d

whose kth term consists of the full subcategory on objects of degree at most k. Note that
F d

0 is discrete because there are no non-identity maps between objects of degree zero in a

Reedy category. So the colimit of the diagram F d
0 →

−→
D<n/d

U
−→ D

F
−→ M is a coproduct

of cofibrant objects and hence cofibrant. Our problem now reduces to a second induction

in which we show that the colimit of F d
k →

−→
D<n/d xrightarrowUD

F
−→ M is cofibrant

supposing this is true for the restriction to F d
k−1. Objects in the former category but not the

latter correspond to degree-increasing maps d′ → d, where d′ has degree k. Such a map
defines an inclusion

−→
D<k/d′ → F d

k−1. Indeed, F d
k is the pushout∐

d′

−→
D<k/d′ //

��
⌜

F d
k−1

��∐
d′

(
−→
D<k/d′)▷ // F d

k

where the categories on the lower left are obtained by adjoining the identity at d′, which is
a terminal object. Applying the functor X and taking colimits the left-hand vertical map is
a coproduct of the latching maps Ld′X → Xd′ . Hence the pushout is a cofibration, proving
the inductive step. □

A mild generalization of this argument shows that for any natural transformation X →
Y , if the relative latching maps LdY

∐
Ld X Xd → Yd have a left lifting property against some

class of morphisms, then the maps LdX → LdY and hence also the Xd → Yd have the same
lifting property.

Remark 14.2.11. A related observation, also with an inductive proof is that a map
X → Y is a Reedy trivial cofibration if and only if its relative latching maps are trivial cofi-
brations. There is a dual characterization of Reedy trivial fibrations. See [Hir03, 15.3.15]
or [RV13c].

14.3. Reedy cofibrant objects and homotopy (co)limits

Our interest in Reedy model structures primarily stems from the following general
theorem, which will have a number of useful corollaries. Recall from Theorem 7.6.3 that
in a simplicially bicomplete category, the weighted colimit bifunctor is computed by a
functor tensor product and the weighted limit bifunctor is computed by a functor cotensor
product.

Theorem 14.3.1 ([Hir03, 18.4.11]). Let D be a Reedy category and letM be a sim-
plicial model category. Then the functor tensor product

− ⊗D − : sSetD
op
×MD →M
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is a left Quillen bifunctor with respect to the Reedy model structures, and the functor
cotensor product

{−,−}D : (sSetD)op ×MD →M

is a right Quillen bifunctor with respect to the Reedy model structures.

When a left Quillen bifunctor is evaluated at a cofibrant object in one of its variables,
the result is a left Quillen functor. Similarly, when a right Quillen bifunctor is evaluated
at a cofibrant object in its contravariant variable, the result is a right Quillen functor. In
particular, for certain Reedy categories D, the constant functor ∗ : Dop → sSet is Reedy
cofibrant. When this is the case, Ken Brown’s Lemma 11.3.14 implies that colimits of
pointwise weakly equivalent Reedy cofibrant diagrams are weakly equivalent and limits of
pointwise weakly equivalent Reedy fibrant diagrams are weakly equivalent. For example:

Corollary 14.3.2. Suppose given diagrams in a simplicial model category

(14.3.3) a //
g //

∼

��

f

~~}}
}}
}}
}

⌜

c

∼
��

����
��
��
�

b

∼

��

// ·

���
�
�
�
�
�

a′
f ′

��~~
~~
~~

// g′ //

⌜

c′

����
��
��
�

b′ // ·

If each object is cofibrant and the maps g and g′ are cofibrations, then the induced maps
between the pushouts is a weak equivalence.

Proof. Let D be the category 0 ← 1 → 2 with the Reedy structure described in
Example 14.2.8. We claim that the constant functor ∗ : Dop → sSet is Reedy cofibrant. For
diagrams of shape Dop, the 0th and 2nd latching objects are initial while the 1st latching
object is the image of the object 0. It follows that a diagram in sSetD

op
is Reedy cofibrant

if and only if its objects are cofibrant and one of its maps is a cofibration. Identities are
necessarily cofibrations and all objects in sSet are cofibrant, so this condition is satisfied.

For any model category M, it follows from this observation, Theorem 14.3.1, and
Lemma 11.3.14 that the functor colimD : MD →M preserves weak equivalences between
Reedy cofibrant diagrams. Example 14.2.8 characterizes these diagrams, completing the
proof. □

Remark 14.3.4. Recall that our notion of “homotopy pushout” required the ambient
model category to be simplicial so that these objects represent homotopy coherent cones.
However, in common mathematical practice this term is expanded to include any examples
where the pushout functor is homotopical. We claim that this is the case for diagrams of
the form (14.3.3) in any model category, not necessarily simplicial. The proof is similar
to the argument given in Remark 11.5.9, when this issue was last discussed, but with the
Reedy model structure of Theorem 14.2.7 in place of the projective model structure.

There is an adjunction colimD : MD ⇄ M : ∆ between the pushout functor and the
constant diagram functor. We claim this is a Quillen adjunction when MD is given the
Reedy model structure with respect to the Reedy category structure of Example 14.2.8.
The constant diagram functor manifestly preserves (pointwise) weak equivalences. To
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show that it is right Quillen, it therefore suffices to show that

∆ f :=

x

f
����

x

f
����

1 //1oo x

f
����

y y1oo 1 // y

is a Reedy fibration if f is a fibration inM. The 1st and 2nd matching objects are terminal,
so the first and second matching maps are the middle and right copies of the map f . The
0th matching objects are the images of the object 1, with the matching maps given by the
horizontal arrows in the left-hand square. Hence, the relative matching map is the map
from the top middle x to the pullback in this square, but this square is already a pullback,
so this map is an identity and hence a fibration; this implies that ∆ f is a Reedy fibration. By
Lemma 11.3.11, it follows that colimD is left Quillen, and hence, by Ken Brown’s Lemma
11.3.14, preserves the weak equivalences (14.3.3).

Now it follows from Theorem 2.2.8 and the existence of functorial factorizations that
for any model category, that a left derived functor of the pushout functor is computed by
(functorially) replacing the pushout diagram by a weakly equivalent diagram whose objects
are cofibrant and in which one map is a cofibration. Note that Reedy category theory is
entirely self dual, so the dual conclusion applies to homotopy pullbacks.

Digression 14.3.5 (left proper model categories and the gluing lemma). Now suppose
M is a left proper model category, i.e., a model category with the property that a pushout
of a weak equivalence along a cofibration is again a weak equivalence. The gluing lemma
states that in such model categories, the induced map between pushouts of the form (14.3.3)
is a weak equivalence, even if the objects are not cofibrant.

As in (11.5.8), it is possible to functorially replace a pushout diagram by a diagram in
which each object is cofibrant and each map is a cofibration. We saw in Example 11.5.7
that such diagrams are projectively cofibrant and in Remark 11.5.9 that the colimit functor
preserves weak equivalences between diagrams of this form. Hence, it suffices to show
that in a left proper model category, the pushout of a diagram with one arrow a cofibration
is weakly equivalent to the pushout of its projective cofibrant replacement.

Choose a projective cofibrant replacement r qoohoo // k // s for the given diagram

b a
foo // g // c and form a pushout x in the square from h to f .

q

⌜

}}
k

}}{{
{{
{{

// h //

∼

��

r

}}zz
zz
zz
zz

∼

��

∼

��2
22

22
22

22
22

2

s // //

∼

��

z

���
�
�
�
�
�

��2
2
2
2
2
2
2

⌜
a
}}g

}}{{
{{
{{

// //

⌜

x
}}

}}{{
{{
{{
{

∼ //

⌜

b
}}

}}{{
{{
{{
{

c // y ∼
// w

BecauseM is left proper, the map from r to x is a weak equivalence; hence so is the map
from x to b. Let y be the pushout of the map from a to x along g. Composing and canceling
pushouts in the faces of the cube, we see that the front face is also a pushout, and hence
by left properness, the map from z to y is also a weak equivalence. By similar reasoning,



14.3. REEDY COFIBRANT OBJECTS AND HOMOTOPY (CO)LIMITS 197

the pushout of interest w factors through y along another pushout square. Left properness
implies the map from y to w is a weak equivalence, by which we see the diagonal dotted
arrow is a weak equivalence, as desired.

Conversely, if a model category satisfies the gluing lemma then it is left proper. We
leave this easy exercise for the reader.

Exercise 14.3.6. Use Exercise 14.2.9, Theorem 14.3.1, and Remark 14.3.4 to gener-
alize the conclusion of Exercise 11.5.11 to arbitrary model categories.

Further corollaries of 14.3.1 require that we identify more Reedy cofibrant objects.

Lemma 14.3.7. Any bisimplicial set is Reedy cofibrant.

Proof. Informally, the reason is that each latching object is, pointwise, a subset of
the appropriate simplicial set, which is exactly what is meant by being Reedy cofibrant in
sSet∆op

. A more precise justification has to do with the Eilenberg-Zilber lemma for simpli-
cial sets1 which says that any simplex is uniquely expressible as a degenerate image of a
non-degenerate simplex [GZ67, II.3.1, pp. 26-27]; see also [FP90, 4.2.3]. By examining
the weighted colimit that defines the latching object, we see that an n-simplex would have
multiple preimages in the nth latching object if and only if it were degenerate in distinct
ways on non-degenerate simplices. □

A similar argument enables a characterization of those cosimplicial sets (or cosim-
plicial objects taking values in a Set-valued functor category) that are Reedy cofibrant.
Fixing X ∈ Set∆, we might say that x ∈ Xn is non-degenerate if it is not in the image of
any monomorphism in ∆. For degree reasons, it is clear that any x ∈ Xn can be expressed
as the image of a non-degenerate z under a monomorphism σ ∈ ∆. The nth latching map is
a monomorphism just when each such expression is unique. Suppose given σz = x = σ′z′

and pick a left inverse τ to σ to get z = τσ′z′. The map τσ′ factors as an epimorphism
followed by a monomorphism. Because z is non-degenerate, the monomorphism is the
identity and hence that τσ′ is an epimorphism. Repeating this argument for z′, with τ′ a
right inverse for σ′, we see that τ′σ is also an epimorphism. It follows that z and z′ have
the same degree, and thus that both epimorphisms are identities, because ∆ is a Reedy
category. Hence z = z′.

If the set of left inverses for a monomorphism uniquely characterized that monomor-
phism, then we could conclude that σ and σ′ must be equal, and hence that such decom-
positions would be fully unique. This is true for nearly all monomorphisms in ∆, the only
exceptions being d0, d1 : [0]⇒ [1]. When any degenerate simplex in X is uniquely express-
ible as the image of a non-degenerate simplex under a monomorphism, we say that X has
the Eilenberg-Zilber property. By this analysis, a cosimplicial object has the Eilenberg-
Zilber property if and only if it is unaugmentable, i.e., if the equalizer of d0, d1 : X0 ⇒ X1

is the initial object [FP90, p. 147].
A cosimplicial object in a Set-valued functor category has the Eilenberg-Zilber prop-

erty if and only if does pointwise. This argument proves the following lemma.

Lemma 14.3.8. If a cosimplicial object X is unaugmentable, then the latching map
LnX → X is a monomorphism. If X and Y are both unaugmentable, then any pointwise
monomorphism X → Y is also a Reedy monomorphism, i.e., its relative latching maps are
monic.

Here is a key example.

1This argument generalizes to simplicial objects in a Set-valued functor category.
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Example 14.3.9. The Yoneda embedding is Reedy cofibrant because the equalizer of
∆0 ⇒ ∆1 (in Cat and hence in sSet) is empty.

This example enables the proof of another significant corollary to Theorem 14.3.1.

Corollary 14.3.10. If M is a simplicial model category, | − | : M∆op
→ M is left

Quillen with respect to the Reedy model structure.

Proof. The geometric realization is the functor tensor product with the Yoneda em-
bedding, which is Reedy cofibrant by 14.3.9. □

The Yoneda embedding ∆• : ∆ → sSet is pointwise weakly equivalent to the constant
functor at the terminal object. Hence, it is a cofibrant replacement of the terminal diagram
in the Reedy model structure sSet∆. In particular, it follows from Lemma 14.3.7 that
the geometric realization of any bisimplicial set is its homotopy colimit. This result also
has a trivial special case. Regarding a simplicial set X as a discrete bisimplicial set, the
simplicial set X is isomorphic to the geometric realization of the discrete bisimplicial set.
In particular, any simplicial set X is the homotopy colimit of the corresponding discrete
bisimplicial set.

Other corollaries of Theorem 14.3.1 will appear in Part IV; for instance, see Proposi-
tion 17.4.8 and 18.7.1.

14.4. Localizations and completions of spaces

In [BK72], Bousfield and Kan introduce a completion functor R∞ : sSet → sSet, as-
sociated to a commutative ring R with unit, defined to be the totalization of a particular
cosimplicial simplicial set. They show that the cosimplicial objects appearing in their
construction are automatically Reedy fibrant. Hence, by 14.3.9 and Theorem 14.3.1, the
totalization is its homotopy colimit, computable as the limit of a tower of fibrations dual to
(14.0.1).

The simplicial sets R∞X are important because they define localizations or comple-
tions of X (under certain hypotheses), in a sense inspired by previous work of Sullivan
[Sul71]. Before we introduce the Bousfield-Kan construction, let us motivate the notions
of localization and completion in topology by recalling the analogous algebra. In the inter-
est of brevity, our presentation is much less comprehensive than can be found in either of
those sources or in [MP12].

For any set P of primes, the P-localization of the integers Z is the ring ZP ⊂ Q defined
by formally inverting all primes not in P. For instance, the localization of Z at the prime
p is the ring Z(p) defined by formally inverting all primes ℓ , p. The rationalization of Z
is the ring Z(0) � Q with all primes inverted. These definitions extend to general abelian
groups A via the formula

AP � A ⊗Z ZP.

This procedure defines an exact functor from the category of abelian groups to the cat-
egory of P-local abelian groups, in which the natural action by each prime ℓ < P is an
isomorphism.

The p-adic completion of Z is the ring Ẑp of p-adic integers, the completion of Z with
respect to the p-adic valuation, constructed by taking the limit of the diagram

· · · // // Z/p3 // // Z/p2 // // Z/p.

The p-adic integers may be thought of as the ring of formal power series in p with coeffi-
cients in {0, 1, . . . , p − 1}.
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The following pair of lemmas capture something of what is meant by the phrase
“working one prime at a time.”

Lemma 14.4.1. The ring Z is the limit of the diagram

Z(2)

##H
HH

HH
HH

HH
Z(3)

��

Z(5)

{{vv
vv
vv
vv
v

Z(7)

uullll
lll

lll
lll

lll
· · ·

Z(0) � Q

Lemma 14.4.2. The ring Z is the pullback

Z

��

//
⌟

∏
p
Ẑp

��
Q � Z(0) // (

∏
p
Ẑp)(0)

These results, sometimes called “fracture theorems,” generalize to finitely generated
abelian or, more generally, nilpotent groups. Sullivan, following Serre, introduced local-
izations and completions of spaces with corresponding finiteness hypotheses as a way of
“fracturing” homotopy types into “mod-p components.”

Construction 14.4.3 ([BK72, §I.2]). Fix a commutative ring R with unit. Applying
the free module functor R ⊗ − : Set → ModR pointwise, there is an induced functor from
simplicial sets to simplicial R-modules, which carries a simplicial set X to its free sim-
plicial R-module. Write RX for the simplicial subset of finite R-linear combinations of
simplices in which the coefficients sum to the ring unit 1. The obvious natural transforma-
tions η : id⇒ R and µ : R2 ⇒ R make R into a monad on sSet.

The choice of a basepoint ∗ ∈ X defines an isomorphism between RX and the quotient
of the free R-module on X by the submodule spanned by the basepoint, which makes RX
into a simplicial R-module. The reduced R-homology of a based space X is defined by

H̃∗(X; R) = π∗(R ⊗ X/R ⊗ ∗).

Hence, via this isomorphism, we have

(14.4.4) π∗(RX) � H̃∗(X; R),

and moreover the unit map X → RX induces the Hurewicz homomorphism. Thus, by
construction, X → Y is an R-homology isomorphism if and only if RX → RY is a weak
homotopy equivalence.

Exercise 14.4.5. Show that for any simplicial set X, RX is a Kan complex. This result,
analogous to [GJ99, 3.4] or [May67, 17.1], combines with Theorem 10.5.1 to imply that
X → Y is an R-homology isomorphism if and only if the induced map RX → RY is a
homotopy equivalence.

Given a monad such as the triple (R, η, µ) defined on sSet in Construction 14.4.3, the
monad resolution is a functor R• : sSet → sSet∆+ from the base category to the category
of augmented cosimplicial objects defined at a simplicial set X by the diagram

X η // RX
ηR //

Rη //
R2Xµoo RηR //

ηR2 //

R2η //

R3X· · ·
Rµoo

µRoo
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Exercise 14.4.6. Forgetting the augmentation, show that the cosimplicial object R•X
is Reedy fibrant. (Hint: see [May67, p. 67] for inspiration.)

Definition 14.4.7 (R-completion). The R-completion of a simplicial set X is

R∞X := Tot R•X,

the totalization of the cosimplicial simplicial set R•X, as defined in Example 4.3.1. By
Exercise 14.4.6, R∞X is the limit of a tower of fibrations defined with respect to the total-
izations of truncations of R•X. The augmentation X

η
−→ RX of the cosimplicial object R•X

factors through the totalization, providing a natural map X
ϕ
−→ R∞X.

Lemma 14.4.8. A map f : X → Y of simplicial sets is an R-homology equivalence if
and only if R∞ f : R∞X → R∞Y is a homotopy equivalence.

Proof. Applying R to the factorization of η through ϕ and post-composing with the
monad multiplication µ defines a retract diagram

RX

R f
��

Rϕ // RR∞X

RR∞ f
��

// RX

R f
��

RY
Rϕ
// RR∞Y // RY

Taking homotopy groups, the isomorphisms (14.4.4) tell us that if R∞X → R∞Y is a homo-
topy equivalence, then f is an R-homology equivalence, because retracts of isomorphisms
are isomorphisms.

Conversely, an R-homology equivalence X → Y induces a pointwise weak homotopy
equivalence R•X → R•Y by 14.4.3. By Exercise 14.4.6 and the dual of Corollary 14.3.10,
the totalization R∞ f : R∞X → R∞Y is a weak homotopy equivalence, and hence, a homo-
topy equivalence between Kan complexes. □

When X is nilpotent, the simplicial set (ZP)∞X is a P-localization of X in the sense
made precise by the statement of Theorem 14.4.11.

Definition 14.4.9. A space or simplicial set X is nilpotent if the action of π1X on each
πnX, n ≥ 1, is nilpotent: i.e., if πnX admits a finite sequence of subgroups

πnX = G1 ▷ · · · ▷Gk = ∗

so that
(i) Gi+1 is normal in Gi and Gi/Gi+1 is abelian,

(ii) each Gi is closed under the action of π1X, and
(iii) the induced action on Gi/Gi+1 is trivial.

A group is nilpotent if and only if its action by inner automorphisms is nilpotent. In
particular, abelian groups are nilpotent. The n = 1 case of Definition 14.4.9 requires the
fundamental group of a nilpotent space to be nilpotent.

Example 14.4.10. When X is simply connected (so that π1X = 0), the π1X-actions are
trivial and of course the higher homotopy groups are abelian. So simply connected spaces
are nilpotent.

When X is nilpotent, its homotopy groups πnX are finitely generated for each n ≥ 1
if and only if its integral homology groups are finitely generated, and this is the case if
and only if X is weakly equivalent to a CW complex with finite skeleta [MP12, 4.5.2].
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Nilpotent spaces can be approximated by Postnikov towers, leading to an elementary de-
velopment of localization and completion and proofs of their properties; see [MP12, §3].
For the remainder of this section, we will assume that the simplicial set X is based, con-
nected, and nilpotent.

Theorem 14.4.11 (Bousfield-Kan). Let P be any set of primes. If X is based, con-

nected, and nilpotent, then X
ϕ
−→ (ZP)∞X is a ZP-homology equivalence, and the natural

map
π∗X ⊗Z ZP → π∗((ZP)∞X)

is an isomorphism, i.e., the homotopy groups of (ZP)∞X are the P-localizations of the
homotopy groups of X.

Even in algebra, completions are more subtle than localizations; see, e.g., [Sul71, §1]
and [MP12, §10]. For simplicity, we will consider only finitely generated abelian groups
A, for which the p-adic completion may be defined by the formula

Âp � A ⊗Z Ẑp.

In topology, this means we must restrict further to based, connected, nilpotent simplicial
sets whose homotopy groups are finitely generated abelian groups. The behavior when the
homotopy groups are not of finite type is also understood, but we will not go into that here.

Theorem 14.4.12 (Bousfield-Kan). If X is based, connected, nilpotent, and has finitely

generated abelian homotopy groups, then X
ϕ
−→ (Z/p)∞X is a Z/p-homology equivalence,

and the natural map
π∗X ⊗Z Ẑp → π∗((Z/p)∞X)

is an isomorphism, i.e., the homotopy groups of (Z/p)∞X are the p-adic completions of the
homotopy groups of X.

We are now prepared to state two of the several “fracture theorems,” in analogy with
Lemmas 14.4.1 and 14.4.2. Given a pair of based simplicial sets, write [W, X] as short-
hand for the set of maps from W to X in the homotopy category Ho(sSet∗). When X is a
Kan complex, this is the usual set of homotopy classes of maps defined via the notion of
homotopy provided by the simplicial tensor structure described in Example 3.7.13.

Theorem 14.4.13 ([BK72, V.6.2]). Suppose that W and X are connected, based sim-
plicial sets. If X is nilpotent and W is finite, then the set [W, X] is the limit of the diagram

[W, (Z(2))∞X]

''PP
PPP

PPP
PPP

P
[W, (Z(3))∞X]

��

[W, (Z(5))∞X]

wwnnn
nnn

nnn
nnn

[W, (Z(7))∞X]

ssggggg
ggggg

ggggg
ggggg

ggg
· · ·

[W,Q∞(X)]

with limit cone defined by the localization maps ϕ.

Theorem 14.4.14 ([BK72, VI.8.1]). Suppose that W and X are connected, based sim-
plicial sets. If X is nilpotent, has finitely generated homotopy groups, and W is finite,
then

[W, X]

��

//
⌟

∏
p

[W, (Z/p)∞X]

��
[W,Q∞X] // [W,Q∞(

∏
p

(Z/p)∞X)]
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is a pullback in which the upper horizontal map is injective.

More general versions of Theorems 14.4.13 and 14.4.14 can be found in [BK72] or
[MP12].

14.5. Homotopy colimits of topological spaces

Corollary 14.3.10 is essential to the proof given in Chapter 5 that our homotopy col-
imit formula is homotopical, computing a well-defined homotopy type for the homotopy
colimit of pointwise weakly equivalent diagrams of the same shape. Let us briefly recall
the proof. Given a small category D, a pointwise weak equivalence F → F′ between a
pair of diagrams of shapeD induces a pointwise weak equivalence

(14.5.1) B•(∗,D,QF)→ B•(∗,D,QF′)

between simplicial objects because coproducts of weak equivalences between cofibrant ob-
jects are again weak equivalences. As proven in Lemma 5.2.1, the one-sided simplicial bar
construction on a pointwise cofibrant diagram is Reedy cofibrant. By Corollary 14.3.10,
the geometric realization of (14.5.1) is weak equivalence

hocolimD F = B(∗,D,QF)→ B(∗,D,QF′) = hocolimD F′.

This proves that the functor hocolimD is homotopical.
As mentioned in Remark 6.3.4 and used throughout this text, in the convenient cate-

gory of spaces, one can show that the functor B(∗,D,−) preserves all weak equivalences,
not just those between pointwise cofibrant diagrams. Our aim in this section is to outline
a proof of this, referring the reader to [DI04, §A], our source for this material, for more
details.

To begin, observe that coproducts of weak equivalences between arbitrary spaces are
weak equivalences by an elementary connectedness argument. Because the natural map
q : QF → F is a weak equivalence, it follows that B•(∗,D,QF) and B•(∗,D, F) are point-
wise weak equivalent. The proof that B(∗,D,QF) and B(∗,D, F) are weak equivalent, and
hence that the latter has the homotopy type of the homotopy colimit, has two remaining
steps. The first is that the functor | − | : Top∆op

→ Top preserves weak equivalences be-
tween split simplicial spaces, even if they are not Reedy cofibrant. The conclusion follows
because the simplicial spaces B•(∗,D, F) are split.

Definition 14.5.2. A simplicial space X• is split if there exist subspaces NnX ↪→ Xn

for each n so that the canonical map ∐
[n]↠[k]

NkX → Xn

is an isomorphism.

The idea is that the space Xn decomposes as a direct sum of the “non-degenerate” part
NnX, and the remaining “degenerate” part itself decomposes as a direct sum of appropriate
lower-dimensional “non-degenerate” pieces. If X• is split and the spaces NnX are cofibrant,
then the argument given in the proof of Lemma 5.2.1 shows that X• is Reedy cofibrant.

Example 14.5.3. Given any diagram F : D → Top, the simplicial space B•(∗,D, F)
is split, with NnB•(∗,D, F) defined to be the component of the coproduct

∐
d⃗ : [n]→D Fdn

indexed by non-degenerate n-simplices in ND.
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Recall that the geometric realization of a simplicial space is the colimit of the sequence
(14.0.1). When X• is split, the maps in this sequence are pushouts

(14.5.4) |∂∆n| × NnX //

in×1
�� ⌜

skn−1|X|

��
|∆n| × NnX // skn|X|

An inclusion A ↪→ B is a relative T1 inclusion if for any open subset of A and point
in B\A, there is some open subset of B containing the open subset of A but not the point.

Exercise 14.5.5. Let N be any space. Show that the pushout

|∂∆n| × N //

in×1
�� ⌜

A

��
|∆n| × N // B

is a relative T1 inclusion.

The use of the term “compact” is the context of what it means to “permit the small
object argument” is inspired by the following lemma.

Lemma 14.5.6. Suppose K is compact and

Y0 ↪→ Y1 ↪→ Y2 ↪→ · · ·

is a sequence of relative T1 inclusions. Then any continuous map f : K → colimn Yn

factors through some Yk.

Proof. Suppose this is not the case and, passing to a subsequence, choose a sequence
of points k1, k2, . . . ∈ K with f (kn) ∈ Yn\Yn−1. Fix m ≥ 0 and let Um = Ym and use the
relative T1 property to define, for each n > m, open subsets Un ⊂ Yn that contain Un−1 but
none of the points f (k j) for each m < j ≤ n. The union of these subsets is an open subset
Vm ⊂ colimn Yn. As m varies, the Vm cover colim Y and hence f (K), but the construction
permits no finite subcover. □

Proposition 14.5.7. If X• → Y• is a pointwise weak equivalence of split simplicial
spaces, then |X•| → |Y•| is a weak equivalence.

Proof. Because X• is split, |X•| is a colimit of a sequence of relative T1 inclusions
by (14.5.4) and Exercise 14.5.5. Because spheres are compact, Lemma 14.5.6 gives an
isomorphism

colim
n
πk |sknX•|

�
−→ πk |X•|

for all k ≥ 0. Hence, it suffices to show that the maps |sknX•| → |sknY•| are weak equiva-
lences. By a connectedness argument, the natural transformation X• → Y• is comprised of
weak equivalences NnX → NnY . The induction step is completed by applying the follow-
ing lemma to the pushout squares (14.5.4). □

Lemma 14.5.8. Given arbitrary spaces and weak equivalences A → B and X → Y
consider a diagram

|∆n| × A

��

|∂∆n| × A //oo

��

X

��
|∆n| × B |∂∆n| × Boo // Y
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in which the vertical and left-hand horizontal maps are the obvious ones. Then the induced
map between the pushouts is a weak equivalence.

We leave the proof as an exercise to the reader with the following hint: the key topo-
logical input is the following classical result, which also underpins the Mayer-Vietoris
sequence.

Lemma 14.5.9 ([Gra75, 16.24]). A map f : X → Y in Top is a weak equivalence if
there is some open cover U,V of Y such that the maps

f −1(U)→ U, f −1(V)→ V, f −1(U ∩ V)→ U ∩ V

are weak equivalences.

Remark 14.5.10. This argument does not extend to the weighted homotopy colimits
discussed in section 9.2. Unless each unit map ∗ → D(d, d) for a small topologically
enriched category admits a complement, i.e., unless the space D(d, d) decomposes into
a disjoint union of the point representing the identity and its complement, the simplicial
space B•(G,D, F) will not be split. While we do not know of an explicit example of a non-
pointwise cofibrant diagram of spaces whose weighed homotopy colimit B(QG,D,QF) is
not weakly equivalent to B(G,D, F), new ideas would be needed to argue that the simpler
formula, without the pointwise cofibrant replacements, suffices.



Part IV

Quasi-categories





CHAPTER 15

Preliminaries on quasi-categories

One of the fundamental invariants of algebraic topology arises when we regard a topo-
logical space as something like a category, or rather a groupoid. The points of the space
become objects of the category. A path, here a continuous function from the standard unit
interval, represents a morphism between its starting and ending points. More accurately,
in order for there to be an associative composition law, we must revise this outline slightly
and define a morphism to be an endpoint-preserving homotopy class of paths. This defines
the fundamental groupoid of the space.

But from the topological perspective, it seems artificial to take homotopy classes of
paths in pursuit of strict associativity. The more natural construction forms a (weak) ∞-
groupoid with objects the points of X, 1-morphisms the paths in X, 2-morphisms the ho-
motopies between paths, 3-morphisms the homotopies between these homotopies, and so
on. With this example in mind, the homotopy hypothesis, a principle guiding these defi-
nitions, says that an∞-groupoid should be the same thing as a topological space.

Continuing in this vein, mathematical structures admitting a topological enrichment
assemble into (∞, 1)-categories, loosely defined to be categories with morphisms in each
dimension such that every morphism above dimension 1 is invertible. One way to en-
code this definition is to say that an (∞, 1)-category is a category (weakly) enriched in
∞-groupoids, which are also called (∞, 0)-categories. In what follows, the terms quasi-
category and ∞-category are synonyms for a particular model of (∞, 1)-categories for
which these objects are simplicial sets with a certain lifting property.

In this chapter, we define quasi-categories and introduce the appropriate notion of
equivalence between them. We then explain how quasi-categories model (∞, 1)-categories,
by introducing the homotopy category of a quasi-category and several equivalent models
for the hom-spaces between objects in a quasi-category.

Before proceeding any further, we should set notation for particular simplicial sets. As
above, we write ∆n for the standard n-simplex; ∂∆n for its boundary, the simplicial (n− 1)-
sphere; Λn

k for the subset thereof consisting of all faces containing the vertex k ∈ [n]. By
convention ∂∆0 = ∅. It will be convenient to have names for the canonical inclusions: we
like jnk : Λn

k → ∆
n and in : ∂∆n → ∆n because the j’s are generating trivial cofibrations

and the i’s generating cofibrations in Quillen’s model structure of 11.3.5. Recall that that
weakly saturated closures of the jnk and the in are the classes of anodyne maps and cofibra-
tions, respectively. As shorthand, we often write ∗ for the terminal object ∆0 and I for ∆1.
This interval object gives rise to the notion of simplicial homotopy.

Using the Yoneda lemma, we write di : ∆n−1 → ∆n for the ith face inclusion and
si : ∆n+1 → ∆n for the ith degeneracy map for each i ∈ [n]; these are the traditional names
given to the corresponding morphisms in ∆. Again by the Yoneda lemma, precomposition
with maps between representable simplicial sets defines the right action of the category ∆
on the graded set of simplices in a simplicial set.

207
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We will make frequent use of the fact that the category of simplicial sets is cartesian
closed. Recall, from Example 1.5.6 that an n-simplex ∆n → YX in the hom-space from
X to Y is, by adjunction, a map X × ∆n → Y of simplicial sets. In particular, for each
m-simplex in X, we get a map ∆m ×∆n → X ×∆n → Y; conversely the n-simplex ∆n → YX

is defined by this data, chosen compatibly with faces and degeneracies. The next exercises
are intended to familiarize the reader with the geometry of the simplicial set ∆m × ∆n.

Exercise 15.0.1. The vertices of ∆m×∆n are labelled by ordered pairs (i, j) with i ∈ [m]
and j ∈ [n]. Because ∆m × ∆n is the nerve of the poset [m] × [n], each simplex is uniquely
determined by its vertices. Use this notation to describe the k-simplices in ∆m × ∆n and to
characterize the non-degenerate simplices.

Exercise 15.0.2 (Leibniz formula). The boundary of ∆m ×∆n is the union ∂∆m ×∆n ⊔

∆m × ∂∆n. Characterize the k-simplices appearing in the boundary.

Exercise 15.0.3. A top-dimensional non-degenerate simplex of ∆m × ∆n is called a
shuffle. Explain which shuffles share codimension-one faces and use this to give a sensible
partial ordering on the set of shuffles with a minimal and a maximal element.

15.1. Introducing quasi-categories

The original definition of a weak Kan complex, now called a quasi-category (fol-
lowing Joyal [Joy02]) or an ∞-category (following Jacob Lurie [Lur09]), is due to J.
Michael Boardman and Rainer Vogt [BV73]. Their motivating example appears as Exam-
ple 16.4.12.

Definition 15.1.1. A quasi-category is a simplicial set X such that X → ∗ has the
right lifting property with respect to the inner horn inclusions jnk for each n ≥ 2, 0 < k < n.

(15.1.2) Λn
k

//

��

X

∆n

??�
�

�
�

An n-simplex that extends a given horn in X is colloquially called a filler and is thought
of as some sort of composite of the (n − 1)-simplices in the inner horn. This intuition is
clearest in the case n = 2. The slogan, that such composites are unique up to a contractible
space of choices, will be proven as a consequence of Corollary 15.2.4 below.

There are two principle sources of simple examples. More sophisticated examples are
produced by Lemma 16.4.10.

Example 15.1.3. Nerves of categories are quasi-categories; in fact in this case each lift
(15.1.2) is unique.

Example 15.1.4. Tautologically, Kan complexes are quasi-categories. In particular, the
total singular complex of a topological space is a Kan complex and hence a quasi-category.

Any quasi-category X has an associated homotopy category hX. Objects are vertices
of X. A 1-simplex f represents a morphism whose source is the vertex f d1 and whose
target is the vertex f d0. Hence, 1-simplices in a quasi-category (or simplicial set) are

often depicted as arrows f d1 f
−→ f d0. The degenerate 1-simplices serve as identities in the

homotopy category and are frequently depicted using an equals sign in place of the arrow.
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As the name would suggest, the morphisms in hX are homotopy classes of 1-simplices,
where a pair of 1-simplices f and g with common boundary are homotopic if there exists
a 2-simplex whose boundary has any of the following forms:

(15.1.5) · f
��>

>>>
∼

·
>>>

>
>>>

>
∼

· g
��>

>>>
∼

·
>>>

>
>>>

>
∼

·

����
����

g
// · ·

f @@����
g
// · ·

����
����

f
// · ·

g @@����
f
// ·

Indeed, in a quasi-category, if any of the 2-simplices (15.1.5) exists then there exists a
2-simplex of each type.

Exercise 15.1.6. Prove this.

Generic 2-simplices in X

(15.1.7) · g
��>

>>>
∼

·

f @@����
h
// ·

witness that g f = h in the homotopy category. Conversely, if h = g f in hX and f , g, h are
any 1-simplices representing these homotopy classes, then there exists a 2-simplex (15.1.7)
witnessing the composition relation. The reader who has not seen this before is encouraged
to work out the details; or see [Lur09, §1.2.3].

Exercise 15.1.8. Show that h is the left adjoint to the nerve functor introduced in 1.5.5.

qCat
h
((
Cat

N

⊥oo

Here we have restricted the domain of the left adjoint to qCat ⊂ sSet, the full subcate-
gory of quasi-categories. The definition of the homotopy category associated to a generic
simplicial set is slightly more complicated.

15.2. Closure properties

Because quasi-categories are characterized by a lifting property, they immediately in-
herit closure properties from Lemma 11.1.4. We call the left and right classes of the weak
factorization system generated by the inner horn inclusions the inner anodyne maps and
the inner fibrations, respectively. The inner fibrations are closed under products, pull-
backs, retracts, and composition. It follows that quasi-categories are closed under products
and retracts.

One might conjecture that if X is a quasi-category and A is a simplicial set, then XA is
a quasi-category. For one thing, this is true for Kan complexes. For another, in categorical
contexts, diagram spaces tend to inherit the properties of their codomain, such as closure
under certain limits or colimits. Not only is it true that XA is a quasi-category if X is, but
the proof encodes what is in some sense the key combinatorial result underlying the theory
of quasi-categories.

Let us think what is being asserted by this statement. From the definition, we are asked
to show that there exist extensions

Λn
k

//

��

XA

∆n

>>}
}

}
}

↭

A × Λn
k

��

// X

A × ∆n

<<y
y

y
y

y
↭

X∆
n

��
A

>>}
}

}
}

// XΛ
n
k
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for all n ≥ 2, 0 < k < n. The three lifting problems correspond by the two-variable
adjunction defining the cartesian closed structure on simplicial sets. To define the lift in
the right-hand diagram, we must choose cylinders ∆m × ∆n → X for each m-simplex in A
in a way that is compatible with the specified horn ∆m × Λn

k → X and also with previously
specified cylinders ∂∆m × ∆n → X corresponding to the boundary of the m-simplex. In
other words, inductively, we must choose extensions

∂∆m

��

// X∆
n

��
∆m //

66nnnnnnn
A // XΛ

n
k

↭

∂∆m × ∆n ∐
∂∆m×Λn

k

∆m × Λn
k

im×̂ jnk
��

// X

∆m × ∆n

77oooooooo

The indicated lifting problems are transposes, using the fact that the map X∆
n
→ XΛ

n
k is the

pullback-hom of jnk with X → ∗. Such extensions always exist on account of the following
result.

Proposition 15.2.1 (Joyal). The pushout-product of a monomorphism with an inner
anodyne map is inner anodyne.

Proof. Using Corollary 12.2.4, which characterizes the left class of a weak factoriza-
tion in a category permitting the small object argument as retracts of “relative cell com-
plexes” built from the generators, it suffices to show this is true of the im×̂ jnk’s because the
bifunctor −×̂− preserves these colimits in each variable. A direct proof, decomposing these
monomorphisms into pushouts of inner horns and thereby giving each pushout-product an
inner anodyne cellular structure, is given in [DS11a, A.1]. A non-constructive proof is
given in [Lur09, 2.3.2.4]. □

Remark 15.2.2. Define a trivial fibration of simplicial sets to be a map with the right
lifting property against the monomorphisms, also called the cofibrations in this context.
Applying Lemma 11.1.10 to the (cofibration, trivial fibration) weak factorization system
and two copies of the (inner anodyne, inner fibration) weak factorization system, Proposi-
tion 15.2.1 is equivalent to either of the following two statements:

(ii) the pullback-hom of a cofibration with an inner fibration is an inner fibration
(iii) the pullback-hom of an inner anodyne map with an inner fibration is a trivial

fibration.

Corollary 15.2.3. If A is a simplicial set and X is a quasi-category, then XA is a
quasi-category.

Proof. The pullback-hom of ∅ → A and X → ∗ is XA → ∗. □

Corollary 15.2.4. If X is a quasi-category and Λn
k any inner horn, then X∆

n
→ XΛ

n
k

is a trivial fibration.

In particular, by pullback stability of the trivial fibrations, the fiber over any point is
a contractible Kan complex. This says that the space of fillers to a given horn in X is a
contractible Kan complex. This is the common form taken by a homotopical uniqueness
statement in quasi-category theory and is what is meant by saying something is “well
defined up to a contractible space of choices.”

Another corollary sounds more sophisticated, though the proof is no harder. By Corol-
lary 7.6.4, the simplicial category sSet is complete and cocomplete in the simplicially
enriched sense, admitting all weighted colimits. We write qCat for the full simplicial sub-
category spanned by the quasi-categories. We learned this theorem from Dominic Verity.
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Theorem 15.2.5. The weighted limit of any diagram X : D → qCat whose weight
W : D → sSet is projectively cofibrant is a quasi-category.

When D is unenriched, this notion of projectively cofibrant is exactly the one de-
scribed in 11.5.5. But this result and our desired applications extend to simplicially en-
riched diagrams, for which case we say a simplicial functor W is projective cofibrant just
when the unique map ∅ → W is in the weakly saturated closure of the maps

{D(d,−) × ∂∆n → D(d,−) × ∆n | n ≥ 0, d ∈ D}.

Proof. By 12.2.4, W is projective cofibrant just when ∅ → W is a retract of a (transfi-
nite) composite of pushouts of coproducts of such maps. Note that the limit of X weighted
by the empty weight is the terminal object ∗. Because the class of inner fibrations is closed
under the duals of these colimits, it suffices to show that for any diagram X : D → qCat
the map of weighted limits

limD(d,−)·∆n
X → limD(d,−)·∂∆n

X

is an inner fibration.
By Theorem 7.6.3 and the Yoneda lemma

limD(d,−)·∆n
X �

∫
e∈D

XeD(d,e)·∆n
�

(∫
e∈D

XeD(d,e)
)∆n

= Xd∆
n

Similarly, limD(d,−)·∂∆n
X � Xd∂∆

n
and the map comparing the weighted limits is the map

between the internal homs induced by the inclusion ∂∆n → ∆n. Because Xd is a quasi-
category, 15.2.2.(ii) implies that this map is an inner fibration, as desired. □

Example 15.2.6. Consider a diagram f : 2→ qCat whose image is f : X → Y and the
weight N(2/−) : 2 → sSet. As described at the end of Chapter 11, N(2/−) is projectively
cofibrant. Its image is the map d1 : ∆0 → ∆1. Using the usual end formula, the weighted
limit is the pullback

limN(2/−) f

��

//
⌟

Y∆
1

d1

��
X

f
// Y

In this way we see that the weighted limit the usual path space N f defined in Example
6.5.2. Theorem 15.2.5 tells us that this space is a quasi-category. Of course, this can
also be deduced directly from Proposition 15.2.2(ii) and the closure properties of the inner
fibrations, but in other examples this is much less obvious.

Indeed, it follows, essentially from Theorem 15.2.5 and Corollary 11.5.13, that quasi-
categories are closed under arbitrary homotopy limits. The proof is straightforward once
we settle upon the correct notion of “homotopy limit” in the quasi-categorical context. We
will return to this topic in section 17.7.

15.3. Toward the model structure

By a well-known theorem of Quillen, Kan complexes, which are combinatorial models
for spaces, are the fibrant objects in a model structure on sSet whose cofibrations are the
monomorphisms. We might hope that there is another model structure on sSet with the
monomorphisms as cofibrations and whose fibrant objects are the quasi-categories, and
indeed this is true. Furthermore, there is only one such model structure:
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Theorem 15.3.1 ([Joy08a, E.1.10]). The cofibrations and fibrant objects completely
determine a model structure, supposing it exists.

Proof. It suffices to prove that this data determines the weak equivalences. The cofi-
brations are the left class of a weak factorization system (C,Ft) whose right class is the
class of trivial fibrations. It suffices to show this weak factorization system together with
the fibrant objects determine the weak equivalences. The weak factorization system (C,Ft)
gives us a notion of cofibrant replacement for objects and maps. By the 2-of-3 property, a
map is a weak equivalence if and only if its cofibrant replacement is a weak equivalence.
Hence, it suffices to determine the weak equivalences between cofibrant objects.

Because any model categoryM is saturated, a map is a weak equivalence if and only
if it is an isomorphism in the homotopy category. By the Yoneda lemma, a map is an
isomorphism if and only if the corresponding natural transformation is an isomorphism
of represented functors. Because every object in the homotopy category is isomorphic
to a fibrant object, a map f : A → B is a weak equivalence if and only if the maps
HoM(B, X)→ HoM(A, X) are bijections for each fibrant object in X.

We have reduced to the case where A and B are cofibrant, which allows us to exploit
Quillen’s construction of the hom-set from a cofibrant object to a fibrant object in HoM.
Quillen shows that HoM(A, X) is the quotient ofM(A, X) by the “left-homotopy” relation
defined using a cylinder object for A, which is in turn defined by the cofibration–trivial
fibration factorization. In this way, the cofibrations and fibrant objects precisely determine
the model structure, supposing it exists. □

We use this result to define the weak equivalences for the hoped-for model structure for
quasi-categories. A concrete description makes use of a particularly nice cylinder object.
Let J be the nerve of the free-standing isomorphism I; the name is selected because J is
something like an interval. Equivalently, J is the 0-coskeletal simplicial set on the set of
two vertices. This simplicial set might also be called S∞ because it has two non-degenerate
simplices in each dimension, is contractible (by the result we are about to prove), and has
a natural Z/2 action. Indeed, it is a simplicial model for the total space of the classifying
space RP∞ = K(Z/2, 1) = B(∗,Z/2, ∗); cf. 6.4.11.

Lemma 15.3.2. The map J → ∗ is a trivial fibration.

Proof. We must show that there exist solutions to lifting problems

∂∆n

��

// J

��
∆n // ∗

When n = 0 this is true because J is non-empty. For larger n, we use the fact that J �
cosk0J. By adjunction, it suffices to show that J lifts against sk0∂∆

n → sk0∆
n, but for

n > 0, the 0-skeleton of ∆n is isomorphic to that of its boundary. □

For any simplicial set A, the projection A × J → A is a pullback of J → ∗. Hence
A× J → A is also a trivial fibration by Lemma 11.1.4. Evidently, the obvious map A⊔A→
A × J is a monomorphism and hence a cofibration. It follows that J can be used to define
cylinder objects, i.e., functorial factorizations of the form

A ⊔ A // // A × J ∼ // // A

for any simplicial set A.
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Write [A, X]J for the quotient of the set of maps from the simplicial set A to the quasi-
category X by the relation generated by f ∼ g whenever there exists a diagram

(15.3.3)

A
f

""E
EE

EE
EE

EE

j0
��

A × J // X

A

j1

OO

g

<<yyyyyyyyy

↭

∗

f

  A
AA

AA
AA

j0
��
J // XA

∗

j1

OO

g

>>}}}}}}}}

Indeed, we will eventually see that the “generated” here is unnecessary: by Lemma 17.0.2
and Lemma 17.2.5, any f and g in the same equivalence class admit such diagrams. Note
that any ∅ → A is a monomorphism; hence, all simplicial sets are cofibrant. By the proof
of Theorem 15.3.1, a map f : A→ B of simplicial sets is a weak equivalence in the model
structure for quasi-categories if and only if it induces a bijection [B, X]J → [A, X]J for
all quasi-categories X. We follow Lurie and call these maps categorical equivalences or
simply equivalences if the source and target are quasi-categories. Joyal calls these weak
equivalences “weak categorical equivalences.”

Example 15.3.4. By 15.2.2.(iii), if A→ B is inner anodyne and X is a quasi-category,
then XB → XA is a trivial fibration and in particular has a section XA → XB which can
be used to show that the map [B, X]J → [A, X]J is surjective. The right lifting property of
XB → XA against ∗ ⊔ ∗ → J can be used to prove injectivity. Hence, inner anodyne maps
are categorical equivalences.

Exercise 15.3.5. Show that the trivial fibrations are categorical equivalences.

We record, but do not take time to establish, the model structure. For proof see [Lur09,
2.2.5.1], [DS11a, 2.13], or [Rie08], which is an exposition of Joyal’s original proof.

Theorem 15.3.6 (Joyal). There is a left proper, cofibrantly generated, monoidal model
structure on sSet whose fibrant objects are precisely the quasi-categories, whose cofibra-
tions are monomorphisms, whose weak equivalences are the categorical equivalences just
defined, and whose fibrations between fibrant objects are those maps that lift against the
inner horn inclusions and also the map j0 : ∗ → J.

Remark 15.3.7. The inner horn inclusions are not the generating trivial cofibrations,
though they do suffice to detect the fibrant objects. The inner horn inclusions together with
j0 suffice to detect fibrations between fibrant objects, called isofibrations. Set theoretical
arguments can be used to show that there exists a set of generating trivial cofibrations, but
no explicit description is known. See [Lur09, §A.2.6].

In Chapter 17, we will show that the definition of categorical equivalence forced upon
us by the model structure is a reasonable notion of equivalence for (∞, 1)-categories. A
corollary to the following lemma provides some preliminary supporting evidence.

Lemma 15.3.8. The nerve and its left adjoint define a Quillen adjunction h : sSet ⇄
Cat : N between Joyal’s model structure on sSet and the folk model structure on Cat.

Proof. Recall the definition of the folk model structure in 11.3.9. The homotopy cate-
gory functor h sends monomorphisms to functors that are injective on objects; it remains to
show that N preserves fibrations. The nerve functor is fully faithful because the counit of
the adjunction h ⊣ N is an isomorphism. It follows from this and the fact that J is the nerve
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of the free-standing isomorphism that the right adjoint sends isofibrations in Cat to maps
that lift against j0 : ∗ → J. Furthermore, the nerve of any functor is an inner fibration; this
is because nerves of categories have unique fillers for all inner horns. Hence, N preserves
fibrations by Example 15.1.3 and Remark 15.3.7. □

Corollary 15.3.9. If f : X → Y is a categorical equivalence, then h f : hX → hY is an
equivalence of categories. If F : C → D is an equivalence of categories, then NF : NC →
ND is a categorical equivalence.

Proof. This follows from the previous result and Ken Brown’s Lemma 11.3.14. □

Remark 15.3.10. Joyal’s model structure has the same cofibrations as Quillen’s and
more fibrant objects: hence it has a smaller class of weak equivalences. This means that
the Quillen model structure is a left Bousfield localization of the Joyal model structure (see
12.3.3). In particular, a categorical equivalence is necessarily a weak homotopy equiva-
lence.

As a special case of a general result for left Bousfield localizations, a weak homotopy
equivalence between Kan complexes is a categorical equivalence, and indeed an equiva-
lence of quasi-categories [Hir03, 3.2.13]. But in general, weak homotopy equivalences be-
tween quasi-categories need not be equivalence: for instance, the monomorphism ∆1 → J
is a weak homotopy equivalence but not a categorical equivalence because 2→ I is not an
equivalence of categories.

We will see in Chapter 17 that an equivalence X → Y of quasi-categories always
admits an inverse equivalence Y → X together with an “invertible homotopy equivalence”
(17.2.6) using the notion of homotopy on display in (15.3.3).

15.4. Mapping spaces

For a quasi-category to model an (∞, 1)-category there must be hom-spaces between
its objects (the vertices) representing well-defined homotopy types. These homotopy types,
elements in the homotopy category of spaces H , should have the property that their un-
derlying sets, computed by applying the functor π0 : H → Set, coincide with the hom-sets
in the homotopy category hX associated to the quasi-category. In this section, we will
take several stabs at the definition and prove that our guesses are all categorically equiv-
alent. Furthermore, it is easy to show that our three candidate hom-spaces are all quasi-
categories—indeed, we will see in 17.2.2 that they are Kan complexes.

Exploiting the cartesian closure of simplicial sets, for any quasi-category X we have a
quasi-category X∆

1
whose vertices are 1-simplices in X and whose n-simplices are cylin-

ders ∆n × ∆1 → X. To form the mapping space between two fixed vertices x, y ∈ X, we
might form the pullback

HomX(x, y)

��

//
⌟

X∆
1

��
∗

(x,y)
// X × X � X∂∆

1

By 15.2.2.(ii), HomX(x, y) is a quasi-category. An n-simplex in HomX(x, y) is a map ∆n ×

∆1 → X such that the image of ∆n × {0} is degenerate at x and and the image of ∆n × {1} is
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degenerate at y. In particular, 1-simplices look like

(15.4.1) x
f //
∼

∼ ��=
==

==
==

= y

x g
// y

from which we see that π0HomX(x, y) is the hom-set from x to y in hX.
A less symmetric but more efficient construction is also possible. Let HomR

X(x, y) be
the simplicial set whose 0-simplices are 1-simplices in X from x to y, whose 1-simplices
are 2-simplices of the form

x
��>

>>>
∼

x

����
���� // y

and whose n-simplices are (n+1)-simplices whose last vertex is y and whose (n+1)th face
is degenerate at x. Dually, HomL

X(x, y) is the simplicial set whose n-simplices are (n + 1)-
simplices in X whose first vertex is x and whose 0th face is degenerate at y. Once again,
note that π0HomL

X(x, y) = π0HomR
X(x, y) = hX(x, y).

Remark 15.4.2. The simplicial sets HomL
X(x, y) and HomR

X(x, y) are dual in the sense
that HomL

X(x, y) = (HomR
Xop (y, x))op. The annoying fact, from the perspective of homotopy

(co)limits, that a simplicial set is not isomorphic to its opposite, in which the conventions
on ordering of vertices in a simplex are reversed, is technically convenient here.

Exercise 15.4.3. Show that HomR
X(x, y) is a quasi-category, or at least prove that

HomR
X(x, y) has fillers for horns Λ2

1 → ∆
2.

In order to prove that HomL
X(x, y), HomR

X(x, y), and HomX(x, y) are categorically equiv-
alent when X is a quasi-category, let us think geometrically about the difference. This dis-
cussion, and some of our notation, follows [DS11a], with modifications due to Verity. Each
quasi-category has the same zero simplices. An n-simplex in HomL

X(x, y) or HomR
X(x, y) is

an (n + 1)-simplex in X, one of whose faces is degenerate. The shapes are given by the
quotients

∆n

d0

��

//

⌜

∆0

��

∆n

dn+1

��

//

⌜

∆0

��
∆n+1 // ∆n+1

0|1 ∆n+1 // ∆n+1
n|n+1

Let us explain the notation. Surjections ∆n → ∆1 correspond to integers 0 ≤ i < n which
partition the vertices of ∆n into the fiber [0 · · · i] over 0 and the fiber [i+ 1 · · · n] over 1. We
write ∆n

i|i+1 for the quotient of ∆n which collapses the face spanned by the vertices [0 · · · i]
to a point and the face spanned by the vertices [i + 1 · · · n] to a point.1 This simplicial set
has two vertices and has a non-degenerate k-simplex for each non-degenerate k-simplex of
∆n whose image surjects onto ∆1.

1Of course the “i+ 1” subscript is redundant and is omitted in [DS11a]; however we do not want to confuse
this simplicial set with the set of i-simplices in ∆n.
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Similarly, the shape of an n-simplex in HomX(x, y) is given by

∆n × ∂∆1

1×i1
��

proj2 //

⌜

∂∆1 � ∗ ⊔ ∗

��
∆n × ∆1 // Cn

cyl

We have canonical maps

(15.4.4) Cn
L := ∆n+1

0|1

$$I
II

II
II

II
Cn

cyl

��

rLoo rR // ∆n+1
n|n+1 =: Cn

R

yyttt
ttt

ttt
t

∆1

The horizontal maps are surjections: respectively, the quotients of the unique retractions
rL, rR : ∆n × ∆1 ⇒ ∆n+1 defined on vertices by rL(i, 0) = 0, rL(i, 1) = i + 1, rR(i, 0) = i, and
rR(i, 1) = n + 1.

Now write Cn
L for ∆n+1

0|1 and Cn
R for ∆n+1

n|n+1. This notation emphasizes that these con-
structions define three cosimplicial objects C•L,C

•
cyl,C

•
R taking values in the category of

simplicial sets and maps preserving two chosen basepoints. The target of these cosimpli-
cial objects is the slice category ∂∆1/sSet, which we denote by sSet∗,∗. The quasi-category
X with chosen vertices x, y becomes an object of sSet∗,∗. The geometric role played by the
cosimplicial objects C•L,C

•
cyl,C

•
R in our candidate hom-spaces is captured by the following

equalities, which define the hom-spaces using the hom-sets of sSet∗,∗:

HomL
X(x, y) = sSet∗,∗(C•L, X)

HomX(x, y) = sSet∗,∗(C•cyl, X)

HomR
X(x, y) = sSet∗,∗(C•R, X).

The natural maps HomL
X(x, y) → HomX(x, y) ← HomR

X(x, y) come from the maps
(15.4.4) between the cosimplicial objects. We would like to show that these are categorical
equivalences. Morally, this follows because C•L, C•cyl, and C•R are cofibrant resolutions of
∆1 in the Joyal model structure. But we will prove this in a way that does not appeal to a
black box. To begin:

Remark 15.4.5. The category sSet∗,∗, defined as a slice category, inherits a model
structure from the Joyal model structure on sSet: a map of twice-based simplicial sets is a
cofibration, fibration, or weak equivalence just when the underlying map of simplicial sets
is one. Fibrant objects are quasi-categories with chosen basepoints. An object is cofibrant
if and only if its two chosen basepoints are distinct.

Lemma 15.4.6. C•R, C•L, C•cyl are Reedy cofibrant.

Proof. Using Lemma 14.3.8, it suffices to show that these cosimplicial objects are
unaugmentable, i.e., that the equalizer of the face maps d0, d1 from the 0th object to the
1st is initial in sSet∗,∗. All of the proofs are similar. For C•cyl, the maps C0

cyl ⇒ C1
cyl include

C0
cyl = ∆

1 at the top and bottom of the simplicial set of shape (15.4.1). Hence the equalizer
is ∂∆1, as desired. □

The geometrical heart of the proof that our candidate hom-spaces are equivalent is in
the proof of the following result.
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Proposition 15.4.7. The canonical maps C•L ← C•cyl → C•R are pointwise categorical
equivalences.

Proof. Lemmas 15.4.10 and 15.4.11, to be proven shortly, show that the natural maps
Cn

L → ∆
1, Cn

cyl → ∆
1, and Cn

R → ∆
1 are categorical equivalences. The result then follows

from the 2-of-3 property. □

Having deferred the combinatorics, let us complete the proof. Given A, X ∈ sSet∗,∗ de-
fine their mapping space, the simplicial set of basepoint preserving maps, via the pullback

(15.4.8) hom(A, X)

��

//
⌟

XA

X(a,b)

��
∗

(x,y)
// X∂∆

1

in the category simplicial sets, where the pullback diagram is formed using the inclu-
sions of the basepoints a, b ∈ A and x, y ∈ X. When X is a quasi-category, the functor
X(−) : sSetop → sSet is right Quillen with respect to the Joyal model structure, as a con-
sequence of the assertion in Theorem 15.3.6 that this model structure is monoidal. Alter-
natively, a direct proof of this assertion uses 15.2.2, Remark 15.3.7, plus one additional
ingredient—that the map XJ → X is a trivial fibration.2 Given A → B in sSet∗,∗, the top
square of the cube

hom(A, X) //
⌟

��

XA

��

hom(B, X)

77nnnnnn

⌟

��

// XB

��

<<xxxxx

∗ //

mmm
mmm

mmm
mm

mmm
mmm

mmm
mm X∂∆

1

ww
wwww
ww

∗ //⌝ X∂∆
1

is a pullback because the bottom square and back and front faces are. This is a consequence
of composition and cancellation lemmas for pullbacks appearing in two adjacent squares
and their composite rectangle. In particular, hom(−, X) is a pullback of X(−) and hence
defines a right Quillen functor hom(−, X) : sSetop

∗,∗ → sSet because pullbacks inherit right
lifting properties. By Ken Brown’s Lemma 11.3.14, it follows that this functor preserves
categorical equivalences between objects with distinct basepoints.

Consider a cosimplicial object C• : ∆ → sSet∗,∗ and recall the definitions of latching
and matching objects from 14.1.1 and 14.2.5. Applying the functor hom(−, X), we have

Mnhom(C•, X) � lim∂∆
n

hom(C•, X) � hom(colim∂∆
n
C•, X) � hom(LnC•, X).

If C• is Reedy cofibrant, the maps LnC• → Cn are cofibrations; hence the maps

hom(Cn, X)→ hom(LnC•, X) � Mnhom(C•, X)

are fibrations because hom(−, X) is right Quillen. This says that hom(C•, X) is Reedy
fibrant with respect to the Joyal model structure. Applying this result to the cosimplicial
objects C•L,C

•
cyl,C

•
R we see that we have pointwise equivalences between Reedy fibrant

objects
hom(C•L, X)→ hom(C•cyl, X)← hom(C•R, X)

2The point is somewhat subtle; see [DS11a, A.4] for a hint of what is involved.
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in the category of bisimplicial sets. Recall from Lemma 14.2.10 that Reedy fibrant objects
are pointwise fibrant, although in this particular case, the fact that the hom(Cn, X) are
quasi-categories is obvious from the definition (15.4.8).

Remembering only the vertices of each simplicial set appearing in these simplicial
spaces—a process which might be called “taking vertices pointwise”—we are left with the
diagram of simplicial sets HomL

X(x, y) → HomX(x, y) ← HomR
X(x, y) that is actually of

interest. The proof that these maps are equivalences is completed by the following lemma.

Lemma 15.4.9. Suppose f : X → Y is a weak equivalence between Reedy fibrant bisim-
plicial sets. Then the associated map of simplicial sets X•,0 → Y•,0 obtained by taking
vertices pointwise is a weak equivalence.

Proof. By Ken Brown’s Lemma 11.3.14, it suffices to prove that if f : X → Y is a
Reedy trivial fibration of Reedy fibrant bisimplicial sets then the associated map X•,0 →
Y•,0 is an equivalence. Indeed, we will show that X•,0 → Y•,0 is a trivial fibration. By Re-
mark 14.2.11, to say that f is a Reedy trivial fibration is to say that each relative matching
map Xn → Yn ×MnY MnX is a trivial fibration in sSet.

The dimension zero content of this assertion is that the map on vertices Xn,0 →

(Yn ×MnY MnX)0 = Yn,0 ×(MnY)0 (MnX)0 is a surjection in Set. Limits in any complete
diagram category are computed pointwise; in particular, “taking vertices pointwise” com-
mutes with the weighted limit defining the matching objects. It follows from Definition
14.1.1 and Example 14.1.2 that (MnX)0 is the set of maps ∂∆n → X•,0. Combining this
with the Yoneda lemma, we see that surjectivity of Xn,0 → Yn,0×(MnY)0 (MnX)0 says exactly
that any lifting problem

∂∆n

��

// X•,0

��
∆n // Y•,0

has a solution. □

It remains only to slog through the combinatorics that shows that the maps Cn
L → ∆

1,
Cn

cyl → ∆
1, and Cn

R → ∆
1 are categorical equivalences.

Lemma 15.4.10 ([DS11a, 9.3]). For each 0 ≤ i < n, the surjection ∆n
i|i+1 → ∆

1 is a
categorical equivalence.

Proof. We identify non-degenerate simplices in ∆n with their vertices [v0 . . . vk]. Sim-
plices with v0 ≤ i and vk > i correspond bijectively to the non-degenerate simplices of
∆n

i|i+1 so we assign the same labeling to the latter. We start with the case i = 0 and prove

that the section ∆1 [01]
−−−→ ∆n

0|1 is inner anodyne. More specifically, we will factor this map as

∆1 = X1 ↪→ X2 ↪→ · · · ↪→ Xn = ∆n
0|1

with each X j → X j+1 inner anodyne. Define

X2 =
⋃

1<i≤n

[01i], X3 =
⋃

1<i< j≤n

[01i j], X4 =
⋃

1<i< j<k≤n

[01i jk]

and so on. In words, X j contains all non-degenerate j-simplices in ∆n
0|1 that contain the

edge [01]. It is clear that each X j is a pushout of a coproduct of horns Λ j
1 → ∆

j along a
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map that sends the 0th face of each horn to a degenerate simplex on a point. For example,
the new 3-simplices in X3 are attached along Λ3

1 horns with images

1
;;
;;
;;
;;

0

AA����
//

��;
;;

; j

i

����
����

The 3rd and 2nd faces of this horn were attached to form X2; the 0th face, being degenerate,
was pre-existing. The conclusion follows, and ∆n

0|1 → ∆
1 is thus a categorical equivalence

by the 2-of-3 property. A symmetric argument proves the same result for ∆n
n−1|n.

For 0 < i < n − 1, we use induction. The map d0 : ∆n−1 → ∆n induces a map
∆n−1

i−1|i → ∆
n
i|i+1 over ∆1. We suppose, by induction, that the projection from the former to ∆1

is a categorical equivalence and reach our desired conclusion by proving that ∆n−1
i−1|i → ∆

n
i|i+1

is inner anodyne. As before, we factor this map as

∆n−1
i−1|i = X1 ↪→ X2 ↪→ · · · ↪→ Xn = ∆n

i|i+1

and show each step is inner anodyne. Let

X2 = X1 ∪
⋃

i< j≤n

[01 j], X3 = X2 ∪
⋃

1< j<k≤n,i<k

[01 jk], X4 = X3 ∪
⋃

1< j<k<l≤n,i<l

[01 jkl], . . .

Each X j is obtained by attaching the non-degenerate j-simplices that contain the edge [01]
to X j−1. As in the previous case, the attaching maps are Λ j

1 horns. Note that in this case if
some of the intermediate vertices are less than or equal to i, the last few faces of theΛ j

1 horn
will be degenerate at 0. The conclusion follows from the argument given previously. □

This lemma shows that the maps Cn
R → ∆

1 and Cn
L → ∆

1 are categorical equivalences.
Only one case remains.

Lemma 15.4.11 ([DS11a, 9.4]). The maps Cn
cyl → ∆

1 are categorical equivalences.

Proof. To condense notation, write {0, 1, . . . , n} and {0′, 1′, . . . , n′} for the vertices
spanned by ∆n × {0} and ∆n × {1} in ∆n × ∆1, respectively, using the prime as shorthand
for the second coordinate. Non-degenerate simplices in ∆n × ∆1 correspond to sequences
[v0 · · · v jv′j+1 · · · v

′
k] of elements of [n] such that the vi and v′i are strictly increasing and with

v j ≤ v′j+1; compare with 15.0.1. Non-degenerate simplices containing at least one primed
vertex and one unprimed one correspond bijectively to non-degenerate simplices in the
quotient Cn

cyl.
Let σi be the (n+1)-simplex [01 · · · (i−1)ii′(i+1)′ · · · n′]; i.e., let σi be the ith shuffle.

Its quotient in Cn
cyl is ∆n+1

i|i+1. We will show that the categorical equivalence Cn
L → ∆

1 factors
through Cn

cyl → ∆
1 along a filtration

Cn
L = ∆

n+1
0|1 = X0 ↪→ X1 ↪→ · · · ↪→ Xn = Cn

cyl.
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Here each Xi+1 is obtained from Xi by attaching the next shuffle, corresponding to ∆n+1
i+1|i+2.

Note that the intersection Xi ∩ ∆n+1
i+1|i+2 is ∆n

i|i+1; i.e., this intersection is the n-simplex span-
ning [01 · · · i(i + 1)′ · · · n′]. Hence

∆n
i|i+1

��

//

⌜

Xi

��
∆n+1

i+1|i+2
// Xi+1

is a pushout, and the result follows from the proof of Lemma 15.4.10 and the 2-of-3 prop-
erty. □

Thus, we have proven:

Theorem 15.4.12. The natural maps HomL
X(x, y) → HomX(x, y) ← HomR(x, y) are

categorical equivalences of quasi-categories.

Remark 15.4.13. The maps C•L ← C•cyl → C•R have pointwise-defined sections, though
the sections do not assemble into maps of cosimplicial objects. The maps Cn

L → Cn
cyl ← Cn

R

are induced by the inclusions of ∆n+1 ⇒ ∆n ×∆1 as the first and last shuffles, respectively.3

Remark 15.4.14. Because categorical equivalences are weak homotopy equivalences,
the objects HomL

X(x, y), HomX(x, y), and HomR
X(x, y) define weakly equivalent simplicial

sets whose set of path components is the hom-set hX(x, y). We would like to conclude that
the homotopy category hX is thereby enriched over the homotopy category of spaces—
however, there is no natural composition law definable in sSet using any of these mapping
spaces.

These considerations motivate the introduction of a fourth candidate mapping space,
which is not typically a quasi-category, but which is weak homotopy equivalent (although
not categorically equivalent) to these models. This new construction associates a simpli-
cially enriched category to each simplicial set. The simplicial categories constructed in
this manner are cofibrant in the model structure introduced in Example 11.3.10. It follows
that they can be used to define a homotopically well-behaved notion of homotopy coherent
diagrams. We turn to this subject now.

3Recall 15.0.3: simplices in ∆n × ∆m correspond bijectively to totally ordered collections of vertices
(i, j) with i ∈ [n] and j ∈ [m]. Simplices of maximal dimension are called shuffles. The first shuffle is the
unique one containing the vertices (0, 0), . . . , (n, 0), . . . (n,m). The last is the unique one containing the vertices
(0, 1), . . . , (0,m), . . . , (n,m).



CHAPTER 16

Simplicial categories and homotopy coherence

We have seen three equivalent procedures for associating mapping spaces to pairs of
objects in a quasi-category, but without a composition map, we do not yet have a way to
define the (H-enriched) homotopy category of a quasi-category. Shooting for the moon,
we might try to construct a functor sSet→ sCat from the category of simplicial sets to the
category of simplicially enriched categories directly. A fundamental feature of the category
of simplicial sets is that each object is a colimit of a diagram of standard simplices (see
Example 7.2.8). With this in mind, we might hope that the functor associating a simplicial
category to a simplicial set also preserved colimits. But now, because sCat is cocomplete,
it follows from 1.5.1 that such a functor, and indeed an adjoint pair, is determined by any
cosimplicial object ∆ → sCat. The main task of this chapter is to motivate the correct
choice of cosimplicial object and explore the adjunction C : sSet⇄ sCat : N so-produced.

The right adjoint N is called the homotopy coherent nerve. It records homotopy
coherent sequences of composable arrows in a simplicial category. The left adjoint C will
produce simplicial categories CX associated to each simplicial set X so that when X is a
quasi-category, the hom-space CX(x, y) is weak homotopy equivalent to the hom-spaces
constructed above. We will give an explicit description of these hom-spaces below, but
first let us explore the model for (∞, 1)-categories presented by simplicial categories.

16.1. Topological and simplicial categories

By a theorem of Quillen, the adjoint pair

sSet
|−| //
⊥ Top
S
oo

is a Quillen equivalence (see 11.3.15) with respect to the model structures of Example
11.3.5 and Example 11.3.6. Because all simplicial sets are cofibrant and all spaces are
fibrant, this means that the unit K → S |K| and counit |S X| → X are weak homotopy equiv-
alences for all simplicial sets K and spaces X. Furthermore, the total derived functors form
an adjoint equivalence, defining the homotopy category of spaces H . For definiteness,
and to recall the classical nature of this object, we might define H to be the category of
CW complexes and homotopy classes of maps.

By Lemma 6.1.6, both the left and right adjoints preserve finite products; by (10.4.2),
the localization functors to H are also lax monoidal. It follows that there is an induced
change of base adjunction

sSet-Cat
|−|∗ //
⊥

h %%KK
KKK

KKK
KK

Top-Cat
S ∗

oo

hyysss
sss

sss

H-Cat

221
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between the category of simplicial categories and the category of topological categories
commuting with the change of base functors to the category of H-enriched categories
[Cru08, Ver92]. Here, the functor S ∗ turns a topological category into a simplicial cate-
gory with the same objects but with hom-spaces defined to be the total singular complex
of the corresponding hom-space in the simplicial category.

The localization [−] : Top → H can be defined to be the functor which replaces a
space by a CW complex equipped with a weak equivalence [X]

∼
−→ X. This procedure

is well-defined up to homotopy, hence defining the indicated functor. If definiteness is
desired, we might set [X] = |S X| but this makes no difference. In accordance with the
notation introduced in section 10.4, we write hC for the H-enriched category associated
to a topological (or simplicial) category C with underlying category C. The underlying
category of hC, denoted by hC, is defined by applying π0 to the hom-spaces of C.

We are interested in using topological or simplicial categories to model (∞, 1)-catego-
ries, so it is natural to declare an enriched functor F : C → D between topological or sim-
plicial categories to be a weak equivalence if and only if the induced functor hF : hC → hD
is an equivalence ofH-enriched categories as defined in 3.5.13. That is, the functor of un-
derlying homotopy categories must be essentially surjective (or indeed an equivalence of
categories) and the maps of hom-spaces C(x, y) → D(Fx, Fy) must be weak homotopy
equivalences, i.e., isomorphisms in H . In the simplicially enriched context, these are ex-
actly the DK-equivalences introduced in section 3.5.

Remark 16.1.1 ([Lur09, 1.1.3.8]). The homotopy category hC does not determine
the weak equivalence class of C even though it suffices to detect weak equivalences be-
tween topological categories. This is similar to the fact that the homotopy groups of a
CW complex do not determine its homotopy type, though they suffice to detect homotopy
equivalences between CW complexes.

For conciseness, we will only discuss simplicial categories henceforth. A simplicial
category is locally Kan if each of its hom-spaces is a Kan complex. In this case, an
easy argument shows that two vertices in a hom-space are in the same path component if
and only if there exist 1-simplices from the one to the other in both directions. From the
perspective of the underlying unenriched category, we might say that maps in a locally
Kan simplicial category are homotopic if and only if there exist simplicial homotopies
exhibiting this fact. By a theorem of Bergner [Ber07], mildly generalized in [Lur09,
A.3.2.4], there is a cofibrantly generated model structure on sCat whose weak equivalences
are simplicial functors that descend to H-equivalences and whose fibrant objects are the
locally Kan simplicial categories.

To define the generating cofibrations, write 2[A] for the simplicial category with
two objects 0,1 and which has hom-spaces 2[A](0, 0) = 2[A](1, 1) = ∗, 2[A](1, 0) = ∅,
2[A](0, 1) = A. A simplicial functor has the right lifting property with respect to the func-
tor 2[A] → 2[B] if and only if each constituent map of hom-spaces has the right lifting
property against A→ B in sSet.

Theorem 16.1.2 (Bergner). There is a cofibrantly generated model structure on sCat
whose weak equivalences are simplicial functors F : C → D so that hF : hC → hD is
an H-equivalence; whose fibrant objects are the locally Kan simplicial categories; and
whose cofibrations are generated by

{∅ → ∗} ∪ {2[∂∆n]→ 2[∆n]}n≥0.
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16.2. Cofibrant simplicial categories are simplicial computads

There is a more concrete description of the cofibrant objects in Bergner’s model struc-
ture that we learned from Verity. Recall from section 3.6 that any simplicial category can
be encoded as a simplicial object C : ∆op → Cat in which each category has the same
objects and each functor is the identity on objects.

Given a simplicial category C : ∆op → Cat, we refer to an arrow in Cn as an n-
arrow. An n-arrow f : a → b is precisely an n-simplex in the simplicial set C(a, b).
By the Eilenberg-Zilber lemma, any n-simplex f is uniquely expressible as f ′ · α where
α : [n] → [m] is an epimorphism and f ′ is a non-degenerate m-arrow. We say f ′ is the
unique non-degenerate quotient of f . In this case, we say f has dimension m. Note the
dimension of an n-arrow is at most n, its simplicial degree. The dimension is defined to
be the simplicial degree of the unique non-degenerate quotient.

An arrow in an unenriched category is atomic if it admits no non-trivial factorizations.
A category is freely generated by a reflexive directed graph,1 abbreviated to “freely gen-
erated” or “free” below, if and only if each of its arrows may be uniquely expressed as a
composite of atomic arrows. In this case, the generating graph is precisely the subgraph of
atomic arrows.

Definition 16.2.1. A simplicial category C : ∆op → Cat is a simplicial computad if
and only if

• each Cn is freely generated, and
• for each surjection α : [n] → [m] and atomic arrow f ∈ Cm, the arrow f · α is

atomic in Cn.

In words, a simplicial computad is a simplicial object in Cat, each of whose categories
is freely generated on a set of generating arrows that includes the degenerate images of
all lower dimensional generators. For instance, the discrete simplicial category on a free
category is a simplicial computad. We will see less trivial examples soon.

Simplicial computads are built in an obvious (and essentially unique) way from the
given generating cofibrations, making them cellular cofibrant objects in the Bergner model
structure.

Lemma 16.2.2. The simplicial computads are the cellular cofibrant objects in sCat.
Furthermore, every cofibrant object is cellular, and hence a simplicial computad.

Proof. We only prove the hard direction: that any cofibrant simplicial category is a
simplicial computad. By Corollary 12.2.4, it suffices to show that a retract of a simpli-
cial computad is a simplicial computad. The first step is to show that the retract of a free
category is a free category. A retract B ↪→ C↠ B in Cat can be characterized as the sub-
category fixed by the corresponding idempotent on C. In a free category, every morphism
is both monic and epic. It follows that if h = g f in C and any two of these are in B, so is
the third. Hence, by induction, any arrow in B is uniquely decomposable into the shortest
composites of atomic arrows of C that lie in B.

We have shown that at each level a retract of a simplicial computad is a free category.
It remains only to argue that the degenerate images of atomic arrows in Bn are atomic in
Bn+1. This is clear for those atomic arrows in Bn that are also atomic in Cn. To that end,
suppose a degenerate image of some atomic arrow inBn factors non-trivially as g f inBn+1.

1The category rDirGph of reflexive directed graphs is equivalent to the category of 1-skeletal simplicial
sets. The forgetful functor U : Cat → rDirGph remembers domains, codomains, and identities but forgets the
composition law.
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Because C is a simplicial computad, this atomic arrow in Bn must also factor non-trivially
as g′ f ′ in Cn with g′ mapping to g and f ′ mapping to f . But applying one of the face
maps that serves as a retraction of the degeneracy, we see that either g or f must map to an
identity in Bn. This contradicts the fact that g′ and f ′ are assumed to be non-identities. □

Example 16.2.3. There is a free-forgetful adjunction

F : rDirGph
//

⊥ Cat : Uoo

between small categories and reflexive directed graphs inducing a comonad FU on Cat.
We claim that the comonad resolution associated to a small category A is a simplicial
computad FU•A

FUA FηU // FUFUA
FUϵoo

ϵFUoo

FUFηU //

FηUFU //
FUFUFUAFUϵFUoo

ϵFUFUoo

FUFUϵoo

· · ·

and hence a cofibrant simplicial category.
The category FUA is the free category on the underlying reflexive directed graph of

A. Its arrows are strings of composable non-identity arrows ofA; the atomic 0-arrows are
the non-identity arrows ofA. An n-arrow is a string of composable arrows inA with each
arrow in the string enclosed in exactly n pairs of parentheses. The atomic arrows are those
enclosed in precisely one pair of parentheses on the outside. The face maps (FU)kϵ(FU) j

remove the parentheses that are contained in exactly k others; FU · · · FUϵ composes the
morphisms inside the innermost parentheses. The degeneracy maps F(UF)kη(UF) jU dou-
ble up the parentheses that are contained in exactly k others; F · · ·UFηU inserts parenthe-
ses around each individual morphism.

These examples will reappear as the shape of homotopy coherent diagrams, which we
now introduce.

16.3. Homotopy coherence

It remains to define the cosimplicial object that produces the adjunction defining the
homotopy coherent nerve. A naı̈ve choice for the cosimplicial object C∆• : ∆ → sCat
might be to simply regard the ordinals [n] as discrete simplicial categories 0→ 1→ · · · →
n. But the right adjoint specified by this cosimplicial object would simply be the ordinary
nerve of the unenriched category underlying a simplicial category, which is not what we
want. The idea is that C∆n is a simplicial category that encodes a “homotopy coherent”
diagram of shape [n] in a sense that we now make precise.

A good theory of homotopy coherent diagrams taking values in a locally Kan simpli-
cial category has been developed by Jean-Marc Cordier and Tim Porter, Vogt, and others.
Let C be a simplicial category with underlying category C. A homotopy commutative
diagram of shape A is a map of reflexive2 directed graphs UA → UC that defines a
functor A → hC. Recall the category hC underlying the H-enriched category hC is ob-
tained by taking path components of each hom-space. Thus, a diagram F : UA → UC is
homotopy commutative if whenever h = g f in A, the vertices Fh and Fg · F f lie in the
same path component of the hom-space from the domain of these maps to the codomain.
If C is locally Kan, this is the case just when there exist 1-simplices Fh → Fg · F f and
Fg · F f → Fh.

2Here, for simplicity, we ignore the identities; a more careful treatment would allow homotopies between
identities in the target category and the images of identities in the domain.
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A homotopy coherent diagram of shape A is a simplicial functor FU•A → C. The
map UA → UFUA of reflexive directed graphs3 can be used to define a homotopy com-
mutative diagram UA → UFUA → UC. The proof is by applying the path components
functor π0 : sSet → Set to the hom-spaces, thereby extracting the functor A → hC from
the simplicial functor FU•A → C. A homotopy coherent natural transformation is a
homotopy coherent diagram of shapeA× 2, i.e., a simplicial functor FU•(A× 2)→ C.

The theory of homotopy coherent diagrams was developed to describe situations for
which there are affirmative answers to certain classical problems. For instance: Given a
commutative diagram F : A → C, is it possible to form a new diagram in which each object
is replaced by a (specified) homotopy equivalent one? Or given a natural transformation
α : F ⇒ G, it is possible to replace the maps αa with homotopic ones? If these questions
are meant strictly, the answer is no. However:

Proposition 16.3.1 (Cordier-Porter). Given a homotopy coherent diagram F : A → C
in a locally Kan simplicial category and a family of homotopy equivalences Fa→ Ga, this
data extends to a homotopy coherent diagram G : A → C and homotopy coherent map
F ⇒ G.

Proposition 16.3.2 (Cordier-Porter). Given a homotopy coherent map α : F ⇒ G of
homotopy coherent diagrams F,G : A⇒ C, where C is locally Kan, and homotopies βa ≃

αa, this data extends to a homotopy coherent map β : F ⇒ G and a coherent homotopy of
homotopy coherent maps.

The proofs are by describing and then filling horns, making use of the lifting properties
guaranteed by Lemma 16.4.10 and the results of Chapter 17. We leave the details for
[CP88] but let us examine what this means in a specific example.

Example 16.3.3. Consider the category [3] and label its non-identity morphisms as
indicated:

0
f //

j

99

ℓ

AA1
g //

k

992 h // 3

Let us describe the hom-space in FU•[3] from the initial object to the terminal one. The
vertices of this simplicial set are the paths of edges ℓ, k f , h j, hg f . The 1-simplices are once
parenthesized strings of composable morphisms which are non-degenerate when there is
more than one arrow inside some pair of parentheses. There are five such with boundary
0-simplices illustrated below

(16.3.4) ℓ
(k f ) //

(h j)

��

(hg f )
AAA

  A
AA

AA
AA

A ((hg)( f ))

((h)(g f ))

k f

(hg)( f )

��
h j

(h)(g f )
// hg f

There are only two non-degenerate 2-simplices whose boundaries are depicted above.
Hence FU•[3](0, 3) = ∆1 × ∆1. We conclude that a homotopy coherent diagram of shape
[3] consists of a cube in the hom-space from the first object to the last in which certain

3This map is not a functor, since it picks out the pre-existing composites in the image, not the freely added
composites.
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0-simplices and 1-simplices are specified composites of data from the other hom-spaces.
One way to think about these homotopies is that they are the data one obtains if there is
a lift, up to isomorphism, of a functor [3] → hC to a functor landing in C; see [Lur09,
§1.2.6].

With this example in mind, we define C∆n to be the simplicial category FU•[n] so that
a map C∆n → C, by adjunction an n-simplex in NC, is a homotopy coherent diagram of
shape [n]. More explicitly, C∆n is the simplicial category with objets 0, 1, . . . , n and whose
hom-spaces are cubes of varying dimension

(16.3.5) C∆n(i, j) =


(∆1) j−i−1 when j > i,
∆0 when j = i,
∅ when j < i.

It is common to define these hom-spaces as nerves of posets, C∆n(i, j) = NPi, j. If j < i,
then Pi, j and hence C∆n(i, j) is empty. Otherwise Pi, j is the poset of subsets of the interval
{k | i ≤ k ≤ j} ⊂ [n] that contain both endpoints. For j = i and j = i + 1, this poset is the
terminal category. For j > i + 1, a quick calculation shows that Pi, j is isomorphic to the
product of the category 2 = [1] with itself j − i − 1 times, hence the above description. An
element in Pi, j specifies a path of edges in the category [n] from i to j through each of the
listed vertices. Maps in the poset are “refinements” of these paths, obtained by factoring
some of the edges through others.

Theorem 16.4.7 will prove that these two descriptions of C∆n coincide; the reader who
is unconvinced, should adopt the geometric description (16.3.5) for now.

Remark 16.3.6. The ordinary nerve can be defined from the homotopy coherent nerve
in the following manner. The path components functor π0 : sSet→ Set is left adjoint to the
inclusion; both functors preserve products and hence induce a change of base adjunction.
The composite adjunction

sSet
C //
⊥ sCat = sSet-Cat
N

oo
(π0)∗ //
⊥ Set-Cat = Cat

incl∗
oo

is the adjunction h ⊣ N of Example 1.5.5. In particular the homotopy coherent nerve of a
discrete simplicial category is just the nerve of the ordinary category.

The slogan that quasi-categories and locally Kan simplicial categories both model
(∞, 1)-categories is made precise by the following theorem, whose proof is the subject of
[Lur09, §2.2] and the paper [DS11a].

Theorem 16.3.7. The pair C ⊣ N forms a Quillen equivalence between Joyal’s model
structure for quasi-categories and Bergner’s model structure for simplicial categories.

In Lemma 16.4.10, we give a direct proof that the homotopy coherent nerve of a locally
Kan simplicial category is a quasi-category, a fertile source of examples.

Remark 16.3.8. It is not clear from the geometric description that the C∆n are cofibrant
simplicial categories, a necessary ingredient for the Quillen adjunction C ⊣ N. In 16.4.5,
we show that these simplicial categories are simplicial computads. Alternately, this follows
from the comparison Theorem 16.4.7 and the description of the comonad resolution given
in Example 16.2.3.

Remark 16.3.9. Somewhat disingenuously (because this result is one of the ingredi-
ents in the proof of Theorem 16.3.7), we can use Theorem 16.3.7 to deduce that a map
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X → Y of simplicial sets is a categorical equivalence if and only if the induced functor
hCX → hCY is an equivalence of H-enriched categories. This is Lurie’s definition of the
weak equivalences in the Joyal model structure.

16.4. Understanding the mapping spaces CX(x, y)

The functor C : sSet→ sCat is defined to be the left Kan extension of the cosimplicial
object C∆• : ∆→ sCat along the Yoneda embedding. Hence, by definition

CX =
∫ [n]∈∆ ∐

Xn

C∆n = coeq

 ∐
[m]→[n]

∐
Xn

C∆m ////
∐
[n]

∐
Xn

C∆n

 .
Informally speaking, it suffices to restrict the interior coproducts to the non-degenerate
simplices of X and the left outer coproduct to the generating coface maps di : [n−1]→ [n].
Write X̃n for the non-degenerate n-simplices of X. Then

CX = 4 colim



∐
X̃1
C∆0

d1

��
d0

��

d0 //
d1

//
∐

X0
C∆0

∐
X̃2
C∆1 //////

������

∐
X̃1
C∆1

∐
X̃2
C∆2· · ·


The objects of CX are the vertices of X. The simplicial categories C∆0 and C∆1 are

the free simplicial categories on the poset categories [0] and [1], and the free simplicial
category functor is a left adjoint and so commutes with colimits. Hence, if X is 1-skeletal
so that X̃n = ∅ for all n > 1, then CX is the free simplicial category on the graph with vertex
set X0 and edge set X̃1. Concretely, this means that the hom-spaces CX(x, y) are discrete
simplicial sets containing a vertex for each path of edges from x to y in X. Because each
0-arrow in C∆n is in the image of a 0-arrow in C∆1 under an appropriate face map, we have
completely described the 0-arrows in CX.

In general, for each 2-simplex of X with boundary as displayed

z g
��@

@@@
∼

x

f ??����
j
// w

there exists a 1-simplex from the vertex j to the vertex g f in CX(x,w). Furthermore, for
each vertex in some hom-space representing a sequence of paths containing j, there is a
1-simplex connecting it to the vertex representing the same sequence, except with g f in
place of j.

4Non-degenerate n-simplices may have degenerate (n − 1)-simplices as faces (for example, as in the sim-
plicial model for S 2 formed by attaching ∆2 to a point), so we cannot technically restrict the face maps to maps
di : X̃n → X̃n−1. Instead, one must attach each degenerate face to the unique lower-dimensional non-degenerate
simplex it represents. But this technicality will not affect our intuition-building discussion.
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However, the 2-skeleton of X does not determine the 1-skeleta of the hom-spaces. For
example, for each 3-simplex σ of X as depicted below

z

g

��

k

��?
??

??
??

?

x

f
??��������

j ��?
??

??
??

?
ℓ // y

w
h

??��������

there is an edge from ℓ to hg f in CX(x, y). In general, there is an edge between the vertices
represented by paths p1 . . . pr and q1 . . . qr of edges from x to y in X if and only if each
edge p in the first path that does not appear in the second is replaced by a sequence of
n-edges that appear as the spine of some n-simplex of X with p as its diagonal. Here, the
spine of an n-simplex is the sequence of edges between consecutive vertices, using the
usual ordering of the vertices, and the diagonal is the edge from the initial vertex to the
final one.

In this way, each edge of CX(x, y) corresponds to a necklace

∆n1 ∨ · · · ∨ ∆nr → X

in X. By ∆n ∨ ∆k we always mean that the final vertex of the n-simplex is identified with
the initial vertex of the k-simplex. A necklace is comprised of a sequence of beads, the
∆ni above, that are strung together along the joins, defined to be the union of the initial and
final vertices of each bead. We regard a necklace as an object in sSet∗,∗ by specifying the
initial and terminal vertices as its basepoints.

We have seen that a map in sSet∗,∗ from a necklace to a simplicial set X with basepoints
x and y determines a 1-simplex in the hom-space CX(x, y). By a theorem of Dugger and
David Spivak, necklaces can be used to characterize the higher dimensional simplices of
the hom-spaces CX(x, y) as well, provided we keep track of additional vertex data.

Theorem 16.4.1 ([DS11b, 4.8]). An n-simplex in CX(x, y) is uniquely represented by a
triple (T, f , T⃗ ), where T is a necklace; f : T → X is a map in sSet∗,∗ that sends each bead
of T to a non-degenerate simplex of X; and T⃗ is a nested sequence of sets of vertices VT of
T

(16.4.2) JT = T 0 ⊂ T 1 ⊂ T 2 ⊂ · · · ⊂ T n−1 ⊂ T n = VT ,

where JT is the set of joins of T .

Necklaces f : T → X with the property described in the theorem statement are called
totally non-degenerate. Note that the map f need not be injective. If x = y is a vertex
with a non-degenerate edge e : x→ y, the map e : ∆1 → X defines a totally non-degenerate
necklace in X. Dugger and Spivak prefer to characterize the simplices of CX(x, y) as equiv-
alence classes of triples (T, f , T⃗ ), which are not necessarily totally non-degenerate [DS11b,
4.4-4.5]. However, by the Eilenberg-Zilber lemma it is always possible to replace an arbi-
trary triple (T, f , T⃗ ) by its unique totally non-degenerate quotient.

Lemma 16.4.3 ([DS11b, 4.7]). Given (T, f , T⃗ ) there is a unique quotient (T , f , T⃗ ) such
that f factors through f via a surjection T ↠ T and f is totally non-degenerate.

Proof. By the Eilenberg-Zilber lemma [GZ67, II.3.1, pp. 26-27], any simplex σ ∈
Xn can be written uniquely as σ′ϵ where σ′ ∈ Xm is non-degenerate, with m ≤ n, and
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ϵ : [n]→ [m] is a surjection in ∆. The necklace T agrees with T at each bead whose image
is non-degenerate. If σ is a degenerate n-simplex in the image of f , then to form T we
replace the bead ∆n of T corresponding to σ by the bead ∆m, where m is determined by
the Eilenberg-Zilber decomposition of σ, described above. Define f : T → X restricted to
this ∆m to equal σ′. The morphism ϵ defines an epimorphism of simplicial sets ∆n → ∆m,
which defines the quotient map T ↠ T at this bead in such a way that f factors through f
along this map.

Let T⃗ be the nested sequence of sets of vertices of T given by the direct image of T⃗

under T ↠ T . The resulting triple (T , f , T⃗ ) is totally non-degenerate and unique such that
f factors through f . □

In dimensions 0 and 1, the vertex data T⃗ is completely determined by the necklace T ,
so we may represent the simplices of CX(x, y) by necklaces alone. In particular, this result
generalizes the informal description of the low-dimensional simplices in CX given above.

Remark 16.4.4 ([DS11b, 4.6,4.9]). Importantly, with the aid of Lemma 16.4.3, the
face maps di : CX(x, y)n → CX(x, y)n−1 can also be described in the language of necklaces
and vertex data. The simplicial operators di and si act on the collection of nested sequences
of subsets of vertices of varying length in an obvious way—by duplicating or deleting sets
of vertices. The degeneracy and inner face operations on n-arrows are defined in this way;
in particular, the underlying necklace is unchanged.

The outer face maps are only marginally more difficult to describe. The chain T⃗ dn

likely has fewer vertices then T⃗ . Thus the nth face of (T, f , T⃗ ) is the unique totally non-
degenerate quotient of the restriction (T |T n−1 , f |T n−1 , T⃗ dn) to these vertices. Similarly, the
chain T⃗ d0 likely has more joins. Thus, the 0th face is the unique totally non-degenerate
quotient of the necklace obtained by “breaking up” beads of T along the vertices in the set
T 1. The image of this necklace in X has the same vertices but in general contains simplices
of smaller dimension, which were faces of simplices in the necklace T . We call this new
necklace the T 1-splitting of T . Each bead of T is replaced by a necklace with the same
spine whose beads are each faces of the original bead. The vertices of each new bead will
be a consecutive subset of vertices of the bead of T with initial and final vertices in T 1. The
sum of the dimensions of these new beads will equal the dimension of the original bead.

Remark 16.4.5. From this description it is easy to see that the atomic arrows in CX are
those whose necklace consists of a single bead. In particular, CX is a simplicial computad,
proving by Lemma 16.2.2, that these simplicial categories are cofibrant.

Example 16.4.6. We can use necklaces to re-compute the hom-space C∆3(0, 3) de-
scribed in Example 16.3.3. There are nine totally non-degenerate necklaces from 0 to 3
in ∆3. Four of these contain only 1-simplices as beads and hence represent 0-arrows; the
other five are the 1-arrows depicted below.

ℓ
∆2

//

∆2

��

∆3
AAA

  A
AA

AA
AA

A {0,1,3}

{0,2,3}

k f

∆2∨∆1

��
h j

∆1∨∆2
// hg f
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The top and left 1-arrows correspond to the 2nd and 1st faces of the 3-simplex, respectively.
The only two non-degenerate 2-arrows correspond to the necklace ∆3 together with the
depicted vertex data. This diagram is arranged in correspondence with (16.3.4).

Observe that the atomic k-arrows in the simplicial computad C∆3 are those k-simplices
that contain the initial vertex in the usual partial ordering for the cube defined by (16.3.5)
to be the appropriate hom-space. This description holds for general C∆n.

Using Theorem 16.4.1, we can show that the left adjoint to the homotopy coherent
nerve always maps the nerve of an unenriched category to the simplicial category produced
by the comonad resolution of 16.2.3.

Theorem 16.4.7. Let A be any small category. The simplicial category CNA is iso-
morphic to the simplicial category FU•A.

Proof. The objects of both simplicial categories are the objects of A. It remains to
show that the hom-spaces coincide. A necklace in the nerve of a category is uniquely
determined by its spine and the set of joins; i.e., a necklace is a sequence of composable
non-identity morphisms each contained in one set of parentheses, indicating which mor-
phisms are grouped together to form a bead.

An n-simplex in a hom-object of the standard free simplicial resolution is a sequence
of composable non-identity morphisms, each contained within n sets of parentheses. The
morphisms in the sequence describe the spine of a necklace and the location of the out-
ermost parentheses describes the joins. The other (n − 1) layers of parentheses determine
the sets T 1 ⊂ · · · ⊂ T n−1. By Theorem 16.4.1, this exactly specifies an n-simplex in the
corresponding hom-object of CNA. □

Exercise 16.4.8. Compute CΛn
k(0, n) for 0 < k < n.

Exercise 16.4.9. Demonstrate by means of an example that C does not preserve prod-
ucts.

Using Theorem 16.4.1, we can also so that the homotopy coherent nerve of a locally
Kan simplicial category is a quasi-category; compare with [Lur09, 1.1.5.10].

Lemma 16.4.10. If C is a locally Kan simplicial category, then NC is a quasi-category.

Proof. By adjunction it suffices to prove that simplicial functors CΛn
k → C extend to

C∆n → C for all 0 < k < n, n ≥ 2. The categories CΛn
k and C∆n have the same objects

0, 1, . . . , n and nearly the same hom-spaces. By the necklace description it is easy to see
that CΛn

k(i, j) = C∆n(i, j) unless i = 0 and j = n; this is because the only simplices missing
in Λn

k are the n-simplex and its kth face, both of which are beads from 0 to n that cannot
appear in necklaces between any other pair of vertices. Thus, it suffices to show that there
is an extension

CΛn
k(0, n) //

��

C(x, y)

C∆n(0, n)

99sssss

By our hypothesis on C, it suffices to show that the left-hand map is anodyne. The bottom
space is the cube (∆1)n−1. The top space, by Exercise 16.4.8, again using the necklace
description, is a subset missing the interior and one of the codimension- one faces. The
inclusion is obviously a monomorphism and weak homotopy equivalence, and thus lifts
against any Kan complex. □
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Example 16.4.11. In a simplicial model categoryM, the hom-spaces assemble into a
right Quillen bifunctorMop × M → sSet. As a direct consequence of Definition 11.4.4,
the hom-space between any pair of fibrant-cofibrant objects is a Kan complex. Hence, the
full simplicial subcategoryMQR spanned by the fibrant-cofibrant objects is locally Kan. Its
homotopy coherent nerve NMQR is the quasi-category associated to the simplicial model
category.

The reader is encouraged to verify that the homotopy category of the quasi-category
NMQR is equivalent to the homotopy category ofM.

Example 16.4.12. Using Theorem 16.4.7 and Lemma 16.4.10, we can see that the ho-
motopy coherent diagrams and natural transformations introduced in section 16.3 assemble
into a quasi-category. This was the example that motivated the original definition by Board-
man and Vogt; see [BV73, 4.9]. Given a small category A and a locally Kan simplicial
category C, define a simplicial set whose n-simplices are diagrams CN(A× [n])→ C. The
action by the simplicial operators is defined by precomposing with the maps in the image
of the cosimplicial object ∆→ Cat.

By Theorem 16.4.7, the vertices and edges are homotopy coherent diagrams and ho-
motopy coherent natural transformations from A to C. By adjunction, the n-simplices are
isomorphic to maps of simplicial sets N(A× [n]) � NA×∆n → NC. Again, by adjunction,
the n-simplices are isomorphic to maps ∆n → NCNA. It follows from the Yoneda lemma
that our simplicial set is isomorphic toNCNA, which is a quasi-category by Lemma 16.4.10
and Corollary 15.2.3.

Remark 16.4.13. The spaces CX(x, y) are essentially never Kan complexes or even
quasi-categories, though in some sense they are close. Even when X is a Kan complex,
it is easy to see that there are obstructions for filling Λ2

0- and Λ2
2 horns; there are also

obstructions in dimensions 3 and 4. But all higher dimensional horns admit unique fillers
due to the surprising, yet easy to prove, fact that for any simplicial set X each hom-space
CX(x, y) is 3-coskeletal. Furthermore, if X is a quasi-category, any Λ2

1 horn in CX(x, y) can
be filled. However, the simplicial category CX is “locally quasi” if and only if X is the nerve
of a category in which the identity morphisms do not admit any non-trivial factorizations.
See [Rie11b] for proofs.

16.5. A gesture toward the comparison

Before concluding this chapter, we return to the problem that motivated its introduc-
tion: defining an enrichment of the homotopy category of a quasi-category X over the
homotopy category of spaces. Unlike the models introduced in section 15.4, the hom-
spaces in CX admit a (strictly) associative composition law. It remains to show that the
spaces CX(x, y) have the same homotopy type as the hom-spaces introduced previously.

Our proof follows [Lur09, §§2.2.2, 2.2.4]: when X is a quasi-category, there exists
a zig-zag of weak homotopy equivalences HomR

X(x, y) ← Z → CX(x, y) that we now
describe. The simplicial set Z is defined to be the image of HomR

X(x, y) under the “straight-
ening over a point” functor sSet → sSet. This functor is a left adjoint and consequently
determined by a cosimplicial object Q• : ∆ → sSet which we now describe. Recall the
cosimplicial object C•R : ∆→ sSet∗,∗ used to define HomR

X(x, y); an n-simplex in HomR
X(x, y)

is precisely a map Cn
R → X in sSet∗,∗.5 Write 0 and n for the two vertices of Cn

R, and define

5The simplicial set Cn
R is called Jn in [Lur09].
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Qn to be CCn
R(0, n); note the other hom-spaces in the simplicial category CCn

R are either
empty or terminal.

Using Theorem 16.4.1, we can obtain an explicit description of the Qn = CCn
R(0, n),

at least in low dimensions. It is easy to see that Q0 = ∗ and Q1 = ∆1. Let us also de-
scribe Q2. Returning to the notation introduced in the proof of Lemma 15.4.10 which
identified the non-degenerate simplices in C2

R with their preimages in ∆3, the simplicial
set C2

R has vertices 0, 3; edges [03], [13], [23]; 2-simplices [013], [123], [023]; and a 3-
simplex [0123]. Thus, Q2 has three 0-simplices [03], [13], [23] and four 1-simplices, de-
picted below, that we label with the single bead in their corresponding necklaces. There
exist no totally non-degenerate necklaces in C2

R with multiple beads. There are two dis-
tinct 2-simplices corresponding to the only two possible non-degenerate vertex data for the
necklace [0123] : ∆3 → C2

R. Their boundary is depicted below:

[03]

[0123]
EE

E
∼

∼ ""E
EE[023]

��

[013] // [13]

[123]
��

[23] [23]

Note Q2 is not the same as the simplicial set ∆1 × ∆1 because it has only three distinct
vertices and one of the edges of one of the 2-simplices is degenerate.

By Construction 1.5.1, the simplicial set Z is defined by the formula

Z =
∫ [n]∈∆ ∐

HomR
X (x,y)n

CCn
R(0, n) =

∫ [n]∈∆ ∐
sSet∗,∗(Cn

R,X)

CCn
R(0, n)

Each map Cn
R → X induces a map CCn

R(0, n) → CX(x, y) by sending a necklace in Cn
R to

the corresponding necklace in X. These maps define a cone under the coend, inducing a
map Z → CX(x, y). By [Lur09, 2.2.4.1], this map is a weak homotopy equivalence when
X is a quasi-category.

On the other hand, there is a map of cosimplicial objects Q• → ∆• induced by the last
vertex map of Example 1.5.7; Qn can also be described as a quotient of sdn∆

n. This map
of cosimplicial objects determines a map of coends∫ [n]∈∆ ∐

HomR
X (x,y)n

CCn
R(0, n)→

∫ [n]∈∆ ∐
HomR

X (x,y)n

∆n = HomR
X(x, y).

A clever inductive argument in [Lur09, 2.2.2.7] shows that this is a weak homotopy equiv-
alence for any simplicial set.



CHAPTER 17

Isomorphisms in quasi-categories

A 1-simplex in a quasi-category X is an isomorphism if and only if its image in the
homotopy category hX is an isomorphism. It follows from the description of the homotopy
category associated to a quasi-category in section 15.1 that for any isomorphism f : x→ y
in a quasi-category, there exists an inverse isomorphism g : y→ x together with 2-simplices

(17.0.1) y
g
��<

<<
< x

f
��<

<<
<

x

f @@���� ∼

x y

g @@���� ∼

y

Hence, a 1-simplex f is an isomorphism if and only if it can be extended to this data. This
assertion is extended to higher dimensional simplices in Lemma 17.2.5. In the presence of
(17.0.1), we say that the objects x and y are isomorphic.

Lemma 17.0.2. Two objects in a quasi-category are isomorphic if and only if there
exists an isomorphism between them.

Proof. Objects in a quasi-category X are isomorphic just when they are in the same
isomorphism class in hX, which means there is an isomorphism between them in the ho-
motopy category. Any arrow in the homotopy category is represented by a 1-simplex in X;
any isomorphism is represented by a 1-simplex that is an isomorphism. □

This is not the standard terminology: isomorphisms in a quasi-category are typically
called “equivalences.” We prefer our term on account of our philosophy that every quasi-
categorical term should be given the name of the categorical term that it generalizes. The
use of “isomorphism” to describe these 1-simplices helps distinguish this notion from the
other “equivalences” in quasi-category theory.1 Also, no confusion is possible: the only
stricter comparison between 1-simplices is identity, witnessed by a degenerate 1-simplex
(which is in particular an isomorphism).

A basic observation is that isomorphisms are preserved by any map between quasi-
categories: one proof is that an isomorphism is witnessed equationally by the pair of 2-
simplices (17.0.1) whose form is preserved by any simplicial map. In this chapter, we
investigate the behavior of isomorphisms in quasi-categories. A main theme, explored in
sections 17.2 and 17.6 is that the isomorphisms govern the relationship between quasi-
categories and Kan complexes: we show that a Kan complex is a “groupoidal quasi-
category.”

Ancillary notions introduced to prove theorems about isomorphisms have other im-
portant applications. The slice and join, introduced in 17.1 to investigate lifting properties
enjoyed by outer horns with invertible edges, are used to express the universal property of
limits and colimits in a quasi-category and will reappear in Chapter 18. Marked simplicial

1The skeptical reader is encouraged to translate Remark 18.1.5 or Remark 18.6.5 into the standard
terminology.

233
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sets, introduced in section 17.4 to prove that diagrams of isomorphisms can be freely in-
verted, are also used to define a simplicial model category of quasi-categories. For this rea-
son, they play a role in the formation of homotopy limits of diagrams of quasi-categories,
the subject of section 17.7. The results that follow are due to several people. Our proofs
follow Joyal [Joy02], Lurie [Lur09], and private communication with Verity.

17.1. Join and slice

The main result of the paper [Joy02] is that the isomorphisms in a quasi-category
admit the following characterization, which will have a number of pleasing consequences.

Theorem 17.1.1 (Joyal). f : ∆1 → X is an isomorphism if and only if any horn Λn
0

with initial edge f extends to ∆n. In particular, quasi-categories admit fillers for any Λn
0

horn whose initial edge is an isomorphism or any Λn
n horn whose terminal edge is an

isomorphism.

The implication (⇐) is an easy exercise. The proof of the converse requires that we
introduce some ancillary notions.

The category ∆+ of finite (possibly empty) ordinals and order preserving maps has
a symmetric monoidal structure given by ordinal sum; in simplicial notation [n] ⊕ [m] =
[n + m + 1] for all n,m ≥ −1. This operation induces a monoidal structure, called the
join and denoted ⋆, on augmented simplicial sets by Day convolution: the join of two
augmented simplicial sets is defined to be the left Kan extension of the ordinal sum along
the Yoneda embedding

sSet+ × sSet+
−⋆−

&&N
N

N
N

N

∆+ × ∆+ −⊕−
//

y×y
77ppppppppppp

∆+ y
//

�⇑

sSet+.

By the formula of Theorem 1.2.1

X ⋆ Y =
∫ [k],[m]∈∆+×∆+ ∐

Xk×Ym

∆k+m+1

from which we deduce that

(X ⋆ Y)n =

∫ [k],[m]∈∆+×∆+ ∐
∆+([n],[k]⊕[m])

Xk × Ym

which says that X ⋆ Y is the left Kan extension of the external product ∆op
+ × ∆op

+

X×Y
−−−→

Set × Set
−×−
−−−→ Set along the opposite of the ordinal sum functor ⊕ : ∆+ × ∆+ → ∆+.

One can check that (X ⋆ Y)−1 = X−1 × Y−1. In particular, if X and Y are simplicial sets
given a trivial augmentation, X ⋆ Y is trivially augmented. In this way, we obtain a join
bifunctor

− ⋆ − : sSet × sSet→ sSet
on simplicial sets by restriction. By direct computation, one sees that

(X ⋆ Y)n = Xn ∪ Yn ∪
⋃

i+ j=n−1

Xi × Y j.

In particular, observe that there are natural inclusions X → X ⋆ Y ← Y .



17.1. JOIN AND SLICE 235

Example 17.1.2. The reader is encouraged to verify the above formula and the follow-
ing computations

• ∆n ⋆ ∆m � ∆n+m+1

• ∂∆n ⋆ ∆0 � Λn+1
n+1

• Λ2
0 ⋆ ∆

0 � ∆1 × ∆1

• X ⋆ ∅ � ∅ ⋆ X � X

The last isomorphism tells us that − ⋆ K does not preserve colimits. The reason for
this failure is that we have chosen to augment simplicial sets using the right adjoint to the
forgetful functor sSet+ → sSet and not the left adjoint, which augments a simplicial set
with its set of path components; see 1.1.10. A modified version of the join bifunctor making
use of the path components augmentation will be used to define the décalage functor in
section 17.5 below.

However, the functor − ⋆ K is cocontinuous if we re-interpret its target as the slice
category under K. By an adjoint functor theorem, we have an adjunction

(17.1.3) − ⋆ K : sSet
//

⊥ K/sSet : (−)/−oo

where the right adjoint, the notation for which, following Lurie, conceals a K dependence,
caries p : K → X to a simplicial set X/p. By the Yoneda lemma, an n-simplex ∆n → X/p
corresponds to a map ∆n⋆K → X under K. By pre- and postcomposition, a map j : K → L
induces natural transformations with components A ⋆ K → A ⋆ L and X/q → X/q j at
A ∈ sSet and q : L→ X ∈ L/sSet.

The right adjoint of (17.1.3), called the slice, is worthy of further consideration. Given
a composable triple of maps of simplicial sets, as displayed on the left-hand side below,
we get the natural maps between the slices on the right-hand side

(17.1.4)

K

j
��

q j // X

f
��

L

q
??~~~~~~~~

f q
// Y

⇝

X/q

%%

��

f/ j

!!C
C

C
C

C

·
⌟

//

��

X/q j

��
Y/ f q // Y/ f q j.

These can be thought of as some encoding of the bifunctoriality of the slice construction.
When K = ∅, X/q j � X and the map X/q → X is the obvious “forgetful functor.”

Furthermore, on account of a verification left to the reader or [Joy02], i l f/ j if and
only if i⋆̂ j l f on account of a natural bijective correspondence between commutative
squares

(17.1.5) A ⋆ L
∐

A⋆K B ⋆ K

i⋆̂ j

��

// X

f

��
↭

A

i

��

// X/q

f/ j

��
B ⋆ L // Y B // X/q j ×Y/ f q j Y/ f q.

Now the proof of Theorem 17.1.1 hinges upon a mild combinatorial lemma and a
few observations concerning the behavior of the isomorphisms with respect to the right
fibrations. Recall a monomorphism is anodyne, left anodyne, right anodyne, or inner
anodyne if it is, respectively, in the weak saturation of the horn inclusions, left horn in-
clusions (excluding Λn

n), right horn inclusions (excluding Λn
0), or inner horn inclusions
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(excluding both Λn
n and Λn

0). The right classes of these weak factorization systems are the
Kan, left, right, and inner fibrations.

Lemma 17.1.6 ([Lur09, 2.1.2.3]). Let i : A→ B and j : K → L be monomorphisms. If
i is right anodyne or j is left anodyne then i⋆̂ j is inner anodyne.

Proof. By the argument given in Proposition 15.2.1, it suffices to prove this for the
generators. It turns out jnk⋆̂im is jn+m+1

k and im⋆̂ jnk = jn+m+1
k+m+1 , so this is obvious. □

We leave the observations concerning the behavior of isomorphisms with respect to
right fibrations as an exercise for the reader.

Exercise 17.1.7. Show that right fibrations between quasi-categories reflect isomor-
phisms. Show furthermore that given a right fibration between quasi-categories p : X → Y
and an isomorphism p(x)→ y in Y , this 1-simplex lifts to an isomorphism x→ x′ in X.

Proof of Theorem 17.1.1. As observed in the proof of Lemma 17.1.6, the horn inclu-
sion jn0 : Λn

0 → ∆
n is j10⋆̂in−2, where j10 = d1 : ∆0 → ∆1. Let σ denote the 1st face of the

image of the horn Λn
0, represented in the domain of j10⋆̂in−2 as ∆0 ⋆ ∆n−2. Via (17.1.5), the

desired lifting problem is adjunct to

Λn
0

j10⋆̂in−2

��

// X

↭

∆0

d1

��

// X/σ

��
∆n−2

??~
~

~
~

∆1 //

<<z
z

z
z

z
X/σin−2 ,

where the right-hand vertical map is defined as in (17.1.4) with respect to the composable

triple ∂∆n−2 in−2
−−→ ∆n−2, ∆n−2 σ−→ X, X → ∗.

Applying Lemma 17.1.6 to the pushout-join of a right anodyne map with the maps
∅ → ∂∆n−2 and ∂∆n−2 → ∆n−2, we conclude, after taking adjuncts, that the maps X/σin−2 →

X and X/σ → X/σin−2 are right fibrations; in particular, their domains and codomains are
quasi-categories when X is. By Exercise 17.1.7, the bottom 1-simplex is an isomorphism
that therefore lifts to X/σ by 17.1.7 again. The transpose of this lift solves the desired
extension problem □

This proof also shows that horns Λn
0 → ∆

n or Λn
n → ∆

n lift against any inner fibration
provided that the image of the initial or terminal edge, respectively, is an isomorphism in
its domain.

17.2. Isomorphisms and Kan complexes

Several important results are immediate consequences of Theorem 17.1.1.

Corollary 17.2.1 ([Lur09, 1.2.5.1]). Let X be any simplicial set. The following are
equivalent.

(i) X is a quasi-category and hX is a groupoid.
(ii) X → ∗ is a left fibration.

(iii) X → ∗ is a right fibration.
(iv) X is a Kan complex.

In other words, Kan complexes are quasi-categories in which every edge is an isomor-
phism.
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Corollary 17.2.2. The simplicial sets HomL
X(x, y), HomX(x, y), and HomR

X(x, y) are
Kan complexes.

Proof. The pullback

HomR
X(x, y)

��

//
⌟

X/y

��
∆0

x
// X

defines HomR
X(x, y). The right-hand map is the forgetful functor associated to the slice over

y : ∆0 → X. Applying Lemma 17.1.6 to the pushout-join of a right anodyne map with
j = ∅ → ∆0, we conclude from (17.1.5) that the right-hand map is a right fibration. It
follows from 17.2.1 (iii)⇔ (iv) that HomR

X(x, y) is a Kan complex. But we have shown that
this hom-space is equivalent to the others, so it follows from 15.3.9 that their homotopy
categories are also groupoids. The conclusion then follows from 17.2.1 (i)⇔ (iv). □

Corollary 17.2.3. There is a right adjoint ι : qCat → Kan to the inclusion of full
subcategories Kan ↪→ qCat that takes a quasi-category to the simplicial subset spanned
by the isomorphisms.

Proof. Isomorphisms in (homotopy) categories, and hence isomorphisms in quasi-
categories, are closed under composition. It follows easily that ιX is again a quasi-category.
By 17.2.1 (i) ⇔ (iv) it is a Kan complex. Maps of simplicial sets preserve isomorphisms
because they preserve the 2-simplices that witness composition identities in the homotopy
categories. Hence, a map from a Kan complex K to a quasi-category X lands in ιX, and the
proof is complete. □

Note that the maximal sub Kan complex ιX of a quasi-category X contains all the
vertices. When X is not a Kan complex, Corollary 17.2.1 implies that ιX contains fewer
simplices in each positive dimension.

Remark 17.2.4. We would not expect a left adjoint to the inclusion Kan ↪→ qCat. If
such existed, then 1-simplices in a Kan complex would have to correspond bijectively to
diagrams from some Kan complex formed by applying the left adjoint to ∆1. The natural
choice for the image of ∆1 is J, but a generic isomorphism in a Kan complex has many
possible extensions to a diagram of shape J.

As a consequence of Corollary 17.2.3, the data depicted in (17.0.1) witnessing that
two 1-simplices are inverse isomorphisms can be greatly extended.

Lemma 17.2.5. f : ∆1 → X is an isomorphism in a quasi-category if and only if there
exists an extension to J = N(• � •).

Proof. Only one direction is non-obvious. For this, we make use of the following
observation: an n-simplex in the nerve of a category is degenerate if and only if one of
the edges along its spine is an identity. In particular, there are only two non-degenerate
simplices in each dimension in J, and furthermore, only the 0th and nth faces of each
non-degenerate n-simplex are non-degenerate.

By hypothesis, the map f lands in ιX; it therefore suffices to show that ∆1 → J is
anodyne. In fact, we will give a cellular decomposition of this inclusion, building J by
attaching a sequence of outer horns. Abusing terminology, we denote the non-degenerate
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1-simplex of ∆1 by f . The first attaching map Λ2
2 → ∆

1 has 0th face f and 1st face an
identity. Call the non-degenerate 1-simplex attached by the pushout

Λ2
2

//

�� ⌜

∆1 = J1

��
∆2 // J2

g. The simplicial set J2 also contains a non-degenerate 2-simplex whose spine is f g. Next
we use the Λ3

3 horn whose boundary is depicted

·

g

��

>>
>>

>>
>>

>>
>>

>>
>>

·

f
??�������� f //

>>
>>

>>
>>

>>
>>

>>
>>

·

·

f

??��������

to attach a 3-simplex to J2, defining a simplicial set J3 that contains a non-degenerate 2-
simplex with spine g f and a non-degenerate 3-simplex with spine f g f . Next attach a Λ4

4
horn to J3, and so on. □

Lemma 17.2.5 provides a welcome opportunity to revisit the definition of an equiva-
lence of quasi-categories introduction in section 15.3. Recall that [A, X]J was defined to
the set of equivalence classes of maps A→ X, with respect to the equivalence relation gen-
erated by diagrams (15.3.3). As X and hence XA is a quasi-category, we see from Lemma
17.2.5 that f ∼ g if and only if f and g are isomorphic as vertices of XA. In other words,
[A, X]J = π0ι(XA).

Now consider an equivalence f : X → Y between quasi-categories. By definition, f
induces isomorphisms between the sets of isomorphism classes of objects

[Y, X]J
f ∗
−→ [X, X]J [Y,Y]J

f ∗
−→ [X,Y]J .

Considering the first of these, we conclude that the identity on X is isomorphic in the
quasi-category XX to a vertex in the image of f ∗. By Lemma 17.0.2 and Lemma 17.2.5,
this isomorphism is represented by a map as displayed on the left

(17.2.6) X
1

""E
EE

EE
EE

EE

��
X × J // X

X

OO

f
// Y

g

OO

Y
1

""E
EE

EE
EE

EE

��
Y × J // Y

Y

OO

g
// X

f

OO

Postcomposing the isomorphism with f we see that f and f g f are isomorphic in YX . From
the second bijection, it follows that f g is isomorphic to the identity on Y via a map as
displayed on the right above.

Remark 17.2.7. The right adjoint ι preserves products. Thus ι∗qCat, the simplicial
category obtained by applying the functor ι to each of the hom-quasi-categories, is a locally
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Kan simplicial category. This allows us to define the quasi-category of quasi-categories:
it is the (large) quasi-category obtained as the homotopy coherent nerve of ι∗qCat.

By inspection, and the fact that ι∗qCat is locally Kan, the homotopy category of
Nι∗qCat is (π0)∗ι∗qCat. We call the homotopy category of the quasi-category of quasi-
categories the homotopy category of quasi-categories. Unpacking the definition, its ob-
jects are the quasi-categories and its morphisms are isomorphism classes of vertices in the
hom-quasi-categories of qCat. A map f : X → Y becomes an isomorphism in the homo-
topy category of quasi-categories just when there exists g : Y → X so that the composites
f g and g f are the same isomorphism classes as the respective identities. From (17.2.6), we
see that f is an isomorphism in the homotopy category of quasi-categories or indeed in the
quasi-category of quasi-categories exactly when f is an equivalence of quasi-categories.

Applying the adjunction of Corollary 17.2.3, the maps f and g of an equivalence
(17.2.6) restrict to maps between the maximal sub Kan complexes of these quasi-categories.
Because J is a Kan complex, the homotopies (17.2.6) restrict to maps ιX × J → ιX and
ιY × J → ιY which witness, in particular, that ι f and ιg form a categorical equivalence
between ιX and ιY . Thus we have proven one half of the following proposition.

Proposition 17.2.8. If f : X → Y is an equivalence of quasi-categories then ι f : ιX →
ιY is a categorical equivalence of Kan complexes. Conversely, a weak homotopy equiva-
lence between Kan complexes is a categorical equivalence.

Proof. For the converse, any weak homotopy equivalence X → Y of Kan complexes
extends to a simplicial homotopy equivalence by a classical result subsumed by Theorem
10.5.1(iii). The homotopies, themselves 1-simplices in XX and YY , are isomorphisms be-
cause these hom-spaces are Kan complexes. Hence, Lemma 17.2.5 implies that the data
of the simplicial homotopy equivalence can be extended to a diagram of the form (17.2.6).
Hence, a weak homotopy equivalence between Kan complexes is a categorical equiva-
lence. □

On account of Proposition 17.2.8, the phrase equivalence of Kan complexes is un-
ambiguous.

17.3. Inverting simplices

We think of a 2-simplex
· g
��>

>>>

·

f @@���� ∼

h
// ·

in a quasi-category as a witness that the composite of the 1-simplices g and f is homotopic
to h. If f , g, h are isomorphisms, we might expect there to be a 2-simplex witnessing that
the composite of f −1 with g−1 is homotopic to h−1, for any choice of inverse isomorphisms.
Indeed, this and more is true.

Theorem 17.3.1. Consider ∆n → X such that the image of each edge of ∆n is an
isomorphism.2 Then this map extends through ∆̃n, the nerve of the groupoid of n + 1
uniquely isomorphic objects.

There is an easy proof3 of this result using model category theory: the map ∆n → ∆̃n

is a cofibration between cofibrant objects. By hypothesis, the n-simplex lives in ιX so the

2It suffices that the spine lands in the isomorphisms.
3Thanks to Gijs Heuts for pointing this out.
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desired extension will also land in this Kan complex, a fibrant object in Quillen’s model
structure. To show that a map from a cofibrant object to a fibrant object extends along a
given cofibration, it suffices to replaces the cofibration by any weakly equivalent map and
solve the composite lifting problem [Lur09, A.2.3.1]. We can replace the map ∆n → ∆̃n by
the identity at ∆0, which is weak homotopy equivalent (though not categorically equivalent)
to both spaces, completing the proof.

Below, we give a different proof that allows us to draw a more refined conclusion:
given any diagram in a quasi-category, that is given any map of simplicial sets K → X,
whose edges are isomorphisms, each simplex in the diagram can be “freely inverted” in
a sense we will make precise below. One reason we like our proof is that it gives us
an opportunity to introduce a new tool, marked simplicial sets, for the study of quasi-
categories that is particularly suitable for proving results about the isomorphisms or a more
general class of edges satisfying certain properties.

17.4. Marked simplicial sets

Write sSet+ for the category of marked simplicial sets, i.e., simplicial sets X with a
specified collection of 1-simplices Xe ⊂ X1 called marked edges containing the degenerate
simplices. A map of marked simplicial sets is a map of simplicial sets that preserves
marked edges. Any simplicial set X admits a minimal marking X♭, with only the degenerate
edges marked, and a maximal marking X♯ with all 1-simplices marked. When X is a quasi-
category, the natural choice, denoted X♮, is to mark the isomorphisms.

We will develop familiarity with the category of marked simplicial sets through the
proof of the following proposition.

Proposition 17.4.1. sSet+ is cartesian closed.

Proof. Write ∆+ for the category obtained by freely adjoining an object e to ∆ through
which the map

[1] s0
//

  @
@@

@@
@@

@ [0]

e

>>~~~~~~~~

factors. The maps to and from e induce the following isomorphisms of hom-sets

∆+(e, [n]) � ∆(0, [n]) ∆+([n], e) � ∆([n], [1]).

The inclusion functor sSet+ ↪→ Set(∆+)op
, which takes a marked simplicial set to the

obvious presheaf on ∆+, has a left adjoint: factor the unique map Xe → X1 as an epi-
morphism followed by a monomorphism and take the resulting subobject of X1 to be the
set of marked edges. The counit of this adjunction is readily seen to be an isomorphism.
Hence, we may regard sSet+ as a reflective full subcategory of the presheaf category. In
the notation just introduced, the representable functors ∆+(−, [n]) correspond to the marked
simplicial sets (∆n)♭. The representable ∆+(−, e) corresponds to the marked edge (∆1)♯.

The product and internal hom on sSet+ are the restrictions of these structures on the
category of presheaves; cf. 6.1.9. In particular, an edge in a product of marked simplicial
sets is marked if and only if both components are; this is necessary if the projection maps
X ← X×Y → Y are to be maps of marked simplicial sets. Write Map(X,Y) for the internal
hom in sSet+. It is the simplicial set whose n-simplices are, by adjunction, maps of marked
simplicial sets α : X × (∆n)♭ → Y . The assertion that α is a map of marked simplicial
sets corresponds to the condition that the horizontal edges of the cylinder ∆1 × ∆n → Y
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associated to a marked edge in X are marked in Y . This is illustrated below in the case
n = 2.

f ∈ Xe ⇝ (∆1)♯ × (∆2)♭
f×−
−−−→ X × (∆2)♭ → Y

·

��

&&LL
LLL

L
∼ // ·

��

&&LL
LLL

L

·

xxrrr
rrr

∼ // ·

xxrrr
rrr

·
∼ // ·

A 1-simplex X × (∆1)♭ → Y in Map(X,Y) is marked just when the diagonal 1-simplex in
each cylinder ∆1 × ∆1 → Y associated to a marked edge of X is also marked in Y:

(17.4.2) f ∈ Xe ⇝ (∆1)♯ × (∆1)♭
f×−
−−−→ X × (∆1)♭ → Y

·

��

∼ //

∼

��>
>>

>>
>>

> ·

��
· ∼

// ·

Applying this observation to the degenerate 1-simplices in X, we conclude that the verti-
cal edges of the diagram (17.4.2) corresponding to a marked 1-simplex are also marked.
Hence, marked 1-simplices in Map(X,Y) are precisely maps X × (∆1)♯ → Y . □

We have a string of adjunctions

sSet

♭ ⊥ %%

♯
22 sSet+

♯⊥

dd
♭

⊥
ss

If K is a simplicial set, K♭ is the minimally marked simplicial set and K♯ is the maximally
marked one. The maps (−)♭, (−)♯ : sSet+ ⇒ sSet might also be called U and ι, respec-
tively. If (X, Xe) is a marked simplicial set, U(X, Xe) = X and ι(X, Xe) is the full simplicial
subset spanned by the marked edges; if X is a quasi-category and Xe is the set of isomor-
phisms, then ι(X, Xe) = ιX. We prefer the flat/sharp notation for these forgetful functors,
particularly when applied to the internal hom in sSet+. In particular, Map♭(X,Y) is the
simplicial set underlying the internal hom, while Map♯(X,Y) is the simplicial subset whose
n-simplices are the maps X × ∆n → Y whose edges

X × ∆1 → X × ∆n → Y

are marked, meaning that they extend along the map X × (∆1)♭ → X × (∆1)♯.
Because both (−)♭, (−)♯ : sSet ⇒ sSet+ are strong monoidal, by Theorem 3.7.11 we

have two choices of simplicial enrichment, tensor, and cotensor structure for sSet+. The
one with the flats is suitable for modeling (∞, 2)-categories. Here we instead use the sharps
to obtain a model for (∞, 1)-categories. The tensor structures pass through the left adjoint
(−)♯ : sSet → sSet+, and the hom-spaces are Map♯(X,Y), which restricts to the invertible
1-morphisms (2-cells).

Remark 17.4.3. In particular, the notion of simplicial homotopy for our preferred sim-
plicial enrichment on sSet+ is defined using the marked 1-simplex (∆1)♯. That is, by ad-
junction, homotopies in sSet+ between a pair of maps from X to Y are marked 1-simplices
in Map(X,Y).

Marked simplicial sets form a simplicial model category with hom-spaces Map♯(X,Y).

Theorem 17.4.4. There exists a left proper cofibrantly generated model structure on
sSet+ whose cofibrations are monomorphisms and fibrant objects are quasi-categories with
the isomorphisms marked. The fibrations between fibrant objects are those fibrations in
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Joyal’s model structure. The weak equivalences between fibrant objects are precisely the
categorical equivalences. In general, a map X → Y between marked simplicial sets is
a weak equivalence if for all quasi-categories Z either of the equivalent conditions are
satisfied:

(i) Map♭(Y,Z♮)→ Map♭(X,Z♮) is an equivalence of quasi-categories.
(ii) Map♯(Y,Z♮)→ Map♯(X,Z♮) is an equivalence of Kan complexes.

Furthermore these definitions give sSet+ the structure of a simplicial model category with
Map♯(X,Y) as hom-spaces. Finally, the adjunction (−)♭ : sSet ⇄ sSet+ : (−)♭, whose right
adjoint forgets the markings, defines a Quillen equivalence between this model structure
and Joyal’s model structure for quasi-categories.

Proof. This theorem is a special case of a class of model structures on stratified sim-
plicial sets [Ver08, 113] and also a special case of results in [Lur09, chapter 3]. Adopting
the terminology of the latter, if X is a quasi-category, a p-cartesian edge with respect to
p : X → ∗ is precisely an isomorphism and all maps X → ∗ are Cartesian equivalences,
immediately from the definition and the fact that degeneracies are isomorphisms. The as-
sertions about the model structure are special cases of model structures on sSet+/S , where
S = ∗, contained in 3.1.3.5, 3.1.3.7, 3.1.4.1, 3.1.4.4, 3.1.5.3. □

Exercise 17.4.5. Use Proposition 17.2.8 to prove that (i)⇒ (ii). The other half of the
equivalence is more subtle.

Now consider two cosimplicial objects M, M̃ : ∆ ⇒ sSet+ defined by Mn = (∆n)♯ and
M̃n = (∆̃n)♯. The canonical map i : M → M̃ is a pointwise monomorphism.

Lemma 17.4.6. The map i : M → M̃ is a Reedy cofibration in (sSet+)∆.

Proof. Both M and M̃ are unaugmentable by the same reasons as Example 14.3.9.
The conclusion follows from Lemma 14.3.8. □

We claim that i : M → M̃ is also a Reedy, that is pointwise, weak equivalence. Using
the 2-of-3 property, we will prove this by showing that Mn = (∆n)♯ and M̃n = (∆̃n)♯ are both
contractible in the marked sense: explicitly that they admit simplicial homotopy equiva-
lences to the point. Because sSet+ is a simplicial model category, at least with one choice
of enrichment, simplicial homotopy equivalences are necessarily weak equivalences, and
so this shows that each map Mn → M̃n is a weak equivalence in the model structure.

Lemma 17.4.7. The map i : M → M̃ is also a pointwise weak equivalence.

Proof. We will do the case of (∆n)♯; the other is similar. The map ∆0 0
−→ (∆n)♯ is

an inverse homotopy equivalence to the unique map (∆n)♯ → ∆0. The desired homotopy
(∆n)♯ × (∆1)♯ → (∆n)♯ is defined by (i, 0) 7→ 0 and (i, 1) 7→ i. □

The point of these observations is that they allow us to prove:

Proposition 17.4.8. Let K be any simplicial set. The weighted colimit functor

colimK − : (sSet+)∆ → sSet+

is left Quillen when the domain is given the Reedy model structure.

Proof. Because sSet+ is a bicomplete simplicial category, weighted colimits are com-
puted via functor tensor products. Because it is a simplicial model category, by Theorem
14.3.1, the weighted colimit functor

− ⊗∆ − : (sSet)∆op
× (sSet+)∆ → sSet+
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is a left Quillen bifunctor with respect to the Reedy model structures. Regarding K as a
discrete bisimplicial set, the simplicial tensor product computes the colimit with weight
K by (4.0.2). All bisimplicial sets are Reedy cofibrant by Lemma 14.3.7, so the result
follows. □

How do we interpret this result? Forgetting the markings for a moment

colimK ∆• � colim
∆n→K

∆n � K,

using the fact that (unenriched) weighted colimits can be computed as colimits over cate-
gories of elements; cf. (7.1.8). Because (−)♯ : sSet → sSet+ is a left adjoint, it preserves
colimits and hence colimK M• � K♯. Similarly,

(17.4.9) colimK ∆̃• � colim
∆n→K

∆̃n =: K̃

is a simplicial set we will call K̃. By Yoneda’s lemma, colim∆
n
∆̃• � ∆̃n, so the new

notation agrees with the old. As above, colimK M̃ marks everything in this simplicial
set. The theorem together with Lemmas 17.4.6 and 17.4.7 say that K♯ → K̃♯ is a trivial
cofibration in sSet+.

Corollary 17.4.10. Let K be any simplicial set and define K̃ to be the weighted colimit
(17.4.9). The natural map K♯ → K̃♯ is a trivial cofibration of marked simplicial sets.

Before applying this result, we use the fact that weighted colimits are cocontinuous in
their weight to compute a few examples.

Example 17.4.11. Because Λ2
1 is a pushout of two copies of ∆1, Λ̃2

1 � ∆̃
1 ⊔∆0 ∆̃1. Al-

though each edge in this simplicial set is an isomorphism, it is not a Kan complex because
some required composites are absent.

Example 17.4.12. Let C be the free category on a commutative square; because C �
2 × 2, NC = ∆1 × ∆1. On account of the pushout diagram

∆1 d1
//

d1

�� ⌜

∆2

��
∆2 // ∆1 × ∆1

we see that ˜∆1 × ∆1 � ∆̃2 ⊔∆̃1 ∆̃2. This simplicial set has 10 non-degenerate 1-simplices,
corresponding to the five non-degenerate 1-simplices of ∆1 × ∆1.

By contrast, the free groupoid on C is defined by formally inverting all its arrows.
This category is the product of two free-standing isomorphisms; hence, its nerve is J × J =
∆̃1 × ∆̃1. This simplicial set is larger: for instance, it has 12 non-degenerate 1-simplices.

17.5. Inverting diagrams of isomorphisms

A map K♯ → X♮ in sSet+ is precisely a map K → X of underlying simplicial sets so
that every edge of K maps to an isomorphism in X. Immediately from Corollary 17.4.10:

Corollary 17.5.1. Any map K → X from a simplicial set K to a quasi-category X
that takes the edges of K to isomorphisms in X admits an extension

K //

��

X

K̃

??�
�

�
�
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Proof. Maps to fibrant objects in sSet+ extend along any trivial cofibration

K♯ //

��

X♮

K̃♯

>>~
~

~
~

□

This proves the assertion made at the end of section 17.3. We can also apply this result
to “partially invert” simplices. Suppose we have a ∆n+1+k simplex in a quasi-category so
that the last k edges along the spine are invertible. It follows that all edges spanned by the
last k + 1 vertices are invertible. We will show it is possible to “invert this simplex”: we
build a new simplex which leaves the faces connecting the first n-vertices to one of the last
k+ 1 vertices unchanged. This result is a corollary of the following lemma, whose proof is
simplified by the use of markings.

Following [Ver08], we modify the join bifunctor introduced in section 17.1. Recall
the join bifunctor ⋆ : sSet+ × sSet+ → sSet+ is the Day convolution of the ordinal sum
bifunctor ⊕ : ∆+ × ∆+ → ∆+. We restrict ⋆ to define a new bifunctor

⋆′ := sSet × sSet
π0×π0 // sSet+ × sSet+

⋆ // sSet+
U // sSet

cocontinuous in both variables, that augments a pair of simplicial sets with their sets of
path components (see Example 1.1.10), applies the join for augmented simplicial sets, and
then forgets the augmentation. If a simplicial set X is connected, its path components
augmentation and trivial augmentation, the left and right adjoints to the forgetful functor
sSet+ → sSet, coincide. When Y is also connected, X ⋆ Y � X ⋆′ Y . Note however that
X ⋆ ∅ = X while X ⋆′ ∅ = ∅.

The bifunctor ⋆′ extends to marked simplicial sets with the convention that an edge
in X ⋆′ Y is marked only if it is marked in X or in Y; edges in X ⋆′ Y corresponding to
the join of a vertex in X with a vertex in Y are not marked. This bifunctor is cocontinuous
in both variables. Hence, (∆n)♭ ⋆′ − : sSet+ → sSet+ admits a right adjoint decl((∆n)♭,−)
called the décalage functor. A k-simplex in decl((∆n)♭, X♮), the object of interest, is a map
(∆n)♭⋆′(∆k)♭ � (∆n⋆∆k)♭ → X♮ of marked simplicial sets, subject to no further restrictions.
Its marked edges are maps (∆n)♭⋆ (∆1)♯ → X♮. The domain is the (n+2)-simplex with only
its last non-degenerate edge marked. This encodes the “special outer horns” Λn

n satisfying
the hypotheses of Theorem 17.1.1.

A bifunctor decr can be defined dually, fixing the other variable of ⋆′.

Lemma 17.5.2. If X is a quasi-category then decl((∆n)♭, X♮) is fibrant.

Proof. Our proof is a special case of [Ver08, 38]. To simplify notation, we drop
the flats from simplicial sets with only the degeneracies marked. We must show that
decl(∆n, X♮) lifts against the following inclusions, which detect fibrant objects:

(i) Λm
k → ∆

m for m ≥ 2, 0 < k < m,
(ii) Λm

0 → ∆m and Λm
m → ∆m for all m ≥ 1 with first and last edges marked,

respectively, in both the domain and codomain, and
(iii) the “2-of-6” map ∆3 → (∆3)♯ for which the edges [02] and [13] are marked in

the domain.
By Lemma 11.1.5 it suffices to show that the left adjoint ∆n ⋆′ − preserves the weakly
saturated class generated by these maps; because the domains and codomains of the gen-
erators (i)-(iii) are connected, we may replace this functor by ∆n ⋆ −. For the case (i), the
map ∆n ⋆ Λm

k → ∆
n ⋆ ∆m factors through (∅ → ∆n)⋆̂ jmk along the pushout of a Λm

k horn
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which attaches an m-simplex to the last m + 1 vertices in ∆n+m+1. By Lemma 17.1.6, this
composite is inner anodyne.

The join of ∆n with the map of (iii) gives rise to a map of simplicial sets ∆n+4 →

∆n+4 with certain of the edges between the last four vertices marked; this map of marked
simplicial sets is a pushout of the map ∆3 → (∆3)♯ along the obvious face map, and thus
remains in the same weakly saturated class.

Finally, the maps ∆n ⋆ Λm
0 → ∆

n+m+1 and ∆n ⋆ Λm
m → ∆

n+m+1 obtained by applying
∆n ⋆ − to the maps of (ii) are generalized horn inclusions. For the former, we can fill the
obvious Λm

0 horn by a pushout of the generating map Λm
0 → ∆

m of marked simplicial sets.
The result is the pushout-product (∅ → ∆n)⋆̂ jm0 , which is inner anodyne by Lemma 17.1.6.
For the latter, first fill the Λm

m horns to get each missing m-simplex containing the last edge.
Then fill the Λm+1

m+1 horns containing the last edge, and so on. □

In particular, by Theorem 17.4.4, the underlying simplicial set decl(∆k, X) is a quasi-
category.

Corollary 17.5.3. Given ∆n+1+k σ−→ X with the last k edges along the spine invertible,

there exists ∆n+1+k σ′

−−→ X which agrees with the original simplex on the face spanned by
the first n+1 vertices. Furthermore, the last k+1 vertices of σ′ coincide with the last k+1
vertices of σ but appear in reverse order and each edge between these vertices has been
replaced by an inverse isomorphism. Additionally, the faces of σ′ spanned by the first n+1
vertices and a single one of these last vertices coincide with the ones in σ.

Proof. Indeed, our proof implies a more robust conclusion. Apply Corollary 17.5.1
to a map (∆k)♯ → (decl(∆n, X))♮ to obtain an extension ∆̃k → decl(∆n, X), giving rise to the
desired map ∆n ⋆ ∆̃k → X. □

17.6. A context for invertibility

The functor ˜(−) : sSet → sSet defined by (17.4.9) is equivalently described as the left
Kan extension of the cosimplicial simplicial set ∆̃• : ∆ → sSet, introduced in Theorem
17.3.1, along the Yoneda embedding. In particular, it has a right adjoint which sends a
simplicial set X to the simplicial set whose n-simplices are maps ∆̃n → X.

Theorem 17.6.1 ([Joy08b, 9.13]). These functors define a Quillen adjunction whose
left adjoint ˜(−) is a functor from Quillen’s model structure on simplicial sets to Joyal’s.

Proof. By the proof of Proposition 17.4.8, the functor − ⊗∆ M̃• : sSet∆op
→ sSet+ is

left Quillen with respect to the Reedy model structure on bisimplicial sets and the model
structure of 17.4.4 on marked simplicial sets. In particular, a monomorphism of simplicial
sets K → L becomes a monomorphism of discrete bisimplicial sets. This is also a Reedy
cofibration, and hence maps to a monomorphism K̃ → L̃, once we have forgotten the
markings. This shows that ˜(−) preserves cofibrations.

It remains to show that ˜(−) carries weak homotopy equivalences to categorical equiv-
alences. The natural map K → K̃ induced by comparing the K-weighted colimits of ∆•

and ∆̃• is a weak homotopy equivalence: To see this note that for any quasi-category Z,
Map♯(K♯,Z♭) = (ιZ)K . By the proof of Theorem 15.3.1, a map A→ B is a weak homotopy
equivalence if and only if the maps induced by homming into any Kan complex are weak
homotopy equivalences. It follows from the characterization of the weak equivalences in
Theorem 17.4.4 and from Corollary 17.4.10 that weak equivalences of marked simplicial
sets are in particular weak homotopy equivalences.
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Suppose given a weak homotopy equivalence K → L. By the 2-of-3 property and the
argument just given, K̃ → L̃ is a weak homotopy equivalence. We want to show that it is
a categorical equivalence. By construction, every 1-simplex in K̃ is an isomorphism. In
particular, hK̃ is a groupoid. By Corollary 15.3.9, a fibrant replacement K′ of K̃ in Joyal’s
model structure will be a quasi-category whose homotopy category is a groupoid. By the
2-of-3 property for the weak homotopy equivalences, K′ → L′ is again a weak homotopy
equivalence.

K̃

w.h.e.
��

c.e // K′

w.h.e
��

L̃ c.e.
// L′

By Corollary 17.2.1, this quasi-category is a Kan complex. A weak homotopy equivalence
between Kan complexes is a categorical equivalence by Proposition 17.2.8. Hence, the
2-of-3 property implies that K̃ → L̃ is a categorical equivalence, completing the proof. □

In other words, the functor that glues together “freely inverted simplices” defines a
left Quillen functor from the model structure for Kan complexes to the model structure for
quasi-categories.

17.7. Homotopy limits of quasi-categories

A diagram F : D → qCat induces a diagram F♮ : D → sSet+ by marking the iso-
morphisms. By Theorem 17.4.4, F♮ is a diagram taking values in the fibrant objects of a
simplicial model category. By Theorem 6.6.1, the homotopy limit is therefore the limit of
F♮ weighted by N(D/−) : D → sSet. The proof of Theorem 15.2.5, which holds mutatis
mutandis for diagrams of fibrant objects in any simplicial model category, tells us that this
weighted limit is again a quasi-category with marked edges precisely the isomorphisms. In
this way, we have proven:

Theorem 17.7.1. The quasi-categories are closed under the formation of homotopy
limits.

Note that the construction of the homotopy limit of a diagram of quasi-categories,
making use of the marked model structure, differs from the construction of the homotopy
limit of a diagram of Kan complexes. Let us explore this via examples.

Example 17.7.2. By the argument in Example 6.5.2, the homotopy limit of a diagram
f : X → Y of quasi-categories, represented by a diagram f ♮ : X♮ → Y♮ is computed via the
following pullback in marked simplicial sets

holim f ♮

��

//
⌟

Map((∆1)♯,Y♮)

d1

��
Map((∆0)♯, X♮) // Map((∆0)♯,Y♮)

This (∆0)♭ � (∆0)♯ represents the identity, so the bottom horizontal map is f ♮ : X♮ → Y♮.
The underlying set of Map((∆1)♯,Y♮) is the full subspace ΠY of the path space Y∆

1

on the paths ∆1 → Y whose images are isomorphisms; in particular, ΠY is again a quasi-
category. By the proof of Proposition 17.4.1, a marked edge in Map((∆1)♯,Y♮) is a diagram
(∆1)♯ × (∆1)♯ → Y♮. From this definition, we see that an edge is marked just when it is
an isomorphism in the quasi-category ΠY: the details of the proof of this claim parallel
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those given in Lemma 18.2.3. In particular, each object in the diagram defining holim f is
a naturally marked quasi-category, so we are comfortable interpreting the result in qCat,
from which we conclude that holim f is the pullback

holim f

��

//
⌟

// ΠY

ev0

��
X

f
// Y

Note that if Y is a Kan complex, then ΠY = Y∆
1

and this homotopy limit coincides
with the usual mapping path space.

Example 17.7.3. Consider a diagram of quasi-categories X
f
−→ Z

g
←− Y . Using the fact

that Map(∆0,−) is the identity functor on marked simplicial sets, we see that the homotopy
limit of the corresponding diagram of marked simplicial sets is the limit of the diagram

X♮

f ♮ ��>
>>

>>
>>

> Map((Λ2
2)♯,Z♮)

ev0

yysss
sss

sss
ss

ev1

%%KK
KKK

KKK
KKK

Y♮

g♮����
��
��
��

Z♮ Z♮

As in the previous example, the underlying simplicial set of Map((Λ2
2)♯,Z♮) is the sub-

quasi-category of ZΛ
2
2 spanned by the Λ2

2 horns in Z whose edges are isomorphisms. By
Theorem 17.7.1, the limit is the naturally marked quasi-category whose vertices are objects
x ∈ X and y ∈ Y together with a pair of isomorphisms f (x) → z ← g(y) in Z; whose 1-
simplices are natural transformations of such; and so on.

Remark 17.7.4. By the dual of Corollary 14.3.2 interpreted in the marked model struc-
ture of Theorem 17.4.4, the homotopy pullback constructed in Example 17.7.3 is equivalent
to the ordinary pullback in the case when either f or g is an isofibration, that is to say, a
fibration in the Joyal model structure between quasi-categories.





CHAPTER 18

A sampling of 2-categorical aspects of quasi-category
theory

One of the most useful formal features of the category of simplicial sets, or here its
full subcategory of quasi-categories, is that it is cartesian closed and in particular self
enriched. It follows by Theorem 7.5.3, that its limits and colimits all satisfy simplicially
enriched universal properties. Throughout much of this text, we have exploited simplicial
enrichments due to their convenience, even when our interest was in mere homotopy types.

In this final chapter, following observations of Joyal and Verity, we will use the self
enrichment of the category of quasi-categories established by Corollary 15.2.3 to define a
2-category of quasi-categories appropriate for its homotopy theory: equivalences in this
2-category are exactly equivalences of quasi-categories. This (strict) 2-category qCat2 is a
truncation of the simplicial category of quasi-categories. The hom-spaces between quasi-
categories have cells in each dimension starting from the vertices, which are ordinary maps
of simplicial sets. Accordingly, in this chapter we shall denote this simplicial category by
qCat∞. The 2-cells in qCat2 are homotopy classes of 1-simplices in the corresponding
hom-spaces; all higher-dimensional information is discarded. Our interest in these struc-
tures is predicated on their competing enrichments; for this reason we will write qCat2
and qCat∞ for the enriched categories, without the underline used elsewhere to signal en-
richments. The category qCat is the common underlying category of both the 2-category
qCat2 and the simplicial category qCat∞.

We will illustrate through examples how qCat2 can be used to determine the appropri-
ate quasi-categorical generalizations of categorical concepts. Important to our development
of the category theory of quasi-categories is that in many cases the proofs from classical
category theory can be imported to demonstrate the corresponding quasi-categorical re-
sults. In this way, we might say our project is to develop the formal category theory of
quasi-categories.

There is considerably more to be said in this vein—indeed a large part of Joyal’s
unpublished treatises presents this viewpoint. Here we only have space to describe a sam-
pling of 2-categorical aspects of quasi-category theory. A considerably more expansive
continuation of this story can be found in [RV13a, RV13b].

18.1. The 2-category of quasi-categories

The definition of the 2-category of quasi-categories makes use of the adjunction

h : sSet
//
Cat : N.oo ⊥

It is easy to see that the counit is an isomorphism. We can use this to prove:

Lemma 18.1.1. The functor h : sSet→ Cat preserves finite products.

Proof. Because h is a left adjoint and sSet and Cat are cartesian closed, the bifunctors
(h−)× (h−) and h(−×−) preserve colimits in both variables. Hence, it suffice to show that

249
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h∆n × h∆m � h(∆n × ∆m). The representable ∆n is the nerve of the category which we will
temporarily denote by ñ. We have isomorphisms

(h∆n) × (h∆m) � (hNñ) × (hNm̃) � ñ × m̃ � hN(ñ × m̃) � h(Nñ × Nm̃) � h(∆n × ∆m). □

Remark 18.1.2. In fact, the restricted functor h : qCat → Cat preserves arbitrary
products of quasi-categories, not just finite ones. It is clear that the canonical comparison
functor h(

∏
α Xα)→

∏
α hXα is the identity on objects, these just being products of vertices

in the underlying simplicial sets. Morphisms in h(
∏
α Xα) are products of 1-simplices up

to the homotopy relation. If two such products represent the same map in
∏
α hXα, then

because each Xα is a quasi-category it is possible to choose a 2-simplex in each coordinate
that witnesses these homotopies. But then the product of these 2-simplices indicates that
these maps are the same in h(

∏
α Xα) as well. Similarly, if ( fα) and (gα) compose to

(hα) in
∏
α hXα then, because each Xα is a quasi-category, there exist 2-simplices σα with

σαd2 = fα, σαd0 = gα, and σαd1 = hα. Thus (σα) witnesses the fact that the same relation
holds in h(

∏
α Xα). The converse implication is obvious.

This lemma shows that both h and N are strong monoidal; it follows that there is an
induced change of base adjunction

h∗ : sCat
//
2Cat : N∗oo ⊥

between 2-categories and simplicial categories obtained by applying the functors N and h
to each hom-object [Cru08, Ver92].

Definition 18.1.3 (2-category of quasi-categories). In particular, the full simplicial
subcategory qCat∞ ↪→ sSet spanned by the quasi-categories has an associated 2-category
qCat2 := h∗qCat∞ that we shall call the 2-category of quasi-categories. Its o

bjects are quasi-categories, its 1-cells are maps of quasi-categories, and its 2-cells are
homotopy classes of homotopies.

Because any morphism in the homotopy category of a quasi-category is represented

by a 1-simplex, a 2-cell X
f
((

g
66⇓α Y in qCat2 is represented by a diagram

X × ∆0 � X
f

$$II
III

III
III

d1

��
X × ∆1 α̃ // Y

X × ∆0 � X

g

::uuuuuuuuuu
d0

OO

More concisely notated, a 2-cell α : f ⇒ g is represented by a 1-simplex α̃ : f → g in
YX . Two such 1-simplices from f to g represent the same 2-cell if and only if they are
homotopic as 1-simplices in YX , i.e., if and only if there exists a 2-simplex with these 1-
simplices as faces and either the degeneracy at f or g as the third face. The underlying
category of any 2-category simply forgets its 2-cells. Hence the underlying category of
qCat2 is the unenriched full subcategory of quasi-categories qCat.

The 2-category qCat2 inherits a number of pleasing properties from the simplicial
structure on qCat∞.

Proposition 18.1.4. qCat2 is cartesian closed.
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Proof. We show that the terminal object, products, and internal hom in qCat∞ define
the analogous structures in qCat2. In each case, we translate the sSet-enriched universal
properties to Cat-enriched ones.

Because ∆0 is a terminal object in the simplicially enriched sense, i.e., because (∆0)A �
∆0, it is also terminal in the 2-categorical sense: the isomorphisms

qCat2(A,∆0) = h((∆0)A) � h(∆0) � 1

asserts that the hom-category from A to ∆0 is the terminal category. Similarly, because
X×Y is a simplicially enriched product, we have isomorphisms (X×Y)A � XA ×YA which
leads to an isomorphism of hom-categories:

qCat2(A, X×Y) = h((X×Y)A) � h(XA×YA) � h(XA)×h(YA) = qCat2(A, X)×qCat2(A,Y).

Finally, because ZX×Y � (ZY )X , we have

qCat2(X × Y,Z) = h(ZX×Y ) � h((ZY )X) = qCat2(X,ZY ),

which says that the exponential ZY defines an internal hom for the 2-category qCat2, just
as it does for qCat∞. □

Remark 18.1.5 (equivalences are equivalences). An equivalence in a 2-category is a
pair of one cells f : x ⇄ y : g together with 2-cell isomorphisms 1x ⇒ g f , f g ⇒ 1y. A 2-
cell between a pair of maps from x to y is an isomorphism just when it is an isomorphism
in the hom-category from x to y. In qCat2 a 2-cell between maps from X to Y is an
isomorphism just when (any of) its representing 1-simplices in YX are isomorphisms. From
(17.2.6), we see that an equivalence f : X ⇄ Y : g in qCat2 is precisely an equivalence of
quasi-categories.

Remark 18.1.6. The functor h : qCat→ Cat extends to a 2-functor h : qCat2 → Cat.
On hom-categories, this 2-functor is defined by the functor h(YX)→ hYhX which is adjunct

to h(YX) × hX � h(YX × X)
h(ev)
−−−→ hY . Because 2-functors preserve equivalences, we see

immediately that an equivalence of quasi-categories descends to an equivalence between
their homotopy categories.

18.2. Weak limits in the 2-category of quasi-categories

By Proposition 18.1.4, the 2-category qCat2 has finite products in the 2-categorical
(i.e., Cat-enriched) sense. To develop the category theory of quasi-categories, we would
like to make use of other 2-limits. Of particular importance in ordinary category theory is
the fact that Cat admits cotensors by the walking arrow category 2. This allows us to form
arrow categories and encode natural transformations as functors (see the proof of Lemma
8.5.3).

To say that qCat2 admits cotensors by 2 would mean that for every quasi-category X
there is some quasi-category X2 so that the categories

(18.2.1) qCat2(A, X2) = h((X2)A) � (h(XA))2 = (qCat2(A, X))2

are naturally isomorphic. By the defining universal property as a weighted limit, the coten-
sor would necessarily commute with the internal hom (−)A. Hence, because qCat2 is
cartesian closed, in place of the natural isomorphism (18.2.1) it would suffice to demand
an isomorphism h(X2) � (hX)2.
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By Corollary 15.2.3, qCat∞ admits cotensors by any simplicial sets. With this in mind,
the only reasonable guess would be to define the cotensor to be X∆

1
, recalling that N2 � ∆1

and hence h∆1 � 2. Indeed, because h is a 2-functor, there is a natural comparison

(18.2.2) h(X∆
1
)→ (hX)2.

However this functor is not an isomorphism. In particular, it is not bijective on objects.
However certain properties of this functor guarantee that X∆

1
is a weak cotensor with 2

in a sense made precise by the following lemma. In Lemma 18.3.2, we will see that these
properties enable us to prove that X∆

1
is really the only reasonable choice: specifically, we

can show that weak cotensors by 2 are unique up to equivalence.

Lemma 18.2.3. The canonical comparison functor h(X∆
1
) → (hX)2 is surjective on

objects, full, and conservative.

Proof. Surjectivity on objects says that every arrow in hX is represented by a 1-
simplex in X, which would be false for generic simplicial sets, but is true for quasi-
categories.

To prove fullness, suppose given a commutative square in hX, and choose arbitrary
1-simplices representing each morphism

(18.2.4) ·

f

��

a // ·

g

��
·

b
// ·

Choose a composite k of a with g and a 2-simplex witnessing this fact. The morphism k is
the composite of f and b in hX; hence there is a 2-simplex witnessing this fact. These pair
of 2-simplices define a map ∆1 → X∆

1

(18.2.5) ·

f

��

a //

k
>>

>
∼

∼ ��>
>>>

·

g

��
·

b
// ·

which represents an arrow in the category h(X∆
1
) whose image is the specified commutative

square.
A functor is conservative if and only if every morphism in the domain mapping to an

isomorphism in the codomain is already an isomorphism. Suppose given a map in h(X∆
1
)

whose image (18.2.4) is an isomorphism, i.e., so that a and b are isomorphisms in hX,
which is the case if and only if they are isomorphisms in the quasi-category X. Choose
inverse isomorphisms a−1 and b−1 and 2-simplices (17.0.1) witnessing this. We can choose
a simplex ℓ so that the diagram

(18.2.6) ·

g

��

a−1
//

ℓ
>>

>

��>
>>

>

·

f

��
·

b−1
// ·

commutes in hX, but we do not choose witnessing 2-simplices just yet. Suppose we had
done so. Then this data, (18.2.5), and the 2-simplices exhibiting a−1 as left inverse to a and
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b−1 as left inverse to b would form a diagram

Λ2
1 × ∆

1
∐
Λ2

1×∂∆
1

∆2 × ∂∆1 → X

from the domain of j21×̂i1 to X; another such diagram would be obtained using the 2-
simplices that exhibit a−1 and b−1 as right inverses.

The objective is to fill these diagrams to define maps ∆2 × ∆1 ⇒ X in such a way that
the missing squares ∆1×∆1 are formed using the two degenerate 1-simplices on f and on g,
respectively. This is possible if we forget the 2-simplices of (18.2.6): First apply Corollary
17.5.3 to invert one of the b’s and one of the a’s in the s1-degenerate images of the two
2-simplices of (18.2.5). These give one of the outer shuffles in each ∆2 × ∆1. The inner
shuffle is then obtained by filling an inner horn and applying Corollary 17.5.3. This process
also chooses the two 2-simplices for the diagram (18.2.6). Then we apply 17.5.3 to invert
one of the b−1’s and one of the a−1’s in the s1-degenerate image of these two 2-simplices to
obtain the final desired shuffles. An alternate construction produces these shuffles together
with the faces of (18.2.6) using the special outer horn filling of Theorem 17.1.1. □

On account of Lemma 18.2.3, we refer to the weak 2-cotensor X∆
1

as the arrow quasi-
category of the quasi-category X.

18.3. Arrow quasi-categories in practice

Applying (18.2.2) to the quasi-category XA, we have a functor

(18.3.1) qCat2(A, X∆
1
) = h((X∆

1
)A) � h((XA)∆

1
)→ h(XA)2 = (qCat2(A, X))2

natural in A. Taking A = X∆
1
, the image of the identity map is a 2-cell

X∆
1

d1

}}||
|| d0

!!B
BB

B
ι

X
⇒

X

in qCat2. In general, the functor (18.3.1) maps a homotopy A → X∆
1
, an object of the

category qCat2(A, X∆
1
) say from f to g, to the composite 2-cell

A

��
g

��

f

��

X∆
1

d1

~~}}
}}
}}
} d0

  A
AA

AA
AA

ι

X
⇒

X

By Lemma 18.2.3, the functor (18.3.1) is surjective on objects, full, and conservative.
Surjectivity says that any 2-cell in qCat2 is represented by a homotopy in qCat

A

f
!!

g

??⇓α X ↭

A

α̃
��

f

��

g

��

X∆
1

d1
~~}}
}}
}}
}}

d0
  A

AA
AA

AA
A

X X
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such that the whiskered composite of the 1-cell α̃ : A → X∆
1

in qCat2 with ι is the 2-cell
α.

Note that the representing homotopy α̃ is not unique; this is what is meant by saying
that X∆

1
is only a weak cotensor by 2. However, we can use the fact that the functors

(18.3.1) are full and conservative to show that the universal properties of 18.2.3 character-
ize the arrow quasi-category up to equivalence.

Lemma 18.3.2. Any quasi-category Z, for which there exists a natural transformation
whose components h(ZA) → h(XA)2 are surjective on objects, full, and conservative, is
equivalent to X∆

1
.

Proof. Any such Z has a canonical 2-cell

Z
e1

����
� e0

��?
??

κ

X
⇒

X

defined by taking the image of 1Z ∈ h(ZZ). As for X∆
1
, surjectivity on objects implies that

this 2-cell has the following weak universal property: any 2-simplex A
f
((

g
66⇓α X factors

through κ along some map α̌ : A → Z. Applying the weak universal property of ι to κ we
obtain a map κ̃ : Z → X∆

1
whose whiskered composite with ι is κ. Applying the universal

property of κ to ι, we obtain a map ι̌ : X∆
1
→ Z whose whiskered composite with κ is ι.

Hence, the composite X∆
1 ι̌
−→ Z

κ̃
−→ X∆

1
gives a factorization of ι through itself. In particular,

the objects κ̃ι̌ and 1X∆1 have the same image under the functor (18.3.1). The identity defines
an isomorphism between the image of these objects, so by fullness and conservativity of
h((X∆

1
)X∆

1

) → h(X(X∆
1
))2 there is an isomorphism between κ̃ι̌ and 1X∆1 in h((X∆

1
)X∆

1

). A
similar argument implies the existence of an isomorphism in h(ZZ) between the ι̌κ̃ and
1Z . These isomorphisms, in turn, are represented by maps J → (X∆

1
)X∆

1

and J → ZZ by
Lemma 17.2.5, which shows that ι̌ and κ̃ define an equivalence between Z and X∆

1
. □

Exercise 18.3.3. Generalize this argument to show that qCat2 admits weak cotensors
by any category freely generated by a graph. It might be helpful to observe that the map
from the 1-skeletal simplicial set formed by a reflexive directed graph to the nerve of the
category it freely generates is inner anodyne.

18.4. Homotopy pullbacks

We will make use of other weak 2-limits with analogous universal properties. Let
E

p
−→ B

q
←− F be maps of quasi-categories, with q an isofibration, by which we mean

a fibration between fibrant objects in Joyal’s model structure of Theorem 15.3.6. The 2-
functor h : qCat2 → Cat induces a canonical comparison map h(E ×B F)→ hE ×hB hF.

Lemma 18.4.1. For any diagram E
p
−→ B

q
←− F of quasi-categories with q an isofi-

bration, the canonical functor h(E ×B F) → hE ×hB hF is bijective on objects, full, and
conservative.

Proof. Bijectivity on objects is clear. To show fullness, suppose given vertices e, e′ ∈
E, f , f ′ ∈ F so that p(e) = q( f ) and p(e′) = q( f ′). An arrow between these objects in
hE×hB hF is represented by 1-simplices a : e→ e′ and b : f → f ′ so that p(a) and q(b) are
homotopic in B. The homotopy in turn is represented by a 2-simplex with 2nd face q(b),
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1st face p(a), and 0th face degenerate. This defines a lifting problem between j21 and q.
The filler specifies a 1-simplex b′ : f → f ′ such that q(b′) = p(a); the pair (a, b′) defines
the desired morphism in h(E ×B F).

The proof of conservativity is similar. Here we may suppose we are given a : e → e′

and b : f → f ′ with p(a) = q(b). Suppose a and b are both isomorphisms and choose
inverse isomorphisms a−1 and b−1 together with 2-simplices witnessing these inverses.
The images p(a−1) and q(b−1) are homotopic. As above, we use the fact that q lifts against
all inner horn inclusions to replace b−1 with a homotopic map b′−1 in the fiber over p(a−1).
This data can be used to construct lifting problems of q against 3-dimensional inner horns
whose solutions give rise to 2-simplices in F that witness the isomorphism between b and
b′−1 and lie over the image of the corresponding 2-simplices in E. This data shows that the

1-simplex ∆1 (a,b)
−−−→ E ×B F is an isomorphism, as desired. □

Remark 18.4.2. This proof only required that q is an inner fibration. This hypothesis
is also necessary for the pullback to be a quasi-category. We prefer to also ask it to be
an isofibration so that the pullbacks we consider are homotopy pullbacks in qCat. See
Remark 17.7.4.

Remark 18.4.3. Because exponentials preserve pullbacks and isofibrations, we also
conclude that the canonical functor h((E ×B F)A) → h(EA) ×h(BA) h(FA) is bijective on
objects, full, and conservative for any simplicial set A. An argument analogous to the
proof of Lemma 18.3.2 shows that the quasi-category E ×B F with the weak universal
property of Lemma 18.4.1 is unique up to equivalence. We refer to any quasi-category
with this universal property as a weak homotopy pullback.

18.5. Comma quasi-categories

We are interested in the weak universal properties of Lemma 18.2.3 and Lemma 18.4.1
because they can be combined to define weak comma objects. Let E

p
−→ B

q
←− F be

a diagram of quasi-categories, though we no longer insist that p or q is an isofibration.
Define a quasi-category p ↓ q by forming the pullback

(18.5.1) p ↓ q

��

//
⌟

B∆
1

��
E × F p×q

// B × B � B∂∆
1

Because the Joyal model structure is monoidal, the right-hand vertical map is an isofibra-
tion. By the standard closure properties fibrations between fibrant objects, the left-hand
map is also. In particular, p ↓ q is a quasi-category, which we refer to as a comma quasi-
category.

Exercise 18.5.2. Use Example 7.4.5 as inspiration to define the comma quasi-category
(18.5.1) as a weighted limit. Then use Theorem 8.2.2 to show that the nerve of a comma
category is a weak comma object of the nerves of the constituent categories.

Exercise 18.5.3. Use Exercise 18.5.2 and Theorem 15.2.5 to give another proof that
p ↓ q is a quasi-category.

Combining Lemmas 18.2.3 and 18.4.1 we conclude:
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Corollary 18.5.4. The canonical functor

h(p ↓ q)→ h(E × F) ×h(B×B) h(B∆
1
)→ (hE × hF) ×hB×hB (hB)2 = h(p) ↓ h(q)

is surjective on objects, full, and conservative.

Here the target category is just the usual comma category constructed in Cat; see
Example 7.4.5. Because exponentials preserve all the constructions involved, we may
conclude that for any A the functor

(18.5.5) h((p ↓ q)A)→ (h(EA) × h(FA)) ×h(BA)×h(BA) h(BA)2 = h(pA) ↓ h(qA)

also has these properties.

Remark 18.5.6. From the functor (18.5.5), we conclude that the quasi-category p ↓ q
has the following weak universal property. The image of the identity at p ↓ q defines a
2-cell

p ↓ q
d1

||xxx
x d0

""F
FF

F
χ
⇒E

p ##G
GGG

G F
q{{www
ww

B
Surjectivity of (18.5.5) says that for any 2-cell

A
e1

����
� e0

��?
??

α
⇒E

p ��?
???

F
q����
��

B

there exists a map A → p ↓ q that defines a factorization of e1 and e0 through d1 and d0
and so that when this map is whiskered with the 2-cell χ we get α. Combining fullness and
conservativity, we see further that, for instance, if f , g : A ⇒ p ↓ q are two maps which

whisker with χ to define the same 2-cell α, then there is an isomorphism A
f ,,

g
22�⇓ p ↓ q ,

represented by a map A × J → p ↓ q. This latter fact can be used to show that the comma
quasi-category p ↓ q is unique up to equivalence by the argument used to prove Lemma
18.3.2.

18.6. Adjunctions between quasi-categories

Our goal is now to use the weak 2-limits constructed above in qCat2 to begin to de-
velop the formal category theory of quasi-categories. We might posit that quasi-categorical
structures that are recognizable in the 2-category qCat2 are structures guaranteed to be ho-
motopy coherent from the existence of certain low dimensional data. One example is the
notion of isomorphism: isomorphisms in quasi-categories defined in terms of 1-simplices
and 2-simplices, extend by Lemma 17.2.5 to diagrams on the simplicial set J, which has
non-degenerate cells in each dimension. By virtue of Remark 17.2.7, these comments
extend to equivalences of quasi-categories.

A non-example is the notion of a monad on a quasi-category. Just as an H-space
need not be an A∞-space, a monad in qCat2 need not be homotopy coherent. However,
adjunctions of quasi-categories are detectable in qCat2; one way to explain this difference
is that an adjunction is characterized by a universal property whereas a monad is simply
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equationally defined. Let us now explore this definition. Another approach can be found
in [FL, §3.2-3].

Definition 18.6.1. An adjunction between quasi-categories is an adjunction in the 2-
category qCat2. That is, an adjunction consists of quasi-categories A and B; maps f : B→
A, u : A→ B; and 2-cells η : 1B ⇒ u f , ϵ : f u⇒ 1A, satisfying the triangle identities.

B

f ��?
??

??
??

?
⇓η

B
f

��?
??

??
??

?

⇓ϵ
=

A

f
��

f
��
=

B
f

��?
??

??
??

?

⇓ϵ
⇓η

B

=

B

A
u

??��������
A A A

u
??��������

A
u

??��������
B

u

HH

u

VV

=

It is clear from this definition that the 2-functor h : qCat2 → Cat sends an adjunction
between quasi-categories to an adjunction between their homotopy categories. The nerve
defines a fully faithful 2-functor N : Cat → qCat2. So adjunctions between categories
define adjunctions between their nerves.

Proposition 18.6.2. Suppose f : B⇄ A : u is an adjunction between quasi-categories.
Then for any simplicial set K and any quasi-category X, there are induced adjunctions

f∗ : BK ⇄ : AK : u∗ u∗ : XA ⇄ XB : f ∗.

Proof. The internal hom defines a 2-functor X(−) : qCatop
2 → qCat2 because qCat2

is cartesian closed, carrying the adjunction f ⊣ u to an adjunction u∗ ⊣ f ∗. The proof of
Proposition 18.1.4 also demonstrates that exponentiation with any simplicial set K defines
a 2-functor (−)K : qCat2 → qCat2, which carries the adjunction f ⊣ u to f∗ ⊣ u∗. □

Example 18.6.3. Any simplicial Quillen adjunction between simplicial model cate-
gories descends to an adjunction between their representing quasi-categories, constructed
as in Example 16.4.11. For proof see [RV13a].

Example 18.6.4. A terminal object in a quasi-category A is a vertex t with the follow-
ing weak universal property: any map ∂∆n → A whose nth vertex is t can be filled to an
n-simplex [Lur09, 1.2.12]. Given a terminal object t, we can choose, for any n-simplex σ
in A, an (n+1)-simplex σ▷ whose (n+1)th face is σ and whose (n+1)th vertex is t. We do
so inductively by dimension, choosing first 1-simplices for each vertex, then 2-simplices
compatible with these choices for all 1-simplices in A, and so forth. When making these
choices, we require that we choose the degenerate 1-simplex for t▷ and a compatibly de-
generate σ▷ for each degenerate σ.

Using this data, we define a homotopy A × ∆1 → A whose component at σ ∈ An is

the map ∆n × ∆1 rR
−→ ∆n+1 σ▷

−−→ A where rR is the “last shuffle map” defined by (i, 0) 7→ i

and (i, 1) 7→ n + 1. This homotopy represents the unit of an adjunction A
! //
⊥ ∆0

t
oo . The

counit is an identity, and the only non-trivial triangle identity follows from our condition
on t▷.



258 18. A SAMPLING OF 2-CATEGORICAL ASPECTS OF QUASI-CATEGORY THEORY

Remark 18.6.5. An adjoint equivalence is an adjunction in which the unit and counit
2-cells are isomorphisms. Choosing representatives

B

�� EE
EE

EE
EE

E

EE
EE

EE
EE

E A

��

u // B

f
��

B × J
η̃
// B A × J ϵ̃ // A

B

OO

f
// A

u

OO

A

OO yyyyyyyyy

yyyyyyyyy

we have data witnessing that f : B ⇄ A : u is an equivalence. In particular, any adjunc-
tion between Kan complexes is always an adjoint equivalence by Corollary 17.2.1: all
1-simplices in the hom-spaces AA and BB are isomorphisms.

Given an adjunction, we form the comma quasi-categories

(18.6.6) f ↓ A

��

//
⌟

A∆
1

��

B ↓ u

��

//
⌟

B∆
1

��
B × A

f×1
// A × A B × A

1×u
// B × B

By Corollary 18.5.4 these quasi-categories are equipped with 2-cells

f ↓ A

{{xx
xx

##F
FF

F
⇒α

B ↓ u

||xx
xx

""F
FF

F
⇒β

B
f

// A B Au
oo

satisfying the weak universal property described in Remark 18.5.6. The meaning of our
phrase “the formal category theory of quasi-categories” is illustrated by the following
proposition.

Proposition 18.6.7. If f : B ⇄ A : u is an adjunction between quasi-categories, then
the quasi-categories f ↓ A and B ↓ u are equivalent.

Proof. A pleasing feature of our proof is that it mimics the usual construction of an
isomorphism of hom-sets from the unit and counit of an adjunction. By the weak universal
properties of α and β, the composite 2-cells displayed below define maps f ↓ A → B ↓ u
and B ↓ u→ f ↓ A satisfying the following identities.

B ↓ u

����
��
��
�

��8
88

88
88

⇒β

B ↓ u

��

f ↓ A

����
��
��
�

��8
88

88
88

⇒α

f ↓ A

��
B

f ��9
99

99
99

⇒ϵ

Auoo

��
��
��
�

��
��
��
�

= f ↓ A

����
��
��

��9
99

99
9

⇒α

B
f //

99
99

99
9

99
99

99
9

⇒η

A

u
����
��
��
�

= B ↓ u

����
��
��
�

��9
99

99
99

⇒β

A B
f

// A B B Au
oo
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Composing the maps, we have identities
(18.6.8)

f ↓ A

��

f ↓ A

��

f ↓ A

����
��
��
�

��8
88

88
88

⇒α
=

f ↓ A

����
��
��
�

��8
88

88
88

⇒α

B ↓ u

��
=

B ↓ u

����
��
��
�

��8
88

88
88

⇒β

= B
f //

88
88

88
8

88
88

88
8

⇒η

A

u
����
��
��
�

B
f

// A

f ↓ A

����
��
��

��9
99

99
9

⇒α

B

f ��9
99

99
99

⇒ϵ

Auoo

��
��
��
�

��
��
��
�

B

f ��9
99

99
99
⇒ϵ

B
f

// A A A

and similarly for B ↓ u → f ↓ A → B ↓ u. The diagram (18.6.8) shows that f ↓ A →
B ↓ u → f ↓ A and the identity at f ↓ A have the same image under (18.5.5). By fullness
and conservativity, the identity map between their images lifts to a 2-cell isomorphism. A
similar isomorphism exists for the other composite and the identity at B ↓ u. The lifted
isomorphisms show that the maps f ↓ A⇄ B ↓ u define an equivalence. □

Remark 18.6.9. Note the equivalence constructed in the proof of Proposition 18.6.7
commutes with the projections to B × A. Conversely, if f : B → A and u : A → B are
any pair of maps between quasi-categories so that the comma quasi-categories f ↓ A and
B ↓ u are equivalent over B×A, then f and u form an adjunction. The proof of this is more
subtle, so we save the details for [RV13a].

Let a ∈ A and b ∈ B be any vertices. Pulling back, we form comma objects

f b ↓ a //

��

⌟
f ↓ A

��

//
⌟

A∆
1

��

b ↓ ua

��

//
⌟

B ↓ u

��

//
⌟

B∆
1

��
∗

b×a
// B × A

f×1
// A × A ∗

b×a
// B × A

1×u
// B × B

The pullbacks f b ↓ a and b ↓ ua are the mapping spaces HomA( f b, a) and HomB(b, ua)
introduced in section 15.4.

Corollary 18.6.10. The Kan complexes HomA( f b, a) and HomB(b, ua) are equiva-
lent.

Proof. The right-most maps in each pullback are isofibrations. Hence, by Remark
17.7.4, each pullback is a homotopy pullback and the equivalence f ↓ A ≃ B ↓ u pulls
back to an equivalence f b ↓ a ≃ b ↓ ua. □

Example 18.6.11. Suppose given an adjunction A
! //
⊥ ∆0

t
oo of quasi-categories. Not-

ing that ! ↓ ∆0 = A, Proposition 18.6.7 gives an equivalence

A
==
==
==
==
∼ // A ↓ t
||||yy
yy

∼
oo

A

over A. Pulling back along a ∈ A, we see from Corollary 18.6.10 that each hom-space
HomA(a, t) is equivalent to a point.
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Combining Example 18.6.11 and the 2-of-3 property, we conclude that the isofibration
A ↓ t → A is a trivial fibration. The quasi-category A ↓ t is reminiscent of the slice quasi-
category A/t defined in (17.1.3): an n-simplex in the former is a cylinder ∆n×∆1 → A with
the n-simplex at one end degenerate at t while an n-simplex in the latter is an (n+1)-simplex
in A with final vertex t.

The forgetful functor A/t → A defined below (17.1.4) is an isofibration: the proof, left
to the reader, is essentially contained in Lemma 17.1.6 and Exercise 17.1.7. We would like
to conclude that the isofibration A/t → A is a trivial fibration, for this says exactly that
t ∈ A is a terminal object, as defined in Example 18.6.4. This claim will follow from a
geometric argument that proves that there is an equivalence A ↓ t ≃ A/t over A.

This sort of argument is essential to the translation between the 2-categorically derived
definitions—which ultimately derive from the simplicial category qCat∞ and hence have
a cylindrical shape—and the décalage-type definitions found in [Joy02] and [Lur09]. An
extended version, which proves that the comma quasi-category of “cones” over a diagram
of arbitrary shape is equivalent to the analogous slice category, is given in [RV13a].

18.7. Essential geometry of terminal objects

Our geometric argument, which is similar to but sadly not derivable from the proof of
Proposition 15.4.7, again makes use of Reedy category theory.

Lemma 18.7.1. Let f : X• → Y• be a map of Reedy cofibrant cosimplicial objects in
a left proper model category. If the relative latching maps Xn ∐

LnX LnY → Yn are weak
equivalences, then f is a pointwise weak equivalence.

Proof. The proof is by induction: f 0 : X0 → Y0 is the 0th relative latching map.
By Theorem 14.3.1, Lemma 14.3.7, and Ken Brown’s Lemma 11.3.14, the functor Ln =

colim∂∆
n

preserves pointwise weak equivalences between Reedy cofibrant cosimplicial ob-
jects. Its use here seems circular, except that, by the argument used to prove Lemma 4.4.3,
the nth latching object can be defined to be the weighted colimit of the (n − 1)-truncation.
Hence, the maps LnX → LnY are weak equivalences. We have

LnX
��

�� ⌜

Ln f // LnY
��

��2
22
22
22
22
22
22
2��

��
Xn //

f n

((RR
RRR

RRR
RRR

RRR
RR ·

∼

!!D
DD

DD
DD

DD

Yn

which by left properness (see Digression 14.3.5) and the 2-of-3 property implies the desired
result. □

Theorem 18.7.2. For any quasi-category B with vertex b ∈ B, the natural quotient
map B ↓ b→ B/b is an equivalence of quasi-categories.

Proof. We regard B as an object of sSet∗ with basepoint b and consider a pair of
cosimplicial objects D•,C• : ∆ ⇒ sSet∗. Define Dn = ∆n+1, with the final vertex serving
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as the basepoint, and define Cn to be the pushout

∆n

1×d0

��

//

⌜

∆0

��
∆n × ∆1 // Cn

with the last vertex as basepoint again. The quotient Cn is a cylinder with its last end
n-simplex degenerated to a point.

Both cosimplicial objects are easily seen to be Reedy cofibrant using Lemma 14.3.8.
There is a canonical quotient map Cn → Dn descended from the map rR : ∆n × ∆1 → ∆n+1

defined in 18.6.4. We call the image of the section to rR the “last shuffle”; it is the (n + 1)-
simplex spanned by the vertices (i, 0) and (n, 1). By Lemma 15.4.9 and the argument
presented immediately prior, the conclusion follows once we show that the map C• → D•

is a pointwise weak equivalence. By Lemma 18.7.1, it suffices to show that the relative
latching maps

Pn := Cn
∐

LnC•
LnD• → Dn = ∆n+1

are weak equivalences.
By inspection, LnD• = Λn+1

n+1 and LnC• is the quotient of ∂∆n×∆1∪{1}∆
n that collapses

the end ∆n to a point. There is an inner anodyne extension ∂(∆n × ∆1) → Hn, where Hn is
the subset of ∆n×∆1 that contains everything but the last shuffle. At the first stage we attach
a Λn+1

1 horn, then a Λn+1
2 , then a Λn+1

3 , . . ., Λn+1
n , with each horn filler attaching one of the

other n shuffles in accordance with the total order of 15.0.3. By Remark 14.3.4, the relative
latching map, the dotted arrow displayed below, is a categorical equivalence because it is
the comparison between two pointwise categorically equivalent homotopy pushouts.

∂(∆n × ∆1)

qn

��

// //
&&

∼

&&MM
MMM

MMM
∆n × ∆1

��

MMM
MMM

M

MMM
MMM

M

Hn

��

// //

⌜

∆n × ∆1

qn

��

∂∆n+1 //

NNN
NNN

N

NNN
NNN

N Pn

∼

&&M
M

M
M

∂∆n+1 // ∆n+1

□

This geometric aside, the following results are absurdly easy to prove.

Corollary 18.7.3. If A
! //
⊥ ∆0

t
oo is an adjunction between quasi-categories then t

is a terminal vertex of A.

Proof. By Proposition 18.6.7, interpreted as in Example 18.6.11, A ↓ t → A is a
trivial fibration. From Theorem 18.7.2, there is an equivalence A ↓ t ≃ A/t over A, which
means that A/t → A is also a trivial foundation. The lifting property

∂∆n //

��

A/t

��
∆n

=={
{

{
{

// A
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says exactly that an (n + 1)-sphere in A whose final vertex is t can be filled, which was the
definition of terminal object given in Example 18.6.4. □

Example 18.7.4. For instance, we can show the degenerate 1-simplex bs0 : b→ b is a
terminal object in B ↓ b by proving that there is an adjunction ! : B ↓ b ⇄ ∆0 : bs0. The
counit is trivial. The unit is a map (B ↓ b) × ∆1 → (B ↓ b) defined on ∆n × ∆1 → B

by precomposing with ∆n × ∆1 × ∆1 1×max
−−−−−→ ∆n × ∆1. Here the map max: ∆1 × ∆1 → ∆1

is defined in the evident way on vertices. The only non-trivial triangle identity requires
that when we restrict the unit along bs0 : ∆0 → B ↓ b we get the degenerate 1-simplex
∆1 → (B ↓ b) on bs0, and indeed this is the case.

Proposition 18.7.5. Right adjoints preserve terminal objects.

Proof. By 18.6.4, a terminal object t ∈ A induces an adjunction ! ⊣ t. By Corollary
18.7.3, the composite adjunction

B
f //
⊥ A
u

oo
! //
⊥ ∆0

t
oo

implies that ut ∈ B is terminal. □

The following result also admits a direct proof but we prefer this one.

Corollary 18.7.6. Equivalences preserve terminal objects.

Proof. By a standard 2-categorical argument, any equivalence can be promoted to an
adjoint equivalence at the cost of changing either the unit or counit. □

In another consequence of Theorem 18.7.2, we obtain a “special outer horn filler uni-
versal property” for the unit and counit of an adjunction. As in the proof of Corollary

18.6.10, the equivalence arising from an adjunction pulls back along B
1×a
−−−→ B × A to an

equivalence f ↓ a ⇄ B ↓ ua over B. By Example 18.7.4, ua → ua is terminal in B ↓ ua.
The image in f ↓ a is a 1-simplex f ua → a in A that we call ϵa. By Corollary 18.7.6,
ϵa : f ua → a is a terminal object of f ↓ a. It follows that the fibration ( f/a)/ϵa → f/a is a
trivial fibration. Unpacking, this statement encodes the following universal property: given
a map Λn

n → A whose last edge is ϵa and so that the boundary of the missing face is the
image of a specified ∂∆n−1 → B, there exists a filler for this sphere together with a filler
for the resulting sphere ∂∆n → A.

This universal property is an essential ingredient in the proof that any adjunction be-
tween quasi-categories is automatically homotopy coherent. This means that the data of f
and u and either the unit or counit (but not both) can be extended to a simplicial functor
whose codomain is qCat∞ and whose domain is a cofibrant simplicial category encoding
the shape of the free homotopy coherent adjunction. See [RV13b] for a precise statement
and proof.
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Glossary of Notation

General notational conventions are described in the preface.

(−)l, 132
(−)l, 178
(−)∗, 29
(−)+, 30
(−)0, 35
−l−, 178
−l−, 131
↣, 137
∼
→, 137
↠, 137

B ↓ u, 256
B•(G,D, F), 47
B•(G,D, F), 107
B(D,D, F), 48
B(G,D, F), 47
B(G,D, F), 109
BG, 47

C, 136
C, 219
C∆n, 224
CX(x, y), 225
Cat, 29
C•(G,D, F), 49
C•(G,D, F), 108
C(D,D, F), 56
C(G,D, F), 49
C(G,D, F), 109
CGTop, 63
Ch≥0(R), 22
Ch≥0(R), 22
Ch≥0(A), 16
Ch•(R), 27
◦, 27
Cn

cyl, 214
Cn

L, 214
Cn

R, 214
cod, 150
colimW F, 86
coskn, 5
ˆ{, }, 133
C ∩W, 136

←−
D, 189
−→
D, 189
D, 27
D≤n, 190
D(d,−) · A, 143
D(d,−) · J , 153
decl((∆n)♭, X♮), 242
∆, 5
∆∞, 104
∆≤n, 5
∆−∞, 104
∆+, 238
∆+, 5
−→
∆ , 104
∂∆n, 205
∆n, 205
∆n+1

i|i+1, 213
∆̃n, 237
dom, 150

EG, 48

F , 136
f ↓ A, 256
FU•A, 222
F ∩W, 136
Fx,y, 34

G, 109
G ⊗D F, 46

H , 36
hM, 25, 125
hM, 125
hocolim, 55
holim, 55
HoM, 14

ˆhom, 133
HomL

X(x, y), 213
HomR

X(x, y), 213
HomX(x, y), 212

idx, 27
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in, 205∫ D, 90∫ C, 6∫
C

, 6∫
D

, 86
I, 160

J, 210
Jl, 163
jnk , 205

kTop, 62

LdX, 190
Λn

k , 205
LanK F, 3, 91
LF, 17
LF, 17
limW F, 86
L l R, 132

MdX, 190
Map♭(X,Y), 239
Map♯(X,Y), 239
Map(X,Y), 238
M f , 68
ModR, 26
ModR(A, B), 26
MQ, 18
MQR, 229
MR, 20
(MD)0, 109
mv, 38
M(x, y), 25
M(x, y), 25

N, 219
N f , 71

π0, 26

qCat, 207
qCat∞, 247
qCat2, 248

RanK F, 3, 91
rDirGph, 221
RF, 20
RF, 17
rL, 214
RP∞, 70
rR, 214

Set∗, 29
S∞, 71
skn, 5
∧, 29
Sq( j, f ), 174
sSet, 10
sSet+, 238

sSet∗, 30
∗, 26
⋆, 232
⋆′, 242

⊗̂, 133
×, 26
×̂, 133
Top, 29
Top, 41
TopG , 30
Top

G
, 31

Top∗, 30
Tot, 48
T⃗ , 226
twC, 85
2[A], 220

V-Cat, 34, 85
VectG

k , 4
VQ, 119
VR, 119
V∗, 29
v ⊗ m, 38

{W, F}, 87
W ⋆ F, 87

Xe, 238
X♭, 238
X♮, 238
X♯, 238

Z, 26
ZY , 11
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2-category, 29
of quasi-categories, 248

2-functor, 34
2-of-3 property, 14
2-of-6 property, 14

homotopy limit
weighted, 109

acyclic cofibration, see also trivial cofibration
acyclic fibration, see also trivial fibration
adjunction

as Kan extension, 9
between quasi-categories, 254–257

universal property of, 260
change of base, 219, 224, 248
doctrinal, 39
enriched, 36

preservation of weighted (co)limits, 95
two-variable, 38, 86

interaction with lifting properties, 132–133
monadic, 64
of quasi-categories

homotopy coherent, 260
parametrized, 28
strong monoidal, 39
total derived, 20, 21
two-variable, 116

and lifting properties, 134
deformable, 122
derived, 118
Quillen, 141

V-deformable, 122
algebra

for a monad, 156
for a pointed endofunctor, 155
α-composite, 132, 151
anodyne, 138

inner, 207
left or right, 233

arrow category
enriched, 173

atomic arrow, 221

barV-homotopical structure, 123
bar construction, 47

enriched, 109

homotopical aspects of, 57
simplicial, 47

enriched, 107
universal property of, 93

base for enrichment, 26
based object, 29

disjoint basepoint–forgetful adjunction, 40
bicomplete

enriched, 91
bisimplicial object

homotopy colimit, 104
bisimplicial set

Reedy cofibrant, 195
Borel construction, 70
Bousfield localization, 154
Bousfield-Kan map, 92

cartesian closed, 29
categorical equivalence, 211

vs. equivalence of categories, 212
vs. weak homotopy equivalence, 212, 243

category
abelian, 22
as a quasi-category, 206
connected, 100
enriched, 26–27

cotensored, 38
equivalence of, 36
free, 28, 34
tensored, 38
underlying category of, 32

filtered, 102
free, 222
locally small, 5, 25
model structure, 138
of elements, 81, 82
of enriched categories

tensor and internal hom, 85
of simplices, 49, 81
small, 5
symmetric monoidal, 26

closed, 29
cell complex

algebraic, 168–171
cellular

cofibration, 165–166, 171
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decomposition, 147
chain complex

functorial factorization, 158, 176
model structures, 138, 182

change of base, 31, 35, 39
adjunction, 219, 224, 248
for weighted (co)limits, 98

classifying space
of a category, 70
of a commutative monoid, 103
of a group, 47, 70

universal cover, 52
of Z/2, 70

closedV-module, 116
cotensor form, 116, 117, 122
is a tensored, cotensored,V-category, 116

co-graph factorization, 185
coalgebra

for a comonad, 156
for a pointed endofunctor, 155

cobarV-homotopical structure, 123
cobar construction, 49

cosimplicial, 49
enriched, 108

enriched, 109
homotopical aspects of, 57
universal property of, 93

cocomplete
enriched, 90

coend, 6
as a weighted colimit, 84

cofiber sequence, 69
cofibrant object

in aV-model category, 110
in a homotopical category, 18
in a model category, 139
in a simplicial model category, 43

cofibrantly generated
model category, 55, 136
weak factorization system, 135

cofibration
in a model category, 136

closure properties, 165
cofinal

functor, 99
sequence, 101

cohomology, 16
cokernel pair

see kernel pair, 83
colimit

absolute, 99
as functor tensor product, 46
as Kan extension, 8
enriched, 79, 95
enriched universal property of, 89
universal property of, 79
weighted, see also weighted colimit

combinatorial model category, 55, 142

comma
category, 6, 88
quasi-category, 253

comonad
resolution

derived, 158
of a category, 222, 228

compact object, 151, 201
compactly

closed, 62
generated, 63

complete
enriched, 90

completion, 196–199
Bousfield-Kan, 198

cone
shape of a, 79, 83

conical
limit or colimit, 88–90

conservative, 250
contractible space of choices, 208
contracting homotopy, 51, 104
convenient category

of topological spaces, 29, 65
copower, 6

as a discrete simplicial tensor, 45
as tensor, 38

coreflective, see also reflective
cosimplicial object, see also simplicial object
cotensor, 6

as weighted limit, 87
in an enriched category, 38

coYoneda lemma, 9, 46, 84
cylinder object

for quasi-categories, 210

décalage, 242
Day convolution, 232
deformable

adjunction, 20
enriched, 122

category, 21
functor, 18, 57

enriched, 121
total derived functor is an absolute Kan

extension, 20
two-variable adjunction, 118

deformation, 18
∆+

interval representation of opposite category, 51
symmetric monoidal structure, 232
universal property of, 51

dense subcategory, 9, 184
density comonad, 158

enriched, 175
density theorem, 9, 84
derived functor, 13, 17

classical, 22
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composite of, 20
enrichment, 121
middle, 128
of an enriched functor, 128
point-set, 17
total, 5, 13, 17
via a deformation, 19

diagonal
of a simplex, 226

diagram category
homotopical structure of, 65
simplicial tensor structure of, 42

directed graph, 7
discrete right fibration, 81, 132
DK-equivalence, 36
Dold-Kan correspondence, 41
duality, 8

edgewise subdivision, 94
Eilenberg-Zilber

lemma, 7, 195
property, 195

end, 6
enriched, 86

endofunctor
pointed, 155
well-pointed, 156

enriched
adjunction, 36

deformable, 122
preservation of weighted (co)limits, 95
two-variable, 38, 86, 122

arrow category, 173
bar construction, 109
bicomplete, 91
category, 26–27

free, 28, 34
homotopy, 119, 120
underlying category of, 32

cobar construction, 109
complete and cocomplete, 90
cosimplicial cobar construction, 108
density comonad, 175
end, 86
equivalence of categories, 36
functor, 34

as lax module map, 117
constant, 88
derived, 121
fully faithful, 36
representable, 36

functorial factorization, 174–177
Kan extension, 91
lifting property, 173, 177–182
limit or colimit, 79, 95
model category, 182–184
natural transformation, 35
representable functor, 34

simplicial bar construction, 107
small object argument, 173, 175–177

Garner, 181
Quillen, 182

underlying 2-functor, 35
universal property of, 89
weak factorization system, 181
Yoneda lemma, 86, 87

epimorphism, 131
equivalence

in a 2-category, 249
in a quasi-category, see also isomorphism
of Kan complexes, 237
of quasi-categories, 211, 236, 249

essentially surjective, 36
evil, 189
extension, 12
extension of scalars, 5, 91
extra degeneracy, see also contracting homotopy

factorization system, see also orthogonal
factorization system

proper, 157, see also left proper
well-copowered, 157

fat geometric realization, 104, 144
fibrant object

in aV-model category, 110
in a homotopical category, 20
in a model category, 139
in a simplicial model category, 43

fibration
in a model category, 136
inner, 207
Kan, 137
left or right, 233

filler, 206
filtered category, 102
final functor, 99, 101
formal category theory

of quasi-categories, 247, 256
fully faithful

enriched, 36
functor

additive, 16, 22
continuous, 34

non-example, 41
cotensor product, 48
deformable, 18, 57
enriched, 34

as lax module map, 117
constant, 88
fully faithful, 36
representable, 34, 36

exact, 22
hom, see also functor cotensor product
homotopy coherent, 223, 229
lax monoidal, 31
representable, 33, 82



272 INDEX

strong monoidal, 31
tensor product, 45

functorial factorization, 149–150
enriched, 174–177
step-one, 151, 155

fundamental groupoid, 28, 205

G-object, 4, 32
G-space, 30, 32
geometric realization, 11, 41

as functor tensor product, 46
fat, 104, 144
homotopical properties of, 58
in a tensored simplicial category, 42
is a deformable functor, 18
n-truncated, 51, 187
of a split augmented simplicial object, 52
preservation of finite products, 63
preservation of simplicial tensors, 96

gluing lemma, 194
Grothendieck construction, 81

hom-object, 27
homology, 16

long exact sequence, 22
homotopical, 13

category, 14
V-, 120
closed symmetric monoidal, 119
minimal, 14
saturated, 15

functor, 15
homotopy

arising from a natural transformation, 102
in a simplicial category, 42

homotopy category
enrichment, 119, 120
of a homotopical category, 14
of a model category, 139
of a quasi-category, 206
of aV-homotopical category, 124
of quasi-categories, 237
of spaces, 15, 36, 115, 219
stable, 27

homotopy cofiber, 69
homotopy coherent

diagram, 223, 229
natural transformation, 93, 223
nerve, 219

homotopy colimit, 23, 56
as a derived functor, 55
as functor tensor product, 73
as weighted colimit, 92
change of base, 97–99
in based vs. unbased spaces, 75
is not a colimit in the homotopy category, 65
local universal property of, 92
weighted, 109–113, 122–124

homotopy commutative diagram, 222

homotopy equivalence, 126–128
is a weak homotopy equivalence, 14

homotopy final functor, 101–105, 147
homotopy fixed point, 73, 93, 113
homotopy group, 16
homotopy hypothesis, 205
homotopy initial functor, 101–105, 147
homotopy Kan extension, 113, 124
homotopy limit, 23, 56

as a derived functor, 55
as functor cotensor product, 73
as weighted limit, 92
change of base, 97–99
in based vs. unbased spaces, 73, 95
is not a limit in the homotopy category, 65
local universal property of, 92
of a diagram of quasi-categories, 244
weighted, 113, 122–124

homotopy orbit, 70, 113
homotopy product, 25, 71
homotopy pullback, 73, 145, 193

of quasi-categories, 245
homotopy pushout, 68, 144–145, 193

local universal property of, 92
non-example of, 17

horn filler, 206
Hurewicz cofibration, 132, 134
Hurewicz fibration, 132, 167

induced representation, 4, 6, 7
∞-category, 206
(∞, 1)-category, 205
initial functor, 99, 101
initial object, see also terminal object
injective model structure, 142
internal hom, 28
isofibration, 138, 211, 252
isomorphism

in a quasi-category, 231, 235

join, 232

k-
continuous, 63
ification, 62–63
space, 62

Kan complex, 65, 137
as groupoidal quasi-category, 234
equivalence of, 237
weak, 206

Kan extension, 3–8
absolute, 21
as a weighted (co)limit, 80
as functor (co)tensor product, 46
colimit of, 50
enriched, 91
homotopy, 113, 124
interaction with weighted (co)limits, 96
pointwise, 8, 81
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preservation of, 7
κ-small, 151
Ken Brown’s lemma, 18, 139
kernel pair, 80

latching
map, 189

relative, 191
object, 188–192

lax monoidal
functor, 31

left proper
model structure, 194

Leibniz construction, 133
Leibniz formula, 133, 206
levelwise, see also pointwise
lift, 131
lifting function, 163
lifting problem, 131

solution to, 131
lifting property, 131

enriched, 173, 177–182
interaction with a two-variable adjunction, 134
interaction with an adjunction, 132–133

limit, 82
as Kan extension, 9
enriched, 79, 95
enriched universal property of, 89
universal property of, 79
weighted, see also weighted limit

local object, 154
localization, 196–199
localization functor, 15

lax monoidal structure, 125
locally small, 5, 25
loop space, 72

mapping cylinder, 67
double, 68
factorization, 182

mapping path space, 71
factorization, 177, 182
of quasi-categories, 244
universal property of, 167

mapping spaces
in a quasi-category, 212–218, 229–230

are Kan complexes, 234
mapping telescope, 70, 145
matching

map, 188
relative, 191

object, 188–192
mate, 39
model category, see also homotopical category,

see also model structure
model structure, 136–137

algebraic, 171–172
based simplicial, 44
cofibrantly generated, 55, 136, 142

combinatorial, 55, 142
determination by cofibrations and fibrant

objects, 210
enriched, see alsoV-model category, 182–184
for quasi-categories, 211
homotopy category of, 139
left proper, 194
mixed, 138
monoidal, 110, 119, 142
on categories, 138
on chain complexes, 138, 182
on marked simplicial sets, 239
on simplicial categories, 138, 220
on simplicial sets, 137
on the opposite of a model category, 141
on topological spaces, 138, 149, 167
projective, 153–154
projective or injective, 55, 142
Reedy, 191
simplicial, 43, 141
topological, 44
V-, 44, 110, 120, 142, 183

module, 34
homomorphism, 35

monad
free on a pointed endofunctor, 156
idempotent, 64
on a quasi-category, 254
resolution

derived, 158
monadic adjunction, 64
monoidal

model category, 110, 119, 142
product, 26

monomorphism, 131
and the small object argument, 159
in simplicial sets, 159, 164

Moore path, 167

n-arrow, 221
n-cell, 29
n-(co)skeleton, 5, 7
n-simplex, 10
natural transformation

enriched, 35
homotopy coherent, 223
set of, 6

necklace
beads of, 226
joins of, 226
of simplices, 226
splitting, 227
totally non-degenerate, 226

nerve, 11, 206
homotopy coherent, 219

nilpotent
group, 198
space, 198–199
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objectwise, see also pointwise
orthogonal G-spectra, 35
orthogonal factorization system, 135, 157
orthogonal spectra, 27

pasting diagram, 3
path space, 72
point-set level, 15
pointwise, 17, see also Kan extension
power, 6

as cotensor, 38
projective

cofibration, 143–147
model structure, 142

pseudofunctor, 34
pullback-cotensor, 134
pullback-hom, 134
pushout-product, 133

quasi-category, 206
2-category of, 247–249
adjunction between, 254–257

universal property of, 260
arrow, 251
associated to a simplicial model category, 229
closure under projective cofibrant weighted

limits, 209
comma, 253

vs. slice, 258
cylinder object, 210
equivalence of, 211, 236, 249
formal category theory of, 247, 256
homotopy category of, 206, 236
homotopy coherent adjunction, 260
homotopy limit of, 244
homotopy pullback, 252
internal hom, 207–208
isomorphism in, 231, 235
mapping spaces, 212–218, 229–230
model structure for, 211
monad on, 254
of quasi-categories, 236
terminal object in, 255, 259

Quillen
adjunction, 138

strong monoidal, 44
bifunctor, 141
equivalence, 140
functor, 13, 18, 138
two-variable adjunction, 141

Quillen’s Theorem A, 103

reduction theorem, 97
Reedy

category, 55, 189
generalized, 189
history of, 189

cofibrant, 57, 192
cosimplicial object, 258

factorization, 189
fibrant, 192
model structure, 191

reflective subcategory, 64
relative T1 inclusion, 201
relative cell complex, 165, 169
representable functor, 33, 82

as free module, 46
enriched, 34

resolution
projective or injective, 22

retract
argument, 135
in an arrow category, 132

ring, 28

S -module, 27
saturated homotopical category, 15
sequential composite, 132, 151
Serre fibration, 132
sheafification, 64
shuffle, 206, 218
simplex

diagonal of, 226
spine of, 226

simplicial
category, 36

cofibrant, 221–222
locally Kan, 220, 228
model structure, 138, 220

computad, 221–222
functor, 37
natural transformation, 37

simplicial enrichment
vs. topological enrichment, 41, 219

simplicial homotopy equivalence, 42–43
simplicial model category, 23, 43, 141

associated quasi-category, 229
simplicial object

augmented, 51–53, 104
colimit, 100
homotopy colimit, 74, 92, 104
tensor structure, 41

simplicial set, 5, see also simplicial object
as a weighted colimit, 84
augmented, 5
based

simplicial enrichment, 40
cartesian closed category of, 11
contractible, 101
left adjoint from the category of, 10
marked, 238–240
Quillen model structure, 137

simplicial space, 187
split, 200

slice, 233
slice category, 6, 88
SM7 axiom, 141
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small category, 5
small object, see also compact object
small object argument

Quillen’s, 157
algebraic, see also Garner’s
algebraic perspective, 154–157
corollary, 152
enriched, 173, 175–177
Garner’s, 157–162

enriched variant, 175–176, 181, 184
permitting the, 151, 157, 174
Quillen’s, 150–152, 154

enriched variant, 175–176, 182
simplified form of, 159

smash product, 29
non-associativity of the, 62

spine
of a simplex, 226

stable homotopy category, 27
standard n-simplex, 82
stratum, 169
strong monoidal

adjunction, 39
functor, 31

subdivision, 11
suspension, 69
symmetric monoidal category, 26

closed, 29, 37
symmetric spectra, 27

tensor, 6
as weighted colimit, 87
discrete, 45
in an enriched category, 38

coherence of, 39
tensor product

in a monoidal category, see also monoidal
product

of functors, see also functor tensor product
of modules, 46

terminal object, 99–100, 102, 103
in a quasi-category, 255, 259
in a small category, 52

topological enrichment
vs. simplicial enrichment, 41, 219

topological group, 109, 113
topological space

as a quasi-category, 206
based

topological enrichment, 40
compactly generated, 63
convenient category of, 29, 65
enrichment over groupoids, 28
failure to be cartesian closed, 61–62
k-space, 62
model structures, 138, 167
unique closed symmetric monoidal structure, 62
weak Hausdorff, 63

topology of pointwise convergence, 62
total singular complex, 10
totalization, 48

as a weighted limit, 92
of a split augmented cosimplicial object, 52

transfinite composite, 132, 151
translation groupoid, 102
trivial cofibration, 136
trivial fibration, 136

of simplicial sets, 179
twisted arrow category, 85, 100

unaugmentable
cosimplicial object, 195

underlying
category, functor, natural transformation, 35

unit object, 26
universal property, 4

V -, see also enriched -
V-equivalence, 125–128
V-model category, 44, 110, 120, 142, 183–184,

see also enriched model structure

weak categorical equivalence, see also categorical
equivalence

weak equivalence, 14
in aV-homotopical category, 127–128
in the model structure for quasi-categories,

see also categorical equivalence
weak factorization system, 135

algebraic, 162–167
closure properties of, 165
cofibrantly generated, 163
recognition principle for, 167
underlying weak factorization system of, 162,

164
cofibrantly generated, 135, 150–154
enriched, 181
role in model category theory, 139

weak Hausdorff, 63
weak homotopy equivalence, 14

vs. categorical equivalence, 243
weak Kan complex, 206
weak limit

comma object, 253
cotensor, 250

uniqueness of, 252
homotopy pullback, 253

weak saturation, 152
weakly saturated, 132
weight, 80

for homotopy colimit, 147
for homotopy limit, 147

weighted colimit, 87
as a functor tensor product, 83, 91
bifunctor

homotopical properties of, 142
derived functor of, 109–113
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in unenriched category theory, 83–85
bifunctor, 85

preferred notation for, 87
representable definition of, 88

weighted limit, 86
as a functor cotensor product, 80, 91
bifunctor

homotopical properties of, 142
derived functor of, 109–113
in unenriched category theory, 80–83

bifunctor, 82
preferred notation for, 87
representable definition of, 88

wide subcategory, 14

Yoneda embedding
density of, 9
is Reedy cofibrant, 196

Yoneda lemma, 9, 80
enriched, 86, 87
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