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Computer formalization of mathematics



Motivation

• 15 statements =
4 theorems

+ 9 propositions
+ 1 lemma
+ 1 corollary

• 5 short “obvious” proofs + 3
proofs

• Carlos Simpson’s “Homotopy types of strict 3-groupoids” (1998) shows that the
3-type of 𝑆2 can’t be realized by a strict 3-groupoid — contradicting the last
corollary.

• But no explicit mistake was found. Voevodsky: “I was sure that we were right until
the fall of 2013 (!!)”



A sociological problem

“A technical argument by a trusted author, which is hard to check and looks
similar to arguments known to be correct, is hardly ever checked in detail.”



Computer formalized mathematics
Formalized mathematics, in tandem with other forms of computerized mathemat-
ics1, provides better management of mathematical knowledge, an opportunity
to carry out ever more complex and larger projects, and hitherto unseen levels
of precision.

— Andrej Bauer, “The dawn of formalized mathematics,”
delivered at the 8th European Congress of Mathematics

Recent successes include:
• the Kepler conjecture, resolving a 1611 conjecture, 2003–2014, HOL Light
• the Feit-Thompson Odd Order Theorem, a foundational result in the classification
of finite simple groups, 2006–2012, Coq

• the liquid tensor experiment, formalizing condensed mathematics, 2020–2022,
Lean

• the Brunerie number, computing 𝜋4𝑆3 ≅ ℤ/2ℤ, 2015–2022, Cubical agda
1Jacques Carette, William M. Farmer, Michael Kohlhase, and Florian Rabe. Big math and the

one-brain barrier — the tetrapod model of mathematical knowledge. Mathematical Intelligencer,
43(1):78–87, 2021.
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A computer proof assistant for higher category
theory?



Rebuilding the pragmatic foundations for higher structures

I am pretty strongly convinced that there is an ongoing reversal in the collective
consciousness of mathematicians: the homotopical picture of the world becomes
the basic intuition, and if you want to get a discrete set, then you pass to
the set of connected components of a space defined only up to homotopy …
Cantor’s problems of the infinite recede to the background: from the very start,
our images are so infinite that if you want to make something finite out of
them, you must divide them by another infinity.

— Yuri Manin “We do not choose mathematics as our profession,
it chooses us: Interview with Yuri Manin” by Mikhail Gelfand



∞-categories in set theory
Essentially, ∞-categories are 1-categories in which all the sets have been replaced by
∞-groupoids aka homotopy types:

sets :: ∞-groupoids
categories :: ∞-categories

Where
• categories have sets of objects, ∞-categories have ∞-groupoids of objects, and
• categories have hom-sets, ∞-categories have ∞-groupoidal mapping spaces.

While the axioms that turn a directed graph into a category are expressed in the
language of set theory — a category has a composition function satisfying axioms
expressed in first-order logic with equality — composition in an ∞-category, as a
morphism between ∞-groupoids, isn’t a “function” in the traditional sense (since
homotopy types do not have underlying sets of points).

This is why ∞-categories are so difficult to model within set theory.



Composing paths
In the total singular complex aka the fundamental ∞-groupoid aka the anima or “soul”

of a space 𝑋, composites of paths are witnessed by higher paths:
𝑦

𝑥 𝑧

𝑔𝑓

𝑘

⇓𝛼

Theorem. The space of composites of two paths 𝑓 and 𝑔 in 𝑋 is contractible.

Proof: The space of composites of paths 𝑓 and 𝑔 in 𝑋 is defined by the pullback:

𝑆𝑛−1 Comp(𝑓, 𝑔) Map(Δ, 𝑋) 𝑆𝑛−1 × Δ ∪𝑆𝑛−1×Λ 𝐷𝑛 × Λ 𝑋

𝐷𝑛 ∗ Map(Λ, 𝑋) 𝐷𝑛 × Δ

⌟
restrict

𝑓∧𝑔

↭

A space is contractible just when any sphere 𝑆𝑛−1 can be filled to a disk 𝐷𝑛 for 𝑛 ≥ 0.
The extension exists since the inclusion admits a continuous deformation retract.



Could ∞-category theory be taught to undergraduates?
As far as we know, there are no existing formalizations of ∞-category theory in any
proof assistant library such as Lean-mathlib, Agda-UniMath, Coq-HoTT,…

Why not?

The traditional foundations of mathematics are not
really suitable for “higher mathematics” such as
∞-category theory, where the basic objects are built
out of higher-dimensional types instead of mere sets.
However, there are proposals for new foundations for
mathematics that are closer to mathematician’s core
intuitions, based on Martin-Löf’s dependent type
theory such as

• homotopy type theory,
• higher observational type theory, and the
• simplicial type theory, that we use here.



∞-categories in homotopy type theory
The identity type family gives each type the structure of an ∞-groupoid: each type 𝐴
has a family of identity types over 𝑥, 𝑦 ∶ 𝐴 whose terms 𝑝 ∶ 𝑥 =𝐴 𝑦 are called paths.
In a “directed” extension of homotopy type theory introduced in

Emily Riehl and Michael Shulman, A type theory for synthetic ∞-categories,
Higher Structures 1(1):116–193, 2017

each type 𝐴 also has a family of hom types Hom𝐴(𝑥, 𝑦) over 𝑥, 𝑦 ∶ 𝐴 whose terms
𝑓 ∶ Hom𝐴(𝑥, 𝑦) are called arrows.

defn (Riehl–Shulman after Joyal and Rezk). A type 𝐴 is an ∞-category if:
• Every pair of arrows 𝑓 ∶ Hom𝐴(𝑥, 𝑦) and 𝑔 ∶ Hom𝐴(𝑦, 𝑧) has a unique composite,
defining a term 𝑔 ∘ 𝑓 ∶ Hom𝐴(𝑥, 𝑧).

• Paths in 𝐴 are equivalent to isomorphisms in 𝐴.

With more of the work being done by the foundation system, perhaps someday
∞-category theory will be easy enough to teach to undergraduates?
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The Rzk proof assistant for simplicial homotopy
type theory



Simplicial homotopy type theory
In simplicial type theory, types may depend on other types and also on shapes, which are
polytopes Φ ≔ { ⃗𝑡 ∶ 2𝑛 ∣ 𝜙( ⃗𝑡)} cut out of a directed cube by a formula 𝜙( ⃗𝑡) called a tope.

• Shapes and their defining topes are described syntactically in a language using the
symbols ⊤, ⊥, ∧, ∨, ≡ and 0, 1, ≤ satisfying intuitionistic logic and strict interval
axioms: e.g., Δ𝑛 ≔ {(𝑡1, … , 𝑡𝑛) ∶ 2𝑛 ∣ 𝑡𝑛 ≤ ⋯ ≤ 𝑡1}.

• The shape defined by 𝜙 ∨ 𝜓 is the strict pushout of the shapes defined by 𝜙 and 𝜓
over 𝜙 ∧ 𝜓: e.g., 𝜕Δ1 ≔ {𝑡 ∶ 2 ∣ (𝑡 ≡ 0) ∨ (𝑡 ≡ 1)} is the coproduct of two points.

• Shape inclusions Φ ⊂ Ψ arise from impliciations in intuitionistic logic: e.g., the
topes

Δ2 ≔ {(𝑡1, 𝑡2) ∶ 22 ∣ 𝑡2 ≤ 𝑡1}
𝜕Δ2 ≔ {(𝑡1, 𝑡2) ∶ 22 ∣ (𝑡2 ≤ 𝑡1) ∧ ((0 ≡ 𝑡2) ∨ (𝑡2 ≡ 𝑡1) ∨ (𝑡1 ≡ 1))}

Λ2
1 ≔ {(𝑡1, 𝑡2) ∶ 22 ∣ (𝑡2 ≤ 𝑡1) ∧ ((0 ≡ 𝑡2) ∨ (𝑡1 ≡ 1))}

define shape inclusions Λ2
1 ⊂ 𝜕Δ2 ⊂ Δ2.



Extension types

Formation rule for extension types

Φ ⊂ Ψ shape 𝐴 type 𝑎 ∶ Φ → 𝐴

⟨
Φ 𝐴

Ψ

𝑎

⟩ type

A term 𝑓 ∶ ⟨
Φ 𝐴

Ψ

𝑎

⟩ defines

𝑓 ∶ Ψ → 𝐴 so that 𝑓(𝑡) ≡ 𝑎(𝑡) for 𝑡 ∶ Φ.

The simplicial type theory allows us to prove equivalences between extension types along
composites or products of shape inclusions.



An experimental proof assistant Rzk for ∞-category theory

The proof assistant Rzk was
written by Nikolai Kudasov:

rzk-lang.github.io/rzk

https://rzk-lang.github.io/rzk


A formalized proof of the ∞-categorical Yoneda lemma
Our initial aim was to write a formalized proof of the ∞-categorical Yoneda lemma.

github.com/emilyriehl/yoneda or emilyriehl.github.io/yoneda/
• proof from Emily Riehl & Mike Shulman, A type theory for synthetic ∞-categories,
Higher Structures 2017.

• formalizations written by Nikolai Kudasov, Emily Riehl, Jonathan Weinberger.
• completed March 12 – April 17, 2023

Another objective is to compare ∞-category theory in simplicial type theory with
ordinary category theory in traditional foundations. Thus,

• We’ve included a formalization of the 1-categorical Yoneda lemma in Lean by Sina
Hazratpour as part of an Introduction to Proofs course at Johns Hopkins.

• We wrote a first version of yoneda-lemma-precategories.lagda.md.
More recently, we’ve professionalized our library, implementing a style guide suggested by
Fredrik Bakke, and invited new contributors to a broader project of formalizing synthetic
∞-category theory:

github.com/rzk-lang/sHoTT or rzk-lang.github.io/sHoTT

https://github.com/emilyriehl/yoneda
https://emilyriehl.github.io/yoneda/
https://github.com/rzk-lang/sHoTT
https://rzk-lang.github.io/sHoTT/
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Synthetic ∞-category theory



Hom types

In the simplicial type theory, any type 𝐴 has a family of hom types depending on two
terms in 𝑥, 𝑦 ∶ 𝐴:

Hom𝐴(𝑥, 𝑦) ≔ ⟨
𝜕Δ1 𝐴

Δ1

[𝑥,𝑦]

⟩ type

A term 𝑓 ∶ Hom𝐴(𝑥, 𝑦) defines an arrow in 𝐴 from 𝑥 to 𝑦.

We think of the type Hom𝐴(𝑥, 𝑦) as the mapping space in 𝐴 from 𝑥 to 𝑦.

A type 𝐴 also has a family of identity types or path spaces 𝑥 = 𝑦 depending on two
terms in 𝑥, 𝑦 ∶ 𝐴, which we will connect to the hom-types momentarily.



Pre-∞-categories

defn (Riehl–Shulman after Joyal). A type 𝐴 is a pre-∞-category if every pair of arrows
𝑓 ∶ Hom𝐴(𝑥, 𝑦) and 𝑔 ∶ Hom𝐴(𝑦, 𝑧) has a unique composite, i.e.,

⟨
Λ2

1 𝐴

Δ2

[𝑓,𝑔]

⟩ is contractible.a

aA type 𝐶 is contractible just when ∑𝑐∶𝐶 ∏𝑥∶𝐶 𝑐 = 𝑥.

By contractibility, ⟨
Λ2

1 𝐴

Δ2

[𝑓,𝑔]

⟩ has a unique inhabitant comp𝑓,𝑔 ∶ Δ2 → 𝐴.

Write 𝑔 ∘ 𝑓 ∶ Hom𝐴(𝑥, 𝑧) for its inner face, the composite of 𝑓 and 𝑔.



Identity arrows

For any 𝑥 ∶ 𝐴, the constant function defines a term

id𝑥 ≔ 𝜆𝑡.𝑥 ∶ Hom𝐴(𝑥, 𝑥) ≔ ⟨
𝜕Δ1 𝐴

Δ1

[𝑥,𝑥]

⟩,

which we denote by id𝑥 and call the identity arrow.

For any 𝑓 ∶ Hom𝐴(𝑥, 𝑦) in a pre-∞-category 𝐴, the term in the contractible type

𝜆(𝑠, 𝑡).𝑓(𝑡) ∶ ⟨
Λ2

1 𝐴

Δ2

[id𝑥,𝑓]

⟩

witnesses the unit axiom 𝑓 = 𝑓 ∘ id𝑥.



Associativity of composition

Prop. In a pre-∞-category 𝐴, composition is associative: for any arrows 𝑓 ∶ Hom𝐴(𝑥, 𝑦),
𝑔 ∶ Hom𝐴(𝑦, 𝑧), and ℎ ∶ Hom𝐴(𝑧, 𝑤), we have ℎ ∘ (𝑔 ∘ 𝑓) = (ℎ ∘ 𝑔) ∘ 𝑓.

Proof: Consider the composable arrows in the pre-∞-category Δ1 → 𝐴:
𝑦

𝑥 𝑧

𝑧

𝑦 𝑤

𝑔

ℎ∘𝑔ℎ∘𝑔

𝑓

𝑔∘𝑓

𝑓

𝑔∘𝑓
𝑓

ℓ

ℎ

ℎℎ

𝑔𝑔

𝑔

Composing defines a term in the
type Δ2 → (Δ1 → 𝐴) which
defines an arrow ℓ ∶ Hom𝐴(𝑥, 𝑤) so
that ℓ = ℎ ∘ (𝑔 ∘ 𝑓) and
ℓ = (ℎ ∘ 𝑔) ∘ 𝑓.



Isomorphisms
An arrow 𝑓∶ Hom𝐴(𝑥, 𝑦) in a pre-∞-category is an isomorphism if it has a two-sided
inverse 𝑔∶ Hom𝐴(𝑦, 𝑥). However, the type

∑
𝑔∶ Hom𝐴(𝑦,𝑥)

(𝑔 ∘ 𝑓 = id𝑥) × (𝑓 ∘ 𝑔 = id𝑦)

has higher-dimensional structure and is not a proposition. Instead define

is-iso(𝑓) ≔ ( ∑
𝑔∶ Hom𝐴(𝑦,𝑥)

𝑔 ∘ 𝑓 = id𝑥) × ( ∑
ℎ∶ Hom𝐴(𝑦,𝑥)

𝑓 ∘ ℎ = id𝑦).

For 𝑥, 𝑦 ∶ 𝐴, the type of isomorphisms from 𝑥 to 𝑦 is:

𝑥 ≅𝐴 𝑦 ≔ ∑
𝑓∶Hom𝐴(𝑥,𝑦)

is-iso(𝑓).



∞-categories
By path induction, to define a map

iso-eq ∶ (𝑥 =𝐴 𝑦) → (𝑥 ≅𝐴 𝑦)

for all 𝑥, 𝑦 ∶ 𝐴 it suffices to define

iso-eq(refl𝑥) ≔ id𝑥.

defn (Riehl–Shulman after Rezk). A pre-∞-category 𝐴 is ∞-category iff every
isomorphism is an identity, i.e., iff the map

iso-eq ∶ ∏
𝑥,𝑦∶𝐴

(𝑥 =𝐴 𝑦) → (𝑥 ≅𝐴 𝑦)

is an equivalence.



∞-groupoids
Similarly by path induction define

arr-eq ∶ (𝑥 =𝐴 𝑦) → Hom𝐴(𝑥, 𝑦)

for all 𝑥, 𝑦 ∶ 𝐴 by arr-eq(refl𝑥) ≔ id𝑥.

A type 𝐴 is an ∞-groupoid iff every arrow is an identity, i.e., iff arr-eq is an equivalence.

Prop. A type is an ∞-groupoid if and only if it is an ∞-category and all of its arrows
are isomorphisms.

Proof:
𝑥 =𝐴 𝑦 Hom𝐴(𝑥, 𝑦)

𝑥 ≅𝐴 𝑦

arr-eq

iso-eq



∞-categories for undergraduates

defn. An ∞-groupoid is a type in which arrows are equivalent to identities:

arr-eq ∶ (𝑥 =𝐴 𝑦) → Hom𝐴(𝑥, 𝑦) is an equivalence.

defn. An ∞-category is a type
• which has unique binary composites of arrows:

⟨
Λ2

1 𝐴

Δ2

[𝑓,𝑔]

⟩ is contractible

• and in which isomorphisms are equivalent to identities:
iso-eq ∶ (𝑥 =𝐴 𝑦) → (𝑥 ≅𝐴 𝑦) is an equivalence.
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A formalized proof of the ∞-categorical Yoneda
lemma



Stating the Yoneda lemma
Let 𝐴 be a pre-∞-category and fix 𝑎, 𝑏 ∶ 𝐴.

Yoneda lemma. Evaluation at the identity defines an equivalence

evid ≔ 𝜆𝜙.𝜙𝑎(id𝑎) ∶ (∏
𝑥∶𝐴

Hom𝐴(𝑎, 𝑥) → Hom𝐴(𝑏, 𝑥)) → Hom𝐴(𝑏, 𝑎)

While terms 𝜙 ∶ ∏𝑥∶𝐴 Hom𝐴(𝑎, 𝑥) → Hom𝐴(𝑏, 𝑥) are just families of maps

𝜙𝑥 ∶ Hom𝐴(𝑎, 𝑥) → Hom𝐴(𝑏, 𝑥)

indexed by terms 𝑥 ∶ 𝐴 such families are automatically natural:

Prop. Any family of maps 𝜙 ∶ ∏𝑥∶𝐴 hom𝐴(𝑎, 𝑥) → hom𝐴(𝑏, 𝑥) is natural:

for any 𝑔 ∶ hom𝐴(𝑎, 𝑦) and ℎ ∶ hom𝐴(𝑦, 𝑧)

ℎ ∘ 𝜙𝑦(𝑔) = 𝜙𝑧(ℎ ∘ 𝑔).



Proving the Yoneda lemma
Let 𝐴 be a pre-∞-category and fix 𝑎, 𝑏 ∶ 𝐴.

Yoneda lemma. Evaluation at the identity defines an equivalence

evid ≔ 𝜆𝜙.𝜙𝑎(id𝑎) ∶ (∏
𝑥∶𝐴

Hom𝐴(𝑎, 𝑥) → Hom𝐴(𝑏, 𝑥)) → Hom𝐴(𝑏, 𝑎)

The proof is (a simplification of) the standard argument for 1-categories!
Proof: Define an inverse map by

yon ≔ 𝜆𝑓.𝜆𝑥.𝜆𝑔.𝑔 ∘ 𝑓 ∶ Hom𝐴(𝑏, 𝑎) → (∏
𝑥∶𝐴

Hom𝐴(𝑎, 𝑥) → Hom𝐴(𝑏, 𝑥)).

By definition, evid ∘ yon(𝑓) ≔ id𝑎 ∘ 𝑓, and since id𝑎 ∘ 𝑓 = 𝑓, so evid ∘ yon(𝑓) = 𝑓.
Similarly, by definition, yon ∘ evid(𝜙)𝑥(𝑔) ≔ 𝑔 ∘ 𝜙𝑎(id𝑎). By naturality of 𝜙 and another
identity law 𝑔 ∘ 𝜙𝑎(id𝑎) = 𝜙𝑥(𝑔 ∘ id𝑎) = 𝜙𝑥(𝑔), so yon ∘ evid(𝜙)𝑥(𝑔) = 𝜙𝑥(𝑔).



Conclusions and future work
Observations:

• ∞-category theory is significantly easier to formalize in a foundation system based
on homotopy type theory.

• By moving much of the complexity of “higher structures” into the background
foundation system, the gap between ∞-category theory and 1-category narrows
substantially.

• A computer proof assistant is a fantastic tool for learning to write proofs in new
foundations — indeed, through formalization in Rzk we caught an error of circular
reasoning in the Riehl–Shulman paper!

Future work:
• We would love help formalizing more results from ∞-category theory in Rzk.
• But the initial version of the simplicial type theory is not sufficiently powerful to
prove all results about ∞-categories, so further extensions of this synthetic
framework are needed.
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