Emily Riehl

Johns Hopkins University

The oo-cosmos project

Formalizing 1-, 2-, V-, and oo-category theory in Lean

Abstract

The oo-cosmos project aims to leverage the existing libraries developing
® 1-category theory,
® 2-category theory, and
* enriched (V-)category theory

in Lean to formalize basic co-category theory.

After giving a high-level overview of the problem, plan, and progress of the project (so
far), we illustrate some challenges that we have encountered related to the formalization
of supporting results from 1-category theory, 2-category theory, and V-category theory in
hopes of attracting interest from folks who want to help us solve them.

Plan

1. What are oo-categories?

2. The problem, the plan, and progress

3. Challenges

@

What are oo-categories?

The idea of an oo-category
Lean defines an ordinary 1-category as follows:

class Quiver (V : Type u) where
/—— The type of edges/arrows/morphisms between a given source and target. —/
Hom : V - V - Sort v
class CategoryStruct (obj : Type u) extends Quiver.{v + 1} obj : Type max u (v + 1) where
/—— The identity morphism on an object. -/
id : Vv X : obj, Hom X X
/-- Composition of morphisms in a category, written 'f » g'. -/
comp : V{X Y Z : obj}, (X = Y) - (Y = 2Z) - (X 2)
class Category (obj : Type u) extends CategoryStruct.{v} obj : Type max u (v + 1) where
/-— Identity morphisms are left identities for composition. -/
id_comp : ¥V {X Y : obj} (f : X — Y), 1 X » f = f := by aesop_cat
/-- Identity morphisms are right identities for composition. -/
comp_id : ¥V {X Y : obj} (f : X = Y), f»1Y="f := by aesop_cat
/—-- Composition in a category is associative. -/
assoc : YV {W XY Z:obj} (f:W—-X (g:X—Y) (h:Y_—2Z), (f»g)»h=Ff»g>»h:=by
aesop_cat

The idea of an co-category is just to
® replace all the types by oco-groupoids aka homotopy types aka anima, i.e., the

information of a topological space encoded by its homotopy groups
® and suitably weaken all the structures and axioms.

Quasi-categories in Lean

An elegant “coordinatization” of these ideas encodes an co-category as a quasi-category,

which Johan Commelin contributed to Mathlib:

/-- A simplicial set 'S’ is a *quasicategory* if it satisfies the following horn-filling condition:
for every 'n : N° and '@ <i<n’,
every map of simplicial sets "oy : A[n, i] - S° can be extended to a map "o : A[n] -~ S.

[Kerodon, ©03A] -/
class Quasicategory (S : SSet) : Prop where
hornFilling' : ¥V {n : R} {i : Fin (n+3)]} (0 : A[n+2, i] - S)
(_he : @ < i) (_hn : i < Fin.last (n+2)),
3 o : A[n+2] - S, 0o = hornInclusion (n+2) i > o

Here a simplicial set! S is a quasi-category if it satisfies a certain property: namely if

any inner horn o in S can be extended to a simplex o.

Aln+2,i] —2 &
hornlnclusion (n+2) z\[///(;/
Aln + 2]

LA simplicial set is a contravariant functor from a certain SimplexCategory to Type.

How are quasi-categories oo-categories?

A similar “coordinatization” of the notion of co-groupoid is as a Kan complex, a
simplicial set in which any outer horn can be extended to a simplex.

/-— A simplicial set 'S is a xKan complexx if it satisfies the following horn-filling condition:
for every nonzero *n : N' and "0 = i=<n",

every map of simplicial sets ‘oo : Aln, il » S' can be extended to a map ‘o : A[n] » S*. -/
class KanComplex (S : SSet.{u}) : Prop where
hornFilling : ¥ ¢n : N 41 : Fin (n + 2)p (oe : ALn + 1, i] — S),
3o : Aln + 1] — S, oo = hornInclusion (n + 1) i » o

Then

® the maximal sub Kan complex in a quasi-category S defines the co-groupoid of
objects,

® a certain pullback of the exponential sHom(A[1],.S) defines the co-groupoid of
arrows between two objects,

® n-ary composition can be shown to be well-defined up to a contractible
oo-groupoid of choices.

None of this has been formalized in Mathlib.

’

()

The problem, the plan, and progress

The problem and the plan '

The objective is to add the theory of co-categories to Mathlib, not just the definition.
Textbooks that develop that theory using quasi-categories (Lurie's Higher Topos Theory,
Cisinski's Higher Categories and Homotopical Algebra) tend to be very long.

The idea of the co-cosmos project is to develop the theory of co-categories more
abstractly, using the axiomatic notion of an co-cosmos, which is an enriched category
whose objects are co-categories.

From this we can extract a 2-category whose objects are co-categories, whose
morphisms are oo-functors, and whose 2-cells are oo-natural transformations. The
formal theory of oo-categories (adjunctions, co/limits, Kan extensions) can be defined
using this 2-category and some of these notions are in the Mathlib already!

Proving that quasi-categories define an co-cosmos will be hard, but this tedious verifying
of homotopy coherences will only need to be done once rather than in every proof. J

Progress

The co-cosmos project was launched in September 2024. After adding some background
material on enriched category theory, we have formalized the following definition:

1.2.1. Definition (co-cosmos). An co-cosmos K is a category that is enriched over quasi-categories,"’
meaning in purticu]ar that
e its morphisms f: A — B define the vertices of a quasi-category denoted Fun(A, B) and referred
to as a functor space,
that is also cquippcd with a spccificd collection of maps that we call isofibrations and denote h}’ H»”
satisfying the following two axioms:

(i) (complctcncss) The quusilcutcgoricul]}’ enriched category (Kposscsscs a terminal oh]'cct‘ small
products, pullbacks of isofibrations, limits of countable towers of isofibrations, and cotensors
with simplicial sets, each of these limit notions satisfying a universal property that is enriched
over simplicial sets."

(ii) (isofibrations) The isofibrations contain all isomorphisms and any map whose codomain is the
terminal object; are closed under composition, product, pullback, forming inverse limits of
towers, and Leibniz cotensors with monomorphisms of simplicial sets; and have the property
thatif f: A = B is an isofibration and X is any object then Fun(X, A) - Fun(X, B) is an
isofibration of quasi-categories.

A formalized definition of an co-cosmos

variable (K : Type u) [Category.{v} KI [SimplicialCategory K]

/—— A “PreInfinityCosmos’ is a simplicially enriched category whose hom-spaces are quasi-categories
and whose morphisms come equipped with a special class of isofibrations.-/
class PreInfinityCosmos extends SimplicialCategory K where
[has_qgcat_homs : V {X Y : K}, SSet.Quasicategory (EnrichedCategory.Hom X Y)I
IsIsofibration : MorphismProperty K
variable (K : Type u) [Category.{v} K] [PreInfinityCosmos.{v} KI
7/—- An ‘InfinityCosmos® extends a ‘PreInfinityCosmos® with limit and isofibration axioms..-/
class InfinityCosmos extends PreInfinityCosmos K where
comp_isIsofibration {A B C : K} (f : A»B) (g : B»C) : IsIsofibration (f.1 » g.1)
iso_isIsofibration {X Y : K} (e : X — Y) [IsIso el : IsIsofibration e
all_objects_fibrant {X Y : K} (hY : IsConicalTerminal Y) (f : X — Y) : IsIsofibration f
[has_products : HasConicalProducts K]
prod_map_fibrant {y : Type w} {AB : y - K} (f : Vi, Ai=»Bi):
IsIsofibration (Limits.Pi.map (A i » (f i).1))
[has_isoFibration_pullbacks {E B A : K} (p : E = B) (f : A — B) : HasConicalPullback p.1 f]
pullback_is_isoFibration {E B AP : K} (p : E» B) (f : A — B)
(fst : P — E) (snd : P — A) (h : IsPullback fst snd p.1 f) : IsIsofibration snd
[has_limits_of_towers (F : N°® = K) :
(Y n : N, IsIsofibration (F.map (homOfLE (Nat.le_succ n)).op)) - HasConicalLimit F]
has_limits_of_towers_isIsofibration (F : Ne® = K) (hf) :
havel := has_limits_of_towers F hf
IsIsofibration (limit.m F (.op 0))
[has_cotensors : HasCotensors K]
leibniz_cotensor {U V : SSet} (i : U — V) [Mono il {AB : K} (f : A » B) {P : K}
(fst : P - UnA) (snd : P~ VaB)
(h : IsPullback fst snd (cotensorCovMap U f.1) (cotensorContraMap i B)) :
IsIsofibration (h.isLimit.lift <|
PullbackCone.mk (cotensorContraMap i A) (cotensorCovMap V f.1)
(cotensor_bifunctoriality i f.1)) --TODO : Prove that these pullbacks exist.
local_isoFibration {X A B : K} (f : A » B) : Isofibration (toFunMap X f.1)

Related contributions to Mathlib

One successful aspect of our project is the rapid rate of contributions to Mathlib:

codiscrete categories (Alvaro Belmonte)

reflexive quivers (Mario Carneiro, Pietro Monticone, Emily Riehl)

the opposite category of an enriched category (Daniel Carranza)

a closed monoidal category is enriched in itself (Daniel Carranza, Joél Riou)
StrictSegal simplicial sets are 2-coskeletal (Mario Carneiro and Joél Riou)

StrictSegal simplicial sets are quasicategories (Johan Commelin, Emily Riehl, Nick
Ward)

left and right lifting properties (Jack McKoen)

SSet.hoFunctor, which constructs a category from a simplicial set (Mario Carneiro,
Pietro Monticone, Emily Riehl, Joél Riou)

SimplicialSet (co)skeleton properties (Mario Carneiro, Pietro Monticone, Emily
Riehl, Joél Riou)

A key challenge is the extraordinary demands this has placed on Joél Riou as a reviewer.

&

Challenges

A challenge from 1-category theory ‘

To define the 2-categorical quotient of an co-cosmos (WIP), Mario Carneiro and |

introduced reflexive quivers

/—— A reflexive quiver extends a quiver with a specified arrow “id X : X — X' for each X' in its
type of objects. We denote these arrows by “id" since categories can be understood as an extension
of refl quivers.
=/
class ReflQuiver (obj : Type u) extends Quiver.{v} obj : Type max u v where

/-- The identity morphism on an object. -/

id : V X : obj, Hom X X

and formalized the free category and underlying reflexive quiver adjunction between Cat

and

ReflQuiv. This is now in Mathlib:

/__
The adjunction between forming the free category on a reflexive quiver, and forgetting a category
to a reflexive quiver
-/
nonrec def adj : Cat.freeRefl.{max u v, u} - ReflQuiv.forget :=
Adjunction.mkOfUnitCounit {

A challenge from 1-category theory, continued

left_triangle := by
ext V
apply Cat.FreeRefl.lift_unique'
simp only [id_obj, Cat.free_obj, comp_obj, Cat.freeRefl_obj_a, NatTrans.comp_app,
forget_obj, whiskerRight_app, associator_hom_app, whiskerLeft_app, id_comp, Lean was Confused by
NatTrans.id_app']

&

rw [Cat.id_eq_id, Cat.comp_eq_comp]{ e what Category we re
simp only [Cat.freeRefl_obj_a, Functor.comp_id]l in When objects are

rw [« Functor.assoc, « Cat.freeRefl_naturality, Functor.assoc]
dsimp [Cat.freeRefl] type classes

rw [adj.counit.component_eq' (Cat.FreeRefl V)]

[conv => ‘

|

i enter [1, 1, 2] | for functors
| apply (Quiv.comp_eq_comp (X := Quiv.of _) (Y := Quiv.of _) (Z := Quiv.of _) ..).symm}

rw [Cat.free.map_comp] ® whiskered

show (_ » ((Quiv.forget » Cat.free).map (X := Cat.of _) (Y := Cat.of _)
(Cat.FreeRefl.quotientFunctor V))) » _ = i

commutative

[rw [Functor.assoc, « Cat.comp_eq_comp]| diagrams
]conv => enter [1, 2];iapp1y Quiv.adj.counit.naturality

[rw [Cat.comp_eq_comp, « Functor.assoc, « Cat.comp_eq_comp] [

[conv => enter [1, »1];[apply Quiv.adj.left_triangle_components V.toQuiv

exact Functor.id_comp _

[
|
|

® competing notations

A challenge from enriched category theory y

What is an enriched category?

To borrow a distinction used by Peter May, the term “enriched” can be used as a
compound noun — enriched categories — or as an adjective — enriched categories. In
the noun form, an enriched category C has no preexisting underlying ordinary category,

although we shall see .. that the underlying unenriched 1-category can always be

identified a posteriori. When used as an adjective, an enriched category C is perhaps
most naturally an ordinary category, whose hom-sets can be given additional structure.
— Elements of co-Category Theory, Appendix A)

Mathlib has both notions, referred to as enriched categories and enriched ordinary
categories, respectively.

A challenge from enriched category theory, continued

variable (V : Type v) [Category.{w} V] [MonoidalCategory V]

class EnrichedCategory (C : Type ui) where
Hom : C > C-V
id (X : €C) : 1_ V — Hom X X
comp (XY Z : C) : Hom XY ® Hom Y Z — Hom X Z
id_comp (X Y : C) : (A_ (Hom X Y)).inv » id X > _ » comp X X Y =
comp_id (X Y : €) : (p_ (Hom X Y)).inv » _ < id Y » comp X Y Y
assoc (WX Y Z:C): (a__ _ _).inv » comp WX Y > _ » comp WY

_<comp XY Z >» comp WX Z := by aesop_cat
variable (V : Type u') [Category.{v'} V] [MonoidalCategory V]

1= by aesop_cat

N o= =
[

:= by aesop_cat

b

(C : Type u) [Category.{v} C] The enriched categories

/—— An enriched ordinary category is a category “C° that is also enriched
over a category V' in such a way that morphisms X — Y' in "C° identify
to morphisms “1_ V — (X —[V] Y)" in V', -/

literature is less clear

class EnrichedOrdinaryCategory extends EnrichedCategory V C where

/—— morphisms "X — Y in the category identify morphisms

_V — (X —IV1 Y) in "V -/
homEquiv {X Y : C} : (X — Y) = (1_V — (X —[V] Y))
homEquiv_id (X : C) : homEquiv (1 X) = eId V X := by aesop_cat
homEquiv_comp {X Y Z : C} (f : X —~ Y) (g : Y - 2Z) :

homEquiv (f » g) (A_ _).inv » (homEquiv f & homEquiv g) »

eComp V XY Z := by aesop_cat

about this distinction.

A challenge from 2-category theory “

On paper, 2-cells in a 2-category compose by pasting:

A—— C’/ C —— FE——=
Mo A
VL‘I Lo L‘g R, L‘2 /B [4‘3‘/773
e v Yo geyY + Ry
B B T1> D D T, F

In Mathlib, the 2-cells displayed here belong to dependent types (over their boundary

1-cells and objects) and depending on how the whiskerings are encoded are not obviously
composable at all:

e.g., is RyHyLyn,G| Ry composable with Ry Hyeo LoG R, 7?

A challenge from 2-category theory

/-— The mates equivalence commutes with vertical composition. -/
theorem mateEquiv_vcomp
(@t G » L2 — L1 » Hi) (B : Gz » L3 — L2 » Hz) :
(mateEquiv (G := G1 » Gz2) (H := Hi » Hz2) adj: adjs) (leftAdjointSquare.vcomp o B) =
rightAdjointSquare.vcomp (mateEquiv adj: adjz a) (mateEquiv adj: adjs B) := by
_unfold leftAdjointSquare.vcomp rightAdjointSquare.vcomp mateEquiv

[ext b] In the 2-category Cat, |
Ms-iﬁ——only [comp_obj, Equiv.coe_fn_mk, whiskerLeft_comp, whiskerLeft_twice, whiskerRight_comp, .
assoc, comp_app, whiskerLeft_app, whiskerRight_app, id_obj, Functor.comp_map, formallzed a prOOf that

whiskerRight_twicel

the unit 7, and counit ¢,
slice_rhs 1 4 => rw [« assoc, « assoc, « unit_naturality (adjs)] .
rw [Ls.map_comp, Rs.map_comp] Cancel, bUt not via a

sticerths 2 4 = 2-categorical pasting

rw [« Rs.map_comp, « Rs.map_comp, « assoc, « Ls.map_comp, « Gz.map_comp, « Gz.map_comp]

rw [~ Functor.comp_map G2 L3, B.naturality] argument_ AS a reSUIt,
rw [(L2 » H:).map_comp, Rs.map_comp, Rs.map_comp]
slice_rhs 4 5 = Mathlib does not know
rw [« Rs.map_comp, Functor.comp_map Lz _, « Functor.comp_map _ Lz, « Hz.map_comp] [H
rw [adjz.counit.naturality] thlS IS true In any
simp only [comp_obj, Functor.comp_map, map_comp, id_obj, Functor.id_map, assocl 2_Category'
slice_rhs 4 5 =>

rw [« Rs.map_comp, « H2.map_comp, « Functor.comp_map _ L2, adj:.counit.naturality]
simp only [comp_obj, id_obj, Functor.id_map, map_comp, assoc]
slice_rhs 3 4 =>

rw [« Rs.map_comp, « Hz.map_comp, left_triangle_components]
simp only [map_id, id_comp]

Contributors to the co-cosmos project ‘

Pietro Monticone and Patrick Massot helped us set up a blueprint (and website) to
organize the workflow. So far formalizations (and preliminary mathematical work) have

been contributed by:

Dagur Asgeirsson, Alvaro Belmonte, Mario Carneiro, Daniel Carranza, Johan Commelin,
Jack McKoen, Pietro Monticone, Matej Penciak, Nima Rasekh, Emily Riehl, Joél Riou,
Joseph Tooby-Smith, Adam Topaz, Dominic Verity, Nick Ward, and Zeyi Zhao.

Anyone is welcome to join us!

emilyriehl.github.io/infinity-cosmos

Thank you!

https://emilyriehl.github.io/infinity-cosmos/

	What are infinity-categories?
	The problem, the plan, and progress
	Challenges

