Emily Riehl

Johns Hopkins University

On the art of giving the same name to different things

Calgary Math and Philosophy Lectures

...la Mathématique est l'art de donner le même nom à des choses différentes.
...mathematics is the art of giving the same name to different things.

- Henri Poincaré
"L'avenir des mathématiques"
Science et Méthode
Flammarion, Paris, 1908.

Plan

Equality
=
Isomorphism
\cong
Equivalence
\simeq
Identification
$=$

Equality

The traditional view of equality

> Reflexivity:
> anything is equal to itself.

$$
\forall x, x=x
$$

Indiscernibility of Identicals:
if two things are equal, then they have exactly the same properties.

$$
\forall x, y, \quad(x=y) \rightarrow(\forall P, P(x) \leftrightarrow P(y))
$$

Symmetry and Transitivity

Using

- reflexivity: anything is equal to itself; and
- indiscernibility of identicals: if two things are equal, then they have exactly the same properties.
one can deduce:

$$
\text { Symmetry: if } x=y \text { then } y=x \text {. }
$$

Proof: Assume $x=y$. Then x and y must have exactly the same properties. In particular, since $x=x$ we must also have $y=x$.

$$
\text { Transitivity: if } x=y \text { and } y=z \text { then } x=z
$$

Proof: Assume $x=y$. Then x and y must have exactly the same properties. In particular, if $y=z$ then $x=z$.

Different things that deserve the same name

Different things that deserve the same name

images by Matteo Farinella

Isomorphism

Isomorphic $=$ same + shape

Some different things deserve the same name because they have the "same shape."

$$
i \sigma o \varsigma ~ " e q u a l "+\mu o \rho \phi \eta \text { "shape" }
$$

We seek a unifying language to describe what it means for things to have the "same shape" no matter what kind of objects they are.

Category

A category frames a possible template for a mathematical theory: the theory should have nouns, the mathematical objects, and verbs, the transformations between them, depicted as arrows. - Barry Mazur

A category has

- objects: $A, B, C \ldots$ and
- arrows: $A \xrightarrow{f} B, B \xrightarrow{g} C$, each with a specified source and target so that
- each pair of composable arrows has a composite arrow

- and each object has an reflexivity arrow $A \xrightarrow{\text { refl }_{A}} A$
for which the composition operation is associative and unital.

Isomorphism in a category

A category has

- objects: $A, B, C \ldots$ and
- arrows: $A \xrightarrow{f} B, B \xrightarrow{g} C$.

Objects A and B in a category are isomorphic
if there exist arrows $f: A \rightarrow B$ and $g: B \rightarrow A$
so that $g \circ f=r e f I_{A}$ and $f \circ g=r e f I_{B}$.

$$
A \cong B
$$

Categorifying arithmetic

Why is $2 \times(3+4)=(2 \times 3)+(2 \times 4)$?
What even are 2,3 , and 4 ?

$$
\begin{aligned}
& A=\{* \star\}, \quad B=\left\{\begin{array}{l}
\sharp \\
b \\
b
\end{array}\right\}, \quad C=\left\{\begin{array}{ll}
\boldsymbol{A} & 0 \\
\diamond & \dot{\phi}
\end{array}\right\} \\
& B+C=\left\{\begin{array}{cccc}
\sharp & b & \Delta & \varrho \\
\square & \diamond & \&
\end{array}\right\}, \quad A \times B=\left\{\begin{array}{ll}
(*, \sharp) & (\star, \sharp) \\
(*, b) & (\star, b) \\
(*, দ) & (\star, দ)
\end{array}\right\}
\end{aligned}
$$

Different things that deserve the same name

Different things that deserve the same name

The category of finite sets and isomorphisms is indescribably large

- and very redundant.

The category of natural numbers and their symmetries contains the same information, much more efficiently packaged.

There are two standard approaches to linear algebra:

- using matrices of arbitrary dimension
- using linear transformations between vector spaces
and the general theory can be developed from either perspective.

Equivalence

\simeq

Equivalence $=$ equal + worth

A 2-category has

- objects: $A, B, C \ldots$
- 1-arrows: $A \xrightarrow{f} B, B \xrightarrow{h} C$ and
- 2-arrows: $A \xrightarrow[k]{\stackrel{f}{\Downarrow \alpha}} B$

Objects A and B in a 2-category are equivalent
if there exist 1 -arrows $f: A \rightarrow B$ and $g: B \rightarrow A$
and 2-arrows $A{\underset{\text { refl }}{A}}_{\stackrel{\text { gof }}{\Downarrow \alpha}} A$ and $B \xrightarrow[\text { refl }_{B}]{\stackrel{\text { fog }}{\Downarrow \beta}} B$
so that $\alpha: g \circ f \cong \operatorname{refl}_{A}$ and $\beta: f \circ g \cong \operatorname{refl}_{B}$.

$$
A \simeq B
$$

A contracting homotopy equivalence

Objects A and B in a 2-category are equivalent
if there exist 1-arrows $f: A \rightarrow B$ and $g: B \rightarrow A$
and 2-arrows $A \underset{\text { refl }_{A}}{\stackrel{\text { g०f }}{\Downarrow \alpha}} A$ and $B \xrightarrow[\text { refl }]{\stackrel{\text { fog }}{\Downarrow \beta}} B$
so that $\alpha: g \circ f \cong \operatorname{refl}_{A}$ and $\beta: f \circ g \cong \operatorname{refl}_{B}$.

Problems

- This doesn't stop here! The best notion of sameness for 2-categories isn't equivalence in the sense just defined but in a weaker sense that requires a 3-category. But then 3-categories are equivalent in a sense defined using a 4-category, and so on ...
- Higher category theory no longer provides a single meaning of when one thing is the same as another thing but rather a hierarchy of different meanings depending on how complex the objects are, as governed by what sort of categories they belong to.
- Most seriously, indiscernibility of identicals fails for objects that are isomorphic or equivalent but not equal!

Q: Is 3 an element of 17 ?
For the von Neumann naturals yes, but for the Zermelo naturals no!

- Paul Benacerraf "What numbers could not be"

Identification

Identity Types

In type theory mathematical sentences take the form of types A, B, C.
A term $x: A$ in a type then provides a proof of the encoded statement.
Identity types are governed by the following rules:

- For any type A and terms $x, y: A$, there is a type $x={ }_{A} y$.
- For any type A and term $x: A$, there is a term refl $x: x={ }_{A} x$.
- For any type $P(x, y, p)$ defined using terms $x, y: A$ and $p: x={ }_{A} y$,
- if there is a term $d(x): P\left(x, x\right.$, refl $\left._{x}\right)$ for all $x: A$,
- then there is a term $J_{d}(x, y, p): P(x, y, p)$ for all $x, y: A, p: x={ }_{A} y$.

No nonsense: it's only meaningful to identify things of the same type.
Reflexivity: anything is identifiable with itself.
Indiscernibility of Identicals: if two things are equal, then they have exactly the same properties.

Univalence

The univalence axiom relates the identity types in the universe of all types \mathcal{U} to equivalences between types.
"Identity is equivalent to equivalence."

$$
\text { univalence }:(A=\mathfrak{u} B) \simeq\left(A \simeq_{u} B\right)
$$

"When I decided to check something in the Russian translation of the Boardman and Vogt book Homotopy Invariant Algebraic Structures on Topological Spaces I discovered that in this book the term 'faithful functor' was translated as 'univalent functor.'

> унивалентный функтор

Since I have tried to read this book in my youth many times there was probably another meaning associated in my mind with the word 'univalent' - 'faithful'.
Indeed these foundations seem to be faithful to the way in which I think about mathematical objects in my head."

- Vladimir Voevodsky, "Univalent Foundations - new type-theoretic foundations of mathematics," Talk at IHP, Paris on April 22, 2014

Consequences of Univalence

The things that deserve the same name:

- $2 \times(3+4)$ and $(2 \times 3)+(2 \times 4)$

- the categories of finite sets and of natural numbers
- abstract and concrete linear algebra are terms belonging to a common type.

As a consequence of the univalence axiom:
identifications - that is, proofs of identity recover exactly the notions of sameness previously introduced.

Hierarchies of complexity of identifications

As a consequence of the univalence axiom:
identifications - that is, proofs of identity recover exactly the notions of sameness previously introduced.

- A type is contractible if it has a unique* term.
- A type is a proposition if its identity types are contractible.
- A type is a set if its identity types are propositions.
- A type is an n-type if its identity types are n - 1 -types.
*Unique up to homotopy: a contractible type has a term and all terms are identifiable.
By univalence:
\mathbb{N} is a set, so $2 \times(3+4)=(2 \times 3)+(2 \times 4)$ is a proposition.
Group is a 1-type, so $K_{4}=K_{4}$ is a set.
1 -Cat is a 2-type, so Vect $=$ Mat is a 1-type.

Conclusions

$$
\text { Equality } \rightsquigarrow \text { Isomorphism } \rightsquigarrow \text { Equivalence } \rightsquigarrow \text { Identification }
$$

- While the traditional notion of equality is too narrow, its defining principles are worth preserving.
- While the categorical notions of isomorphism and equivalence identify objects that have the "same shape" or have "equal worth," they require increasingly higher-dimensional data as the objects become more complex.
- The type theoretic concept of identification is specified by rules that demand:
- no nonsense: it's only meaningful to identify things of the same type,
- reflexivity: everything is identified with itself, and
- indiscernibility of identicals: if two things are identifiable, they have exactly the same properties.
- In the presence of the univalence axiom, identifications specialize to the "correct" notions of sameness for objects of each type.

Thank you!

