
Emily Riehl

Johns Hopkins University

Path induction and the indiscernibility of identicals

UCLA Distinguished Lecture Series



Plan
1. Induction over the natural numbers
2. Dependent type theory
3. Identity types
4. Path induction
5. Epilogue: what justifies path induction?

Main takeaway:
• natural numbers induction: the natural numbers are freely generated by zero and

the successor function
• path induction (substitution for equality): the identity type family is freely

generated by the reflexivity proof
Next time:
• arrow induction (Yoneda lemma): the hom type family is freely generated by the

identity arrow



1

Induction over the natural numbers



Peano’s postulates

In Dedekind’s 1888 book “Was sind und was sollen die Zahlen” and Peano’s 1889 paper
“Arithmetices principia, nova methodo exposita,” the natural numbers N are
characterized by:
• There is a natural number 0 ∈N.
• Every natural number n ∈N has a successor succ(n) ∈N.
• 0 is not the successor of any natural number.
• No two natural numbers have the same successor.
• The principle of mathematical induction:

∀P ,P(0)→ (∀k ∈N,P(k)→ P(succ(k)))→ (∀n ∈N,P(n))

By Dedekind’s categoricity theorem, all triples given by a set N, an element 0 ∈N, and
a function succ :N→N satisfying the Peano postulates are isomorphic.



Natural numbers induction

In the statement of the principle of mathematical induction:

∀P ,P(0)→ (∀k ∈N,P(k)→ P(succ(k)))→ (∀n ∈N,P(n))

the variable P is a predicate over the natural numbers.

A predicate over the natural numbers is a function

P : N→ {>,⊥}

that associates a truth value > or ⊥ to each n ∈N.

Thus, to prove a sentence of the form ∀n ∈N,P(n) it suffices to:
• prove the base case, showing that P(0) is true, and
• prove the inductive step, showing for each k ∈N that P(k) implies P(succ(k)).



A proof by induction

Theorem. For any n ∈N, n2 + n is even.

Proof: By induction on n ∈N:
• In the base case, when n = 0, 02 + 0 = 2× 0, which is even.
• For the inductive step, assume for k ∈N that k2 + k = 2×m is even. Then

(k + 1)2 +(k + 1) = (k2 + k)+ ((2× k)+ 2)
= (2×m)+ (2× (k + 1))
= 2× (m+ k + 1) is even.

By the principle of mathematical induction

∀P ,P(0)→ (∀k ∈N,P(k)→ P(succ(k)))→ (∀n ∈N,P(n))

this proves that n2 + n is even for all n ∈N.



A construction by induction

The induction proof not only demonstrates for all n ∈N that n2 + n is even but also
defines a function m :N→N so that n2 + n = 2×m(n).

Construction: By induction on n ∈N:
• In the base case, 02 + 0 = 2× 0, so we define m(0)B 0.
• For the inductive step, assume for k ∈N that k2 + k = 2×m(k). Then

(k + 1)2 +(k + 1) = (k2 + k)+ ((2× k)+ 2)
= (2×m(k))+ (2× (k + 1))
= 2× (m(k)+ k + 1)

so we define m(k + 1)Bm(k)+ k + 1.
By the principle of mathematical recursion, this defines a function m :N→N so that
n2 + n = m(n) for all n ∈N.



Induction and recursion
Recursion can be thought of as the constructive form of induction

∀P ,P(0)→ (∀k ∈N,P(k)→ P(succ(k)))→ (∀n ∈N,P(n))

in which the predicate

P : N→ {>,⊥} such as P(n)B ∃m ∈N,n2 + n = 2×m

is replaced by an arbitrary family of sets

P : N→ Set such as P(n)B {m ∈N | n2 + n = 2×m}.
The output of a recursive construction is a dependent function p ∈

∏
n∈NP(n) which

specifies a value p(n) ∈ P(n) for each n ∈N.

∀P ,(p0 ∈ P(0))→ (ps ∈
∏

k∈N
P(k)→ P(succ(k)))→ (p ∈

∏
n∈N

P(n))

The recursive function p ∈
∏

n∈NP(n) satisfies computation rules:

p(0)B p0 p(succ(n))B ps(n,p(n)).



The natural numbers in dependent type theory

While Peano’s postulates characterize the natural numbers in set theory, the following
rules characterize the natural numbers in dependent type theory:
• There is a type N.
• There is a term 0 :N and a function succ :N→N.
• For any family of types P :N→ Type there is a term

N-ind : (p0 : P(0))→ (ps :
∏

k∈N
P(k)→ P(succ(k)))→ (p :

∏
n∈N

P(n))

• Computation rules p(0)B p0 and p(succ(n))B ps(n,p(n)).
Note the final two postulates — that 0 is not a successor and succ is injective — are
missing because they are provable.



Summary

We summarize the rules
• There is a type N.
• There is a term 0 :N and a function succ :N→N.
• For any family of types P :N→ Type there is a term

N-ind : (p0 : P(0))→ (ps :
∏

k∈N
P(k)→ P(succ(k)))→ (p :

∏
n∈N

P(n))

• Computation rules p(0)B p0 and p(succ(n))B ps(n,p(n)).
with the slogan:

The natural numbers type N is freely generated by the terms 0 :N and succ :N→N.



2

Dependent type theory



Types, terms, and contexts
Dependent type theory is a formal system for mathematical statements and proofs that
has the following primitive notions:
• types, e.g., Γ `N , Γ `Q
• terms, e.g., Γ `17 :N , Γ `

√
2 :R

• dependent types, e.g., Γ ,n :N `Rn , Γ ,m,n :N `Mm,n(R)

• dependent terms, e.g., Γ ,n :N `~0n:Rn , Γ ,n :N ` In:Mn,n(R)

Types and terms can be defined in an arbitrary context of variables from
previously-defined types, all of which are listed before the symbol “`”. Here Γ is
shorthand for a generic context, which has the form

x1 : A1,x2 : A2(x1),x3 : A3(x1,x2), . . . ,xn : An(x1, . . . ,xn−1)

In a mathematical statement of the form “Let …be …then …” The stuff following the
“let” likely declares the names of the variables in the context described after the “be”,
while the stuff after the “then” most likely describes a type or term in that context.



Type constructors
Type constructors build new types and terms from given ones:
• products A×B, coproducts A+B, function types A→ B,
• dependent pairs

∑
x :A B(x), dependent functions

∏
x :A B(x)

• identity types x ,y : A ` x =A y

Each type constructor comes with rules:
(i) formation: a way to construct new types
(ii) introduction: ways to construct terms of these types
(iii) elimination: ways to use them to construct other terms
(iv) computation: the way (ii) and (iii) relate

The rules suggest a logical naming for certain types:

A×B “A and B ′′
∑

x :A B(x) “∃x .B(x)′′
A+B “A or B ′′

∏
x :A B(x) “∀x .B(x)′′

A→ B “A implies B ′′ x =A y “x equals y ′′



Product types and function types

Product types are governed by the rules
×-form: given types A and B there is a type A×B
×-intro: given terms a : A and b : B there is a term (a,b) : A×B
×-elim: given p : A×B there are terms pr1p : A and pr2p : B

plus computation rules that relate pairings and projections.

Function types are governed by the rules
→-form: given types A and B there is a type A→ B
→-intro: if in the context of a variable x : A there is a term b : B

there is a term λx .b : A→ B
→-elim: given terms f : A→ B and a : A there is a term f (a) : B

plus computation rules that relate λ-abstractions and evaluations.



Mathematics in dependent type theory

×-form: A, B A×B →-form: A and B A→ B
×-intro: a : A, b : B (a,b) : A×B →-intro: x : A ` b : B λx .b : A→ B
×-elim: p : A×B pr1p : A, pr2p : B →-elim: f : A→ B, a : A f (a) : B

To prove a mathematical proposition in dependent type theory, one constructs a term in
the type that encodes its statement.

Proposition. For any types A and B, modus-ponens : (A× (A→ B))→ B.

Construction: By →-intro, it suffices to assume given a term p : (A× (A→ B)) and
define a term of type B. By ×-elim, p provides terms pr1p : A and pr2p : A→ B. By
→-elim, these combine to give a term pr2p(pr1p) : B. Thus we have

λp.pr2p(pr1p) : (A× (A→ B))→ B.



The natural numbers type, revisited
The natural numbers type is governed by the rules:

N-form: N exists in the empty context
N-intro: there is a term 0 :N and for any term n :N there is a term succ(n) :N

The elimination rule strengthens the principle of mathematical induction by replacing the
predicate on N by an arbitrary family of types P :N→ Type depending on N.

N-elim: for any type family n :N ` P(n), to prove p :
∏

n:NP(n) it suffices to
prove p0 : P(0) and ps :

∏
n:NP(n)→ P(succ(n)). That is

N-ind : P(0)→

∏
k∈N

P(k)→ P(succ(k))

→
∏

n∈N
P(n)


Computation rules establish that p is defined recursively from p0 and ps .

Summary: the natural numbers type N is freely generated by 0 :N and succ : N→N.



3

Identity types



The traditional view of equality

In first order logic, the binary relation “=” is governed by the following rules:

• Reflexivity: ∀x , x = x .
• Indiscernibility of Identicals:

∀x ,y , x = y implies that for all predicates P , P(x)↔ P(y)

As a consequence of these rules:

Principle of substitution: To prove that every x ,y with x = y has property P(x ,y):
• it suffices to prove that every pair x ,x (for which x = x) has property P(x ,x).

Proof: We argue that ∀x ,y ,(x = y)→ P(x ,y) follows from ∀x ,(x = x)→ P(x ,x).
Assuming x = y , then P(x ,x)↔ P(x ,y) by indiscernibility of identicals. Since x = x by
reflexivity, P(x ,x) holds and thus so does P(x ,y).



Identity types
The following rules for identity types were developed by Martin-Löf:

=-form: given a type A and terms x ,y : A, there is a type x =A y
=-intro: given a type A and term x : A there is a term reflx : x =A x

The elimination rule for the identity type is an enhanced version of the principle of
substitution: to prove that every x ,y with x = y have property P , it suffices to prove
that every pair x ,x (for which x = x) has property P .

=-elim: for any type family x ,y : A,p : x =A y ` P(x ,y ,p), to prove P(x ,y ,p)
for all x ,y ,p it suffices to assume y is x and p is reflx . That is

=-ind :
(∏

x :A
P(x ,x , reflx )

)
→

(∏
x ,y :A

∏
p:x=Ay

P(x ,y ,p)
)

A computation rules establishes that the proof of P(x ,x , reflx ) is the given one.

Summary: the identity type family is freely generated by the reflexivity terms.



The homotopical interpretation of dependent type theory

Note that identity types can be iterated:

given x ,y : A and p,q : x =A y there is a type p =x=Ay q.

Does this type always have a term? In other words, are identity proofs unique?

From the existence of homotopical models of dependent type theory — in which types
are interpreted as “spaces” and terms are interpreted as points — we know that iterated
identity types can have interesting higher structure.

The total space of the identity type family∑
x ,y :A x =A y is interpreted as the path

space of A and a term p : x =A y may be
thought of as a path from x to y in A.

∑
x ,y :A x =A y

A A×A

λx .reflx

λx .(x ,x)



4

Path induction



Path induction

The homotopical interpretation of dependent type theory reflects the fundamental
structure of Martin-Löf’s identity types — even though it was discovered decades later!

Slogan: the identity type family is freely generated by the reflexivity terms.

Now that terms p : x =A y are called paths, we re-brand =-elim as:

Path induction: For any type family x ,y : A,p : x =A y ` P(x ,y ,p), to prove P(x ,y ,p)
for all x ,y ,p it suffices to assume y is x and p is reflx . That is

path-ind :
(∏

x :A
P(x ,x , reflx )

)
→

(∏
x ,y :A

∏
p:x=Ay

P(x ,y ,p)
)
.



Reversal and concatenation of paths
Path induction: For any type family P(x ,y ,p) over x ,y : A,p : x =A y

path-ind :
(∏

x :A
P(x ,x , reflx )

)
→

(∏
x ,y :A

∏
p:x=Ay

P(x ,y ,p)
)
.

Proposition. Paths can be reversed: (−)−1 :
∏

x ,y :A x =A y → y =A x .

Construction: It suffices to assume p : x =A y and then define a term in the type
P(x ,y ,p)B y =A x . By path induction, we may reduce to the case
P(x ,x , reflx )B x =A x , for which we have the term reflx : x =A x .

Proposition. Paths can be concatenated: ∗ :
∏

x ,y ,z:A x =A y → (y =A z→ x =A z).

Construction: It suffices to assume p : x =A y and then define a term in the type
Q(x ,y ,p)B

∏
z:A y =A z→ x =A z. By path induction, we may reduce to the case

Q(x ,x , reflx )B
∏

z:A x =A z→ x =A z, for which we have the term
idB λq.q : x =A z→ x =A z.



The ∞-groupoid of paths
Identity types can be iterated: given x ,y : A and p,q : x =A y there is a type p =x=Ay q.

Theorem (Lumsdaine,Garner–van den Berg). The terms belonging to the iterated
identity types of any type A form an ∞-groupoid.

The ∞-groupoid structure of A has
• terms x : A as objects
• paths p : x =A y as 1-morphisms
• paths of paths h : p =x=Ay q as 2-morphisms, . . .

The required structures are proven from the path induction principle:
• constant paths (reflexivity) reflx : x = x
• reversal (symmetry) p : x = y yields p−1 : y = x
• concatenation (transitivity) p : x = y and q : y = z yield p ∗ q : x = z

and furthermore concatenation is associative and unital, the associators are coherent …



The higher coherences in path algebra

Path induction proves the (higher) coherences in the ∞-groupoid of paths:

Proposition. For any type A and terms w ,x ,y ,z : A

assoc :
∏

p:w=Ax

∏
q:x=Ay

∏
r :y=Az

(p ∗ q) ∗ r =w=Az p ∗ (q ∗ r).

Construction: By path induction, it suffices to assume x is w and p is reflw , reducing to
the case ∏

q:w=Ay

∏
r :y=Az

(reflw ∗ q) ∗ r =w=Az reflw ∗ (q ∗ r).

By the computation rules for path induction reflw ∗ − is the identity function. Thus, we
must show ∏

q:w=Ay

∏
r :y=Az

q ∗ r =w=Az q ∗ r ,

for which we have the proof reflq∗r : q ∗ r =w=Az q ∗ r .



Indiscernibility of Identicals

Indiscernibility of Identicals: x = y implies that for all predicates P , P(x)↔ P(y)

Let x : A ` P(x) be any family of types over A.

Proposition. For any x ,y : A if p : x =A y then trP ,p : P(x)→ P(y).

Construction: By path induction, it suffices to assume y is x and p is reflx , in which
case we have the identity function λx .x : P(x)→ P(x).

Corollary. For any x ,y : A if p : x =A y then P(x) ' P(y).

Construction: By path induction, it suffices to assume y is x and p is reflx , in which
case we have the identity equivalence.



5

Epilogue: what justifies path induction?



The Curry-Howard-Voevodsky Correspondence

type theory logic set theory homotopy theory
A proposition set space

x : A proof element point
∅,1 ⊥,> ∅, {∅} ∅,∗

A×B A and B set of pairs product space
A+B A or B disjoint union coproduct
A→ B A implies B set of functions function space

x : A ` B(x) predicate family of sets fibration
x : A ` b : B(x) conditional proof fam. of elements section∏

x :A B(x) ∀x .B(x) product space of sections∑
x :A B(x) ∃x .B(x) disjoint union total space

p : x =A y proof of equality x = y path from x to y∑
x ,y :A x =A y equality relation diagonal path space for A



Contractible types

The homotopical perspective on type theory suggests new definitions:

A type A is contractible if it comes with a term of type

is-contr(A)B
∑

a:A

∏
x :A

a =A x

By Σ-elim a proof of contractibility provides:
• a term c : A called the center of contraction and
• a dependent function h :

∏
x :A c =A x called the contracting homotopy.

The contracting homotopy can be thought of as a continuous choice of paths
h(x) : c =A x for each x : A.



The hierarchy of types

Contractible types, those types A for which the type

is-contr(A)B
∑

a:A

∏
x :A

a =A x

has a term, form the bottom level of Voevodsky’s hierarchy of types.

A type A
• is a proposition if

is-prop(A)B
∏

x ,y :A
is-contr(x =A y)

• is a set or 0-type if

is-set(A)B
∏

x ,y :A
is-prop(x =A y)

• is a succ(n)-type for n :N if

is-succ(n)-type(A)B
∏

x ,y :A
is-n-type(x =A y)



Equivalences
Similarly, homotopy theory suggests definitions of when two types A and B are
equivalent or when a function f : A→ B is an equivalence:

An equivalence between types A and B is a term of type:

A ' B B
∑

f :A→B

(∑
g :B→A

∏
a:A

g(f (a)) =A a
)
×
(∑

h:B→A

∏
b:B

f (h(b)) =B b
)

A term of type A ' B provides functions f : A→ B and g ,h : B→ A and homotopies α
and β relating the composite functions g ◦ f and f ◦ h to the identities. Using this data,
one can define a homotopy from g to h.

So why not say f : A→ B is an equivalence just when:∑
g :B→A

(∏
a:A

g(f (a)) =A a
)
×
(∏

b:B
f (g(b)) =B b

)
?

This type is not a proposition and may have non-trivial higher structure.



What justifies the path induction principle?
Path induction: For any type family x ,y : A,p : x =A y ` P(x ,y ,p), to prove P(x ,y ,p)

for all x ,y ,p it suffices to assume y is x and p is reflx .

path-ind :
(∏

x :A
P(x ,x , reflx )

)
→

(∏
x ,y :A

∏
p:x=Ay

P(x ,y ,p)
)
.

Path induction asserts that to map out of a path space
∑

x ,y :A x =A y it suffices to
define the images of the reflexivity paths.

Proposition. For each x : A, the based path space
∑

y :A x =A y is contractible with
center of contraction given by the point (x , reflx ).

Corollary. The function λx .(x ,x , reflx ) : A→
(∑

x ,y :A x =A y
)

is an equivalence.

The equivalence A '
(∑

x ,y :A x =A y
)

gives rise to an equivalence

(
∏

x :A P(x ,x , reflx )) '
(∏

x ,y :A
∏

p:x=Ay P(x ,y ,p)
)
.



The univalence axiom
Another notion of sameness between types is provided by the universe U of types, which
has (small) types A, B, C as its terms.

Q: How do the types A =U B and A ' B compare?

By path induction, there is a canonical function

id-to-equiv : (A =U B)→ (A ' B)

defined by sending reflA to the identity equivalence idA.

Univalence Axiom: The function id-to-equiv : (A =U B)→ (A ' B) is an equivalence.

“Identity is equivalent to equivalence.”

(A =U B) ' (A ' B)

Voevodsky’s univalence axiom — which is justified by the homotopical model of type
theory — captures the common mathematical practice of applying results proven about
one object to any other object that is equivalent to it.



Consequences of univalence

There are myriad consequences of the univalence axiom:

(A =U B) ' (A ' B)

• The structure-identity principle, which specializes to the statement that for
set-based structures (monoids, groups, rings) isomorphic structures are identical.

• Function extensionality: for any f ,g : A→ B, the canonical function defines an
equivalence between the identity type and the type of homotopies:

id-to-htpy : (f =A→B g)→
(∏

a:A
f (a) =B g(a)

)
• By indiscernibility of identicals, if x ,y : A and x =A y then P(x) ' P(y) for any

a : A ` P(a). By univalence, whenever A ' B then A =U B and thus any type
constructed from A is equivalent to the corresponding type constructed from B.



References

Homotopy Type Theory: Univalent Foundations of Mathematics

https://homotopytypetheory.org/book/

Egbert Rijke, Introduction to Homotopy Type Theory
hott.zulipchat.com

github.com/HoTT-Intro/Agda

HoTTEST Summer School, July–August 2022

https://discord.gg/tkhJ9zCGs9

Thank you!

https://homotopytypetheory.org/book/
hott.zulipchat.com
github.com/HoTT-Intro/Agda
https://discord.gg/tkhJ9zCGs9

	Induction over the natural numbers
	Dependent type theory
	Identity types
	Path induction
	Epilogue: what justifies path induction?

