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Pre-rigorous, rigorous, and post-rigorous mathematics
The phrase post-rigorous mathematics refers to Terry Tao’s blog post “There’s more to
mathematics than rigour and proofs”:

One can roughly divide mathematical education into three stages:
1. The “pre-rigorous” stage, in which mathematics is taught in an informal, intuitive

manner, based on examples, fuzzy notions, and hand-waving. …The emphasis is more
on computation than on theory. This stage generally lasts until the early
undergraduate years.

2. The “rigorous” stage, in which one is now taught that in order to do maths
“properly”, one needs to work and think in a much more precise and formal manner
…The emphasis is now primarily on theory; and one is expected to be able to
comfortably manipulate abstract mathematical objects without focusing too much on
what such objects actually “mean”. This stage usually occupies the later
undergraduate and early graduate years.

3. The “post-rigorous”stage, in which one has grown comfortable with all the rigorous
foundations of one’s chosen field, and is now ready to revisit and refine one’s
pre-rigorous intuition on the subject, but this time with the intuition solidly buttressed
by rigorous theory. … The emphasis is now on applications, intuition, and the “big
picture”. This stage usually occupies the late graduate years and beyond.

https://terrytao.wordpress.com/career-advice/theres-more-to-mathematics-than-rigour-and-proofs/
https://terrytao.wordpress.com/career-advice/theres-more-to-mathematics-than-rigour-and-proofs/


Post-rigorous mathematics

The point of rigour is not to destroy all intuition; instead, it should be used to destroy bad
intuition while clarifying and elevating good intuition. It is only with a combination of both
rigorous formalism and good intuition that one can tackle complex mathematical problems;
one needs the former to correctly deal with the fine details, and the latter to correctly deal
with the big picture. Without one or the other, you will spend a lot of time blundering
around in the dark (which can be instructive, but is highly inefficient). So once you are fully
comfortable with rigorous mathematical thinking, you should revisit your intuitions on the
subject and use your new thinking skills to test and refine these intuitions rather than discard
them. …

The ideal state to reach is when every heuristic argument naturally suggests its rigorous
counterpart, and vice versa. Then you will be able to tackle maths problems by using both
halves of your brain at once — i.e., the same way you already tackle problems in “real life”.

— Terry Tao



Post-rigorous mathematics in practice

Unfortunately, mathematicians often fail to operate in Tao’s post-rigorous ideal state. In
practice, a proof might be called “post-rigorous” if:
● The argument is not explained in full detail.
● Some claims made as part of the argument may not quite be true as stated.
● Nevertheless, the proof is “morally correct.”

Tao continuous:
It is perhaps worth noting that mathematicians at all three of the above stages of mathe-
matical development can still make formal mistakes in their mathematical writing. However,
the nature of these mistakes tends to be rather different, depending on what stage one is at
… [and] can lead to the phenomenon (which can often be quite puzzling to readers at earlier
stages of mathematical development) of a mathematical argument by a post-rigorous math-
ematician which locally contains a number of typos and other formal errors, but is globally
quite sound, with the local errors propagating for a while before being cancelled out by other
local errors.



Plan

1. Literature survey

2. A case study



1

Literature survey



An attempted proof of Grothendieck’s homotopy hypothesis

● 15 statements =
4 theorems

+ 9 propositions
+ 1 lemma
+ 1 corollary
● 5 short “obvious” proofs + 3

proofs

● Carlos Simpson’s “Homotopy types of strict 3-groupoids” (1998) shows that the
3-type of 𝑆2 can’t be realized by a strict 3-groupoid — contradicting the last
corollary
● But no explicit mistake was found. Voevodsky: “I was sure that we were right until

the fall of 2013 (!!)”



A sociological problem

“A technical argument by a trusted author, which is hard to check and looks
similar to arguments known to be correct, is hardly ever checked in detail.”



Avoiding a precise definition of ∞-categories
The precursor to Jacob Lurie’s Higher Topos Theory is a 2003 preprint On ∞-Topoi,
which avoids using a precise definition of (∞, 1)-categories aka ∞-categories1:

We will begin in §1 with an informal review of the theory of ∞-categories.
There are many approaches to the foundation of this subject, each having
its own particular merits and demerits. Rather than single out one of those
foundations here, we shall attempt to explain the ideas involved and how to
work with them. The hope is that this will render this paper readable to a
wider audience, while experts will be able to fill in the details missing from our
exposition in whatever framework they happen to prefer.

Perlocutions of this form are quite common in the field — however the book Higher
Topos Theory does not proceed in this manner, instead proving theorems for a concrete
model of ∞-categories.

1In the parlance of the field, selecting a set-theoretic definition of ∞-categories is referred to as
“choosing a model.”



A proof(?) of the cobordism hypothesis
The cobordism hypothesis classifies (fully-extended) topological quantum field theories,
which are functors indexed by a suitably-defined higher category of cobordisms between
framed 𝑛-manifolds with corners. In a celebrated expository article on the subject, Dan
Freed writes:

The cobordism hypothesis was conjectured by Baez-Dolan in the mid 1990s. It
has now been proved by Hopkins-Lurie in dimension two and by Lurie in higher
dimensions. There are many complicated foundational issues which lie behind
the definitions and the proof, and only a detailed sketch has appeared so far.1

The footnote elaborates:
1Nonetheless, we use “theorem” and its synonyms in this manuscript. The
foundations are rapidly being filled in and alternative proofs have also been
carried out, though none has yet appeared in print.

There seems to be no clear consensus on this point of view: a mathOVERFLOW
question “What is the status of the cobordism hypothesis?” asked a bit over a year ago
remains open.



A conjectural(?) study in derived algebraic geometry
A two-volume study in derived algebraic geometry
runs to nearly 1000 pages. Much of the first volume
is devoted to developing necessary preliminary results
in (∞, 1)-category theory and (∞, 2)-category
theory, and includes the following disclaimer:

Unfortunately, the existing literature on
(∞, 2)-categories does not contain the
proofs of all the statements that we need.
We decided to leave some of the statements
unproved, and supply the corresponding
proofs elsewhere (including the proofs here
would have altered the order of the exposi-
tion, and would have come at the expense
of clarity).

This is followed by a list of seven unproved statements.



Obstructions to formalization?

How might this literature read differently in a future where mathematicians are expected
to work interactively with a computer proof assistant?

● An incorrect proof should not be formalizable — which is of course a good thing.
And perhaps the process of formalization would help identify the error by calling
attention to a subtle obstacle to be overcome.
● If it is undesirable to give a precise construction of a mathematical notion (eg of

the (∞, 2)-category of ∞-categories), one could instead axiomatize the necessary
properties (and hope that the theory is not vacuous).
● Sketch proofs will be harder to implement, as a proof assistant will require clearer

definitions and scaffolding. But a formalized sketch, will make it much clearer what
gaps remain in the proof.
● A proof modulo unproven conjectures should be formalizable, provided those

conjectures and clearly stated in exactly the way they are used.
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A case study



Definitions

An ∞-category 𝐴 is pointed if it has an object ∗ that is both initial and terminal: for all
objects 𝑎, there exist unique morphisms ∗ → 𝑎 and 𝑎 → ∗.

A pointed ∞-category 𝐴 is stable if
● every morphism 𝑓 ∶ 𝑥 → 𝑦 has both a fiber and a cofiber:

fib(𝑓) 𝑥 𝑥 𝑦

∗ 𝑦 ∗ cofib(𝑓)

⌟
𝑓

𝑓

⌜

● and fiber and cofiber squares coincide.



A proof?
A pointed ∞-category 𝐴 is stable if every morphism 𝑓 ∶ 𝑥 → 𝑦 has both a fiber and a cofiber
fib(𝑓) 𝑥 𝑥 𝑦

∗ 𝑦 ∗ cofib(𝑓)

⌟
𝑓

𝑓

⌜
and fiber and cofiber squares coincide.



An attempt at rigor

This is followed by a digression “on the use of generalized elements to define functors”:
The first paragraph of the proof just given takes a generic family of cospans and constructs a
rectangular diagram (4.4.9), to which [pullback composition and cancellation] can be applied.
By the Yoneda lemma, a construction given as a mapping on generalized elements defines
an arrow internally to the ∞-cosmos, in this case taking the form of a functor 𝐴⌟ → 𝐴𝟛×𝟚,
as we now illustrate by unpacking each of the steps.2”

2Indeed, this functor can be understood as the result of applying the construction to the universal
generalized element, which is always given by the identity. The generic cospan 𝑔 ∨ 𝑓∶𝑋 → 𝐴⌟ is used in
place of the universal cospan id∶𝐴⌟ → 𝐴⌟ to introduce some human-readable notation.



The rest of the construction



Prospects for formalization?
I can imagine three strategies for formalizing the above proof, and the background
mathematics upon which it depends.

Strategy I. Given precise definitions of initial and terminal object and fiber and cofiber in
the quasi-categorical model. Prove pullback composition and cancellation and that
“universal properties are pointwise defined” to avoid the need for generalized elements.

Strategy II. Axiomatize the (∞, 2)-category of ∞-categories using the notion of
∞-cosmos or something similar. Use the definitions and properties of initial and terminal
object and fiber and cofiber for generalized elements in an ∞-cosmos. To show that this
theory is non-vacuous, prove the quasi-categories define an ∞-cosmos (and formalize
other examples, as desired).

Strategy III. Avoid the technicalities of set-based models by developing the theory of
∞-categories synthetically, in a domain-specific type theory. Here generalized elements
will just be terms in a context, and all constructions are pointwise defined. Formalization
then requires a bespoke proof assistant such as Rzk.
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