

Johns Hopkins University

A new paradigm for mathematical proof?

Mechanization and Mathematical Research

Recent developments in mathematics: problem solving

In 1998, Thomas Hales announced a proof of a 1611 conjecture of Johannes Kepler, via a "proof by exhaustion" involving the checking of many individual cases using a computer to solve linear programming problems. After four years, a panel of 12 referees reported they were 99% certain that the proof was correct, but could not check all the computer calculations.

Theorem 1.1 (The Kepler conjecture). No packing of congruent balls in Euclidean three space has density greater than that of the face-centered cubic packing.

This density is $\pi/\sqrt{18} \approx 0.74$.

The unabridged version of the paper, which was published in 2005 in the *Annals of Mathematics*, came to 339 pages, with around 3 gigabytes of computer artifacts.

Recent developments in mathematics: problem solving

In 2016, Maryna Viazovska, resolved the analogous question in eight dimensions, proving that the optimal packing of spheres in 8-dimensional spaces positions their centers on the points of the E_8 -lattice.

A week later, she and four collaborators generalized these results to dimension 24.

Annals of Mathematics 185 (2017), 991–1015 https://doi.org/10.4007/annals.2017.185.3.7

The sphere packing problem in dimension 8

By Maryna S. Viazovska

Abstract

In this paper we prove that no packing of unit balls in Euclidean space \mathbb{R}^8 has density greater than that of the E_8 -lattice packing.

Visualization by J.G. Moxness (CC BY-SA 3.0).

Recent developments in mathematics: theory building

In "The two cultures of mathematics" (the title alluding to C. P. Snow), Tim Gowers makes a distinction between:

"mathematicians who regard their central aim as being to solve problems, and those who are more concerned with building and understanding theories."

Alexander Grothendieck's metaphorical rising sea evokes the power of theory building.

Some of the new ideas in the paper 356 paper of "Geometrization the local Langlands correspondence" by Laurent Fargues and Peter Scholze, to appear in *Asterisque*, involve a new framework to study objects that are both algebraic and topological in nature.

This framework, called condensed mathematics, has been developed over the course of several hundred pages of lecture notes by Dustin Clausen and Peter Scholze, which have been widely studied but remain unpublished.

A human-computer mathematical interaction

does the set of orthogonal matrices define a subspace of the vector space of all square mat

t × 🔱

Images Videos Shopping Web Forums Books : N

Tools

► Al Overview

Yes, the set of orthogonal matrices of a fixed size does define a subspace of the vector space of all square matrices of the same size.

Explanation:

Closure under addition:

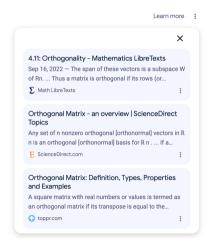
If you add two orthogonal matrices, the resulting matrix will also be orthogonal, satisfying the closure property for addition in a subspace. ${\mathscr O}$

Closure under scalar multiplication:

Multiplying an orthogonal matrix by a scalar preserves the orthogonality condition, meaning the set is closed under scalar multiplication.

Contains the zero vector:

Key point: An orthogonal matrix is a square matrix where the transpose is equal to its inverse, which guarantees that the rows (or columns) form an orthonormal set of vectors.



Do orthogonal matrices form a subspace?

My student asked Gemini:

"Does the set of orthogonal matrices define a subspace of the vector space of all square matrices?"

In the 2×2 case, orthogonal matrices have the form

$$\begin{bmatrix} s & -t \\ t & s \end{bmatrix} \quad \text{or} \quad \begin{bmatrix} s & t \\ t & -s \end{bmatrix} \quad \text{with} \quad s^2 + t^2 = 1,$$

while square matrices have the form $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ for any real numbers a, b, c, and d.

The set of 2×2 matrices forms a vector space because you can add them and multiply them by a real number to get another 2×2 matrix.

This question asks whether the sum or scalar multiple of orthogonal matrices is again orthogonal and whether the zero matrix is an orthogonal matrix.

Gemini's illogical "thinking"

"Does the set of orthogonal matrices define a subspace of the vector space of all square matrices?"

Gemini answered "Yes" with the following explanation:

• "If you add two orthogonal matrices, the resulting matrix will also be orthogonal, satisfying the closure property for addition in a subspace."

This is incorrect.

• "Multiplying an orthogonal matrix by a scalar preserves the orthogonality condition, meaning the set is closed under scalar multiplication."

This is incorrect.

• "The zero matrix is considered an orthogonal matrix, ensuring the zero vector is included in the set."

This is incorrect.

Despite the fact that Gemini gave correct definitions of subspace and of orthogonal matrices (as those matrices whose transpose is the inverse), it answered wrong.

Vibe proving

Is it true that an ∞-category is idempotent complete (in the ∞-categorical sense) if and only if its homotopy category is idempotent complete (in the 1-categorical sense)? Your answer uses the "incoherent" definition of an idempotent in an ∞ -category? Can you answer the same question using the coherent definition of an idempotent in an ∞ -category?

♦ Show thinking ∨

Yes, it is true that an ∞ -category $\mathcal C$ is idempotent complete (in the ∞ -categorical sense) if and only if its homotopy category $ho(\mathcal C)$ is idempotent complete (in the 1-categorical sense). $_{\mathscr O}$

Let's establish the definitions and then prove the equivalence.

♦ Show

Show thinking Y

You're right to press on the subtleties of "coherence" in ∞ -categories. Let's clarify how these definitions are typically handled and why the previous conclusion still holds.

...

Conclusion:

The two conditions are equivalent. The definitions of idempotent completeness are "homotopy-invariant" in a way that translates directly between the ∞ -category and its homotopy category. This result is also confirmed by the fact that $h(Kar(\mathcal{C}))\cong Kar(h\mathcal{C})$, where Kar(-) denotes the Karoubi envelope (idempotent completion) and h(-) denotes taking the homotopy category. An (∞) -category is idempotent complete if and only if the canonical functor into its Karoubi envelope is an equivalence.

If a framework requires a more elaborate "coherent idempotent object" (e.g., an object in a category of idempotents, or an algebra for a certain monad), the definition of "idempotent completeness of \mathcal{C}^e itself usually still boils down to the splitting condition for any e satisfying $e \circ e \simeq e$. The power of ∞ -category theory is that such "weak" conditions, when interpreted within a coherently structured environment, often suffice and lead to robust theories.

. . .

Thus, the answer remains the same: Yes, an ∞ -category is idempotent complete (in the standard ∞ -categorical sense) if and only if its homotopy category is idempotent complete (in the 1-categorical sense). The "coherence" is sufficiently handled by the definitions used.

The omitted text contains a clearly written argument with a subtle error, the sort of optimistic mistake often made by human mathematicians. The conclusion is incorrect.

How do we defend the mathematical literature against vibe proving?

A lot of the mathematical text generated by top "reasoning" models is pretty good and all of it looks good.*

*Caveat: large language models tend to get even the simplest numerical calculations horribly wrong.

But pretty good is not good enough: one minor error could make an entire logical argument reach the wrong conclusion: true instead of false.

As a journal editor specializing in a subfield where papers tend to be long, technical, and difficult to referee, I am extremely concerned about AI generated mathematical "proofs."

Proof as peer review

Why has mathematics largely avoided the replication crisis that has confronted other fields?

Peer review in theory: careful refereeing should lead to an error-free publications.

Unfortunately, the mathematical literature contains famous mistakes as well as contradictory theorems.

Peer review in practice: in theory any proof should be reproducible by any reader — allowing the reader to understand for themselves why the result is true.

When papers have enough readers, mistakes are eventually caught.

Importantly: human mathematicians are careful in claiming they have a proof.

Proof as peer review?

But sometimes these ideals break down:

One Fields medalist was dismayed to find mistakes in his published, well-studied papers:

"A technical argument by a trusted author, which is hard to check and looks similar to arguments known to be correct, is hardly ever checked in detail."

— Vladimir Voevodsky

Another Fields medalist expressed doubts about a particular proof he had discovered — and also doubted that anyone else would check it:

"...while I was very happy to see many study groups on condensed mathematics throughout the world, to my knowledge all of them have stopped short of this proof. (Yes, this proof is not much fun...)"

— Peter Scholze

A new paradigm for mathematical proof?

THE EQUIVARIANT MODEL STRUCTURE ON CARTESIAN CUBICAL SETS

STEVE AWODEY, EVAN CAVALLO, THIERRY COQUAND, EMILY RIEHL, AND CHRISTIAN SATTLER

ABSTRACT. We develop a constructive model of homotopy type theory in a Quillen model category that classically presents the usual homotopy theory of spaces. Our model is based on predawase over the catesian cube category, a well-behaved Elsenberg Ziller category. The key innovation is an additional equivariance condition in the specification of the cubical Kom Briston, which can be described as the pullback of an interval-based thus of uniform fluration in the category of home the category does not be a support of the control of the category of our model have been foremaliced in a computer proof assistant.

CONTENTS

	introduction	4
1.1.	Interpreting homotopy type theory	2
1.2.	Cubical interpretations	3
1.3.	Cubical model structures	3
1.4.	Standard homotopy theory	4
1.5.	The equivariant cubical model	4
1.6.	Results	7
1.7.	Related and future work	10
1.8.	Acknowledgments	11
2.	Notions of fibred structure, universes, and realignment	12
2.1.	Locally representable and relatively acyclic notions of fibred structure	12
2.2.	Monomorphisms and uniform trivial fibrations	18
2.3.	Universes and realignment	23
3.	Cylindrical model structures	25
3.1.	Cylindrical premodel structures	26
3.2.	Brown factorizations	28
3.3.	Equivalence extension property	30
3.4.	The Frobenius condition	32
3.5.	Univalence	35
3.6.	Fibrant universes	37
3.7.	Fibration extension property and 2-of-3	40
4.	The interval model structure on cubical species	41
4.1.	Groupoid-indexed diagram categories	41
4.2.	Cubical species and the symmetric interval	42
4.3.	The cylindrical premodel structure on cubical species	44
4.4.	The cubical species model of homotopy type theory	51
5.	The equivariant model structure on cubical sets	52
5.1.	From cubical species to equivariant cubical sets	53
5.2.	The cylindrical premodel structure on cubical sets	54
5.3	The equivariant cubical sets model of homotopy type theory	58

3. 7	The equivalence with classical homotopy theory	
3.1.	Triangulation	
3.2.	Eilenberg–Zilber categories	(
5.3.	The equivariant model structure is the test model structure	1
Appe	endix A. Type-theoretic development and formalization	1
A.1.	Introduction	1
1.2.	Judgments of the homotopical interpretation	1
A.3.	Cubes and cofibrations	1
A.4.	Partial elements and contractible types	
A.5.	Filling and equivariant filling	1
A.6.	The Frobenius condition	1
A.7.	Other type formers	8
A.8.	Tiny interval and universes	8
References		

Software programs called computer proof assistants can certify the correctness of a mathematical proof that has been written in a precise formal language.

- Today such proofs are laboriously encoded by human mathematicians (formalization).
- In principle, generative AI could be trained to output text in a format that could be checked by a computer proof assistant (autoformalization).

Date: June 27, 2024

Computer proof verification

{-

Formalization of an equivariant cartesian cubical set model of type theory

This formalization accompanies the article

The equivariant model structure on cartesian cubical sets. Steve Awodey, Evan Cavallo, Thierry Coquand, Emily Riehl, & Christian Sattler. https://arxiv.org/abs/2406.18497

The contents of the formalization are outlined in Appendix A of the article.

The formalization defines a model of homotopy type theory inside an extensional type theory augmented with a flat modality and axisms postulating "shapes" (among them an "interval") and a cofibration classifier. The results can in particular be externalized in the category of cartesian cubical sets.

The code has been tested with Agda version 2.6.4. The source is available at

github.com/ecavallo/equivariant-cartesian

and there is an HTML interface at

ecavallo.github.io/equivariant-cartesian

For reference (see the file equivariant.agda-lib in the source), the formalization is compiled with the flags $\,$

- --with-K
- --cohesion --flat-split
- --rewriting

In particular, the --with-K flag enables axiom K (uniqueness of identity proofs), while the --cohesion and --flat-split flags enable the flat modality (see the module axiom.flat for more information).

.

The main definition takes just a few lines to encode ↔

Our 87 page preprint is accompanied by a library of formalized proofs checked by the computer proof assistant Agda.

The paper, submitted to a journal in Sept. 2024, is still awaiting a referee report.

```
--: The equivariance condition on local filling structures associated to a shape
--- homomorphism g : S - T. Filling an open box over T and then composing with g should be
--- the same as composing the box with g and then filling over S.
LocalEquivariance : (S.T.: Shape) (g : Shape( S., T.1) (A : ( T.) → Type t)
  - LocalFillStr T A - LocalFillStr S (A . # g %) - Type #
LocalEquivariance o liftT liftS =
  Wr hove -
  reshapeFiller σ (liftT (((σ)) r) box) .fill s .out
  = liftS r (reshapeBox σ box) .fill s .out
Equivariance : {S T : Shape} (\sigma : Shape[ S , T ]) {\Gamma : Type \ell} (A : \Gamma \rightarrow Type \ell)
  # FillStr T A # FillStr S A # Type (f U f')
Four variance (T = T) \sigma (\Gamma) A fill T fill S =
  (v : Γ ^ T) → LocalEquivariance σ (fillT v) (fillS (v ∘ ( σ »))
-- Definition of an equivariant fibration structure.
record FibStr \{\Gamma : \text{Type } \ell\} (A : \Gamma \rightarrow \text{Type } \ell') : Type (\ell \sqcup \ell') where
  constructor makeFib
    -- We have a filling structure for every shape.
    lift : (S : Shape) → FillStr S A
    --! The filling structures satisfy the equivariance condition.
    vary : ∀ S T (g : Shape[ S . T ]) → Equivariance g A (lift T) (lift S)
```

What are computer proof assistants?

A computer proof assistant or interactive theorem prover — such as Agda, HOL Light, Isabelle, Lean, Mizar, or Rocq (née Coq) — is a computer program that:

- knows the rules of a logical formal system (e.g., a foundation for mathematics), which a trusted core program (the kernel) uses to check the correctness of proofs
- is programmed (via the elaborator) to interpret statements written in an expressive formal language (the vernacular) used to encode definitions, theorems, and proofs.

Formal proofs, written by a human user, are developed interactively with the computer.

- The mathematician inputs each line of their proof in a precise syntax.
- The computer checks that the logical argument supplied by the user produces a valid deduction of the claimed mathematical statement.

Aside: modern proof assistants often use a newer formal system — dependent type theory — in place of traditional Zermelo-Fraenkel set theory and first order logic.

How do computer proof assistants check proofs?

Aside: modern proof assistants often use a newer formal system — dependent type theory — in place of traditional Zermelo-Fraenkel set theory and first order logic.

How does the computer verify that the supplied logical argument produces a valid deduction of the claimed mathematical statement?

Formally:

- The statement of a mathematical theorem defines a type.
- The proof purports to define an element of that type.
- The logical form of the type dictates which rules may be used to construct elements
 introduction rules to construct elements and elimination rules to use elements.
- The proof can be parsed as an iterative application of logical rules, which are checked inductively against the claimed type: proof verification as "type-checking."

Example. The statement "there is no surjective function from $\mathbb N$ to $\mathfrak P(\mathbb N)$ " corresponds to the type: $(\forall f: \mathbb N \to \mathfrak P(\mathbb N)), (\forall S: \mathfrak P(\mathbb N), \exists n: \mathbb N, f(n) = S) \to \bot.$

A valid proof may start by assuming the antecedents and deriving a contradiction.

Type-checking Cantor's diagonalization argument

$$\mathsf{cantor}: (\forall f: \mathbb{N} \to \mathfrak{P}(\mathbb{N})), (\forall S: \mathfrak{P}(\mathbb{N}), \exists n: \mathbb{N}, f(n) = S) \to \bot$$

A proof starting "assume f is a surjection from $\mathbb N$ to $\mathfrak P(\mathbb N)$ " provides hypotheses

$$f\colon \mathbb{N}\to \mathfrak{P}(\mathbb{N}) \quad \text{and} \quad \underline{h}: (\forall S:\mathfrak{P}(\mathbb{N}), \exists n:\mathbb{N}, f(n)=S) \quad \text{with the goal to prove } \bot.$$

The user defines $D:\equiv \{k:\mathbb{N}\mid k\notin f(k)\}$ and the proof assistant checks that $D:\mathfrak{P}(\mathbb{N})$. The user says "applying hypothesis h to D, there exists $d:\mathbb{N}$ so that f(d)=D" so the proof assistant checks that $h(D):\exists n:\mathbb{N}, f(n)=D$ provides $d:\mathbb{N}$ and s:f(d)=D. The user says "we derive a contradiction by applying the classical tautology

$$t: (\forall P: \mathsf{Prop}), (P \leftrightarrow \neg P) \rightarrow \bot$$

to the proposition $d \in D$." Now it remains to check the user's argument that

$$((d \in D) \to (d \notin D)) \land ((d \notin D) \to (d \in D)).$$

The proof assistant expects a pair of proofs, one for each implication, such as:

- "Assume $d \in D$. Then by s : f(d) = D, $d \in f(d)$ so $d \notin D$."
- "Assume $d \notin D$. Then by s: f(d) = D, $d \notin f(d)$ so $d \in D$."

A new paradigm for proof writing

Computer formalization is a new and not yet widely practiced method of interactively developing and communicating rigorous mathematical proofs using a computer proof assistant. The formalization must either:

- be entirely self contained, including formalizations of all prerequisite definitions and theorems statements¹
- or may refer to a library of formalized mathematics.

To a human user of an interactive theorem prover, writing a formal proof feels like writing code in a programming language, but with useful real-time feedback:

- typos or conceptual mistakes may be pointed out by "type-checking errors"
- the proof assistant often communicates the standing assumptions and yet-to-be proven objectives midway through a complex proof.

Warning: the proof assistant cannot check whether the formalized definitions or theorem statements accurately capture the mathematical ideas intended by the user!

¹It is often possible to "assume" or "admit" some theorems without proof — "sorry" — but even if proofs are omitted those theorems must be stated formally.

To illustrate, we give a formal proof in Lean that symmetric matrices define a subspace.

```
import Mathlib.Data.Matrix.Basic
import Mathlib.Data.Real.Basic
open Matrix
variable {n : Type}
/-- A matrix is `symmetric` if its `i j` entry equals its `j i` entrv. -/
def symmetric (A : Matrix n n R) : Prop :=
 (ij:n) \rightarrow Aij = Aji
/-- A proof that the subset of symmetric matrices is a subspace. -/
def SymmetricMatrixSubspace : Subspace ℝ (Matrix n n ℝ) := sorry
```

A matrix
$$A=\begin{bmatrix}A_{11}&A_{12}\\A_{21}&A_{22}\end{bmatrix}$$
 is symmetric if $A_{12}=A_{21}.$

More generally, an $n \times n$ matrix A is symmetric if $A_{ij} = A_{ji}$ for all indices i and j.

Lean's Infoview keeps track of assumptions and objectives at each stage of a proof.

```
import Mathlib.Data.Matrix.Basic
                                                                                     ▼SymmetricSubspace.lean:21:0
import Mathlib.Data.Real.Basic
                                                                                      ▼Expected type
open Matrix
                                                                                       n : Type
                                                                                       ⊢ Subspace ℝ (Matrix n n ℝ)
variable {n : Type}
                                                                                     ▶ All Messages (4)
/-- A matrix is `symmetric` if its `i i` entry equals its `i i` entry. -/
def symmetric (A : Matrix n n ℝ) : Prop :=
 (i i : n) \rightarrow A i i = A i i
/-- A proof that the subset of symmetric matrices is a subspace. -/
def SymmetricMatrixSubspace : Subspace R (Matrix n n R) where
 carrier := sorrv
 add mem' := sorrv
  smul mem' := sorrv
  zero mem' := sorry
```

Lean automatically generates the proof obligations. To complete the proof, we must replace each "sorry" with code that satisfies Lean's proof checker.

By filling in the carrier, we tell Lean that the elements of the subspace are the symmetric matrices.

```
import Mathlib.Data.Matrix.Basic
                                                                                     ▼SymmetricSubspace.lean:16:4
import Mathlib.Data.Real.Basic
                                                                                      ▼ Tactic state
                                                                                      1 goal
open Matrix
                                                                                      n : Type
                                                                                      - ∀ {a b : Matrix n n R}, a ∈ symmetric → b ∈ symmetric → a + b ∈ symmetric
variable {n : Type}
                                                                                     ► All Messages (3)
/-- A matrix is `symmetric` if its `i i` entry equals its `i i` entry. -/
def symmetric (A : Matrix n n R) : Prop :=
 (i i : n) → A i i = A i i
/-- A proof that the subset of symmetric matrices is a subspace. -/
def SymmetricMatrixSubspace : Subspace R (Matrix n n R) where
 carrier := symmetric -- The elements of the subspace are symmetric matrices.
  add mem' := bv
   sorry
  smul mem' := sorrv
 zero mem' := sorrv
```

Lean tells us that to prove closure under addition, we must show that if A and B are symmetric, then A+B is symmetric.

Lean tells us that to prove closure under addition,

we must show that if A and B are symmetric, then A+B is symmetric.

```
▼ SymmetricSubspace.lean:17:4
import Mathlib.Data.Matrix.Basic
import Mathlib.Data.Real.Basic
                                                                                                ▼ Tactic state
                                                                                                1 goal
open Matrix
                                                                                                 n : Type
                                                                                                 A B : Matrix n n R
variable {n : Type}
                                                                                                 Asym : A ∈ symmetric
                                                                                                 Bsvm : B ∈ svmmetric
/-- A matrix is `symmetric` if its `i j` entry equals its `j i` entry. -/
                                                                                                 i i : n
def symmetric (A : Matrix n n R) : Prop :=
                                                                                                 \vdash (A + B) i i = (A + B) i i
 (i i : n) → A i i = A i i
                                                                                               ▶ All Messages (3)
/-- A proof that the subset of symmetric matrices is a subspace. -/
def SymmetricMatrixSubspace : Subspace R (Matrix n n R) where
 carrier := symmetric -- The elements of the subspace are symmetric matrices.
 add mem' := by -- A proof that if `A` and `B` are symmetric matrices, so is `A + B`,
   intro A B Asym Bsym i j
   sorry
 smul mem' := sorrv
 zero_mem' := sorry
```

Thus for symmetric matrices A and B and indices i and j,

we must show that
$$(A+B)_{ij} = (A+B)_{ji}$$
.

By definition of matrix addition, $(A+B)_{ij}=A_{ij}+B_{ij}$ and $(A+B)_{ji}=A_{ji}+B_{ji}$.

```
▼SymmetricSubspace.lean:18:4
import Mathlib.Data.Matrix.Basic
import Mathlib.Data.Real.Basic
                                                                                              ▼ Tactic state
                                                                                              1 goal
open Matrix
                                                                                               n : Type
                                                                                               A B : Matrix n n R
variable {n : Type}
                                                                                               Asym : A E symmetric
                                                                                               Bsvm : B E symmetric
/-- A matrix is `symmetric` if its `i i` entry equals its `i i` entry. -/
                                                                                               i j : n
def symmetric (A : Matrix n n R) : Prop :=
                                                                                               - Aij + Bij = Aji + Bii
 (i i : n) → A i i = A i i
                                                                                             ▶ All Messages (3)
/-- A proof that the subset of symmetric matrices is a subspace. -/
def SymmetricMatrixSubspace : Subspace R (Matrix n n R) where
 carrier := symmetric -- The elements of the subspace are symmetric matrices.
 add mem' := by -- A proof that if `A` and `B` are symmetric matrices, so is `A + B`.
   intro A B Asym Bsym i j
   simp only [add_applv]
   sorry
 smul mem' := sorrv
 zero mem' := sorrv
```

Thus for symmetric matrices A and B and indices i and j,

we must show that $A_{ij} + B_{ij} = A_{ji} + B_{ji}$.

Since A and B are symmetric, $A_{ij}=A_{ji}$ and $B_{ij}=B_{ji}$ so this equation holds:

```
import Mathlib.Data.Matrix.Basic
                                                                                              ▼SymmetricSubspace.lean:18:20
import Mathlib.Data.Real.Basic
                                                                                               ▼ Tactic state
                                                                                               No goals
open Matrix
                                                                                               ▼Expected type
variable {n : Type}
                                                                                                n : Type
                                                                                                ⊢ Subspace ℝ (Matrix n n ℝ)
/-- A matrix is `symmetric` if its `i j` entry equals its `j i` entry. -/
                                                                                              ► All Messages (2)
def symmetric (A : Matrix n n R) : Prop :=
 (i i : n) → A i i = A i i
/-- A proof that the subset of symmetric matrices is a subspace. -/
def SymmetricMatrixSubspace : Subspace ℝ (Matrix n n ℝ) where
 carrier := symmetric -- The elements of the subspace are symmetric matrices.
 add_mem' := by -- A proof that if `A` and `B` are symmetric matrices, so is `A + B`.
   intro A B Asym Bsym i j
   simp only [add apply]
   rw [Asym, Bsym]
 smul mem' := sorrv
 zero mem' := sorry
```

Now Lean tells us that there are no goals!

So we may move on to the remaining proof obligations ...


```
import Mathlib.Data.Matrix.Basic
import Mathlib.Data.Real.Basic
open Matrix
variable {n : Type}
/-- A matrix is `symmetric` if its `i i` entry equals its `i i` entry. -/
def symmetric (A : Matrix n n R) : Prop :=
 (i i : n) \rightarrow A i i = A i i
/-- A proof that the subset of symmetric matrices is a subspace. -/
def SymmetricMatrixSubspace : Subspace ℝ (Matrix n n ℝ) where
 carrier := symmetric -- The elements of the subspace are symmetric matrices.
 add mem' := by -- A proof that if `A` and `B` are symmetric matrices, so is `A + B`.
   intro A B Asym Bsym i j
   simp only [add_applv]
   rw [Asvm, Bsvm]
 smul mem' := by -- A proof that if k \in \mathbb{R} and A is a symmetric matrix, so is k \cdot A.
   intro k A Asym i i
   simp only [smul_apply]
   rw [Asym]
 zero mem' := bv -- A proof that the zero matrix is symmetric.
   intro i i
   simp only [zero apply]
```

- ▼SymmetricSubspace.lean:26:0
- ▼ Tactic state

No goals

- ▼Expected type
- n : Type
- \vdash Subspace $\mathbb R$ (Matrix n n $\mathbb R$)
- ► All Messages (0)

A new paradigm for proof checking

"A technical argument by a trusted author, which is hard to check and looks similar to arguments known to be correct, is hardly ever checked in detail."

— Vladimir Voevodsky

"...while I was very happy to see many study groups on condensed mathematics throughout the world, to my knowledge all of them have stopped short of this proof. (Yes, this proof is not much fun...)"

— Peter Scholze

Voevodsky and Scholze both turned to computer formalization to resolve their doubts about the veracity of their own proofs.

MATHEMATICS

The Origins and Motivations of Univalent Foundations

A Personal Mission to Develop Computer Proof Verification to Avoid Mathematical Mistakes

By Vladimir Voevodsky • Published 2014

Large scale computer-verified proofs

When human referees failed to fully certify his proof of the Kepler conjecture, Hales launched a project to verify the result himself in a computer proof assistant. Eleven years later, the full proof was formally verified in the proof assistants HOL Light and Isabelle. The formalization was described in an accompanying 29 page paper with 22 authors.

A FORMAL PROOF OF THE KEPLER CONJECTURE

THOMAS HALES!, MARK ADAMS**J. GERTRUD BAUER!,
ATT DAT DANG', JOIN HARRISON, 'LE TRUONG HOANO!,
CEZARY KALISZYK!, 'NICTOK MAGRON', SEAN MCLAUGHLIN',
TAT THANG KQILYEN, 'QUANG TRIONG NG KUYUSNI, 'QUANG
TOBIAS NIFKOW', 'STEVEN DBUA", JOSEPH PLESO', JASON RUTE!!
ALEXEY SOLOVEY!', 'THI HOAI AT YA. MANT WEING TRAN',
THI DIEP TREIU', JOSEPU RRAN', 'KY VUI" BAUG ROLAND ZUMKELLER!"

Last year, Kevin Buzzard launched a project to verify a modern proof of Fermat's last theorem—that there are no positive integer solutions to the equation $x^n+y^n=z^n$ for $n\geq 3$ —in the computer proof assistant Lean, motivated in part by the question: "is there any one person who completely understands a proof of Fermat's Last Theorem?"

Moral: proofs at the frontier of mathematics are formalizable ...but only with monumental human effort via large-scale collaborations.

Interactive theorem proving, in pursuit of greater rigour and clarity

The practice of explaining a mathematical proof to a computer requires absolute precision, in particular regarding the exact definitions of mathematical terms. In my experience at least, this level of pedantry is both deeply frustrating and unexpectedly seductive, making it easier to achieve and sustain a flow state of deep focus.

- There is no point in attempting to write anything if you aren't thinking perfectly clearly because it will be rejected by the computer proof assistant.
- Paradoxically, this much steeper demand of my attention makes it easier for me to achieve that level of concentration.

The interactions with the computer proof assistant also activate reward mechanisms.

 During a typical research day, I make no quantifiable progress towards proving anything. But in the practice of formalization, the user periodically asks the proof assistant whether what is done so far is correct. When it says yes, this feels great.

Practitioners sometimes describe formalizing as a gamification of mathematical research.

There's more to mathematics than rigour and proofs

But the demands of greater rigour enforced by formalization runs counter to the vision of mathematics presented in a famous blog post of Terry Tao:

It is of course vitally important that you know how to think rigorously, as this gives you the discipline to avoid many common errors and purge many misconceptions. Unfortunately, this has the unintended consequence that "fuzzier" or "intuitive" thinking (such as heuristic reasoning, judicious extrapolation from examples, or analogies with other contexts such as physics) gets deprecated as "non-rigorous" …

The point of rigour is not to destroy all intuition; instead, it should be used to destroy bad intuition while clarifying and elevating good intuition. It is only with a combination of both rigorous formalism and good intuition that one can tackle complex mathematical problems; one needs the former to correctly deal with the fine details, and the latter to correctly deal with the big picture.

On computer-verified proof and progress in mathematics

In a famous 1994 essay "On proof and progress in mathematics," Bill Thurston opens with the question

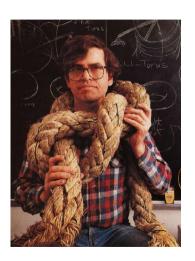
"What is it that mathematicians accomplish?"

which he rephrases in a more leading form as

"How do mathematicians advance human understanding of mathematics?"

He continues:

"This question brings to the fore something that is fundamental and pervasive: that what we are doing is finding ways for *people* to understand and think about mathematics."



On human understanding of mathematics

and

Thurston's point is that mathematics is about more than just definitions, theorems, and proofs or getting to the "right answers":

The rapid advance of computers has helped dramatize this point, because computers and people are very different. For instance, when Appel and Haken completed a proof of the 4-color map theorem using a massive automatic computation, it evoked much controversy. I interpret the controversy as having little to do with doubt people had as to the veracity of the theorem or the correctness of the proof. Rather, it reflected a continuing desire for human understanding of a proof, in addition to knowledge that the theorem is true.

On a more everyday level, it is common for people first starting to grapple with computers to make large-scale computations of things they might have done on a smaller scale by hand. They might print out a table of the first 10,000 primes, only to find that their printout isn't something they really wanted after all. They discover by this kind of experience that what they really want is usually not some collection of "answers"—what they want is understanding.

A new paradigm for mathematical proof?

Right now computer proof assistants are very difficult for the working mathematician to use in an expedient way:

the gap between the "post-rigorous" proofs in the mathematical literature and fully formal mathematics in enormous.

However, with advances in:

- domain-specific foundation systems, which bring the formal definitions of the central mathematical objects much closer to mathematician's intuitions and
- Al-powered autoformalization

it seems entirely plausible that the everyday practice of mathematics will change dramatically in the coming decades.

How would this shift affect human understanding of mathematics
— the real point of what we do?