S o |

Emily Riehl

Johns Hopkins University

Prospects for Computer Formalization
of Infinite-Dimensional Category Theory
joint with Mario Carneiro, Nikolai Kudasov, Dominic Verity, and Jonathan Weinberger

Formalisation of mathematics
with interactive theorem provers

Abstract

A peculiarity of the co-categories literature is that proofs are often written without
reference to a concrete definition of an oo-category, a practice that creates an
impediment to formalization. We describe three broad strategies that would make
oo-category theory formalizable, which may be described as

(i) analytic, (ii) axiomatic, and (iii) synthetic.

We then highlight two parallel ongoing collaborative efforts to formalize co-category
theory in two different proof assistants:

® the axiomatic theory in Lean and
® the synthetic theory in Rzk.

We show some sample formalized proofs to highlight the advantages and drawbacks of
each approach and explain how you could contribute to this effort. This involves joint

work with Mario Carneiro, Nikolai Kudasov, Dominic Verity, Jonathan Weinberger, and
many others.

Plan

1. Prospects for formalizing the co-categories literature

2. Formalizing axiomatic oo-category theory via oo-cosmoi in Lean

3. Formalizing synthetic co-category theory in simplicial HoTT in Rzk

@

Prospects for formalizing the oco-categories
literature

Avoiding a precise definition of co-categories

The precursor to Jacob Lurie’s Higher Topos Theory is a 2003 preprint On oo-Topoi,

which avoids using a precise definition of co-categories:
We will begin in §1 with an informal review of the theory of co-categories.
There are many approaches to the foundation of this subject, each having
its own particular merits and demerits. Rather than single out one of those
foundations here, we shall attempt to explain the ideas involved and how to
work with them. The hope is that this will render this paper readable to a
wider audience, while experts will be able to fill in the details missing from our
exposition in whatever framework they happen to prefer.

Perlocutions of this form are quite common in the field.
Very roughly, an oco-category is a weak infinite-dimensional category.

In the parlance of the field, selecting a set-theoretic definition of this notion is referred
to as “choosing a model.”

The idea of an oo-category
Lean defines an ordinary 1-category as follows:

class Quiver (V : Type u) where
/—— The type of edges/arrows/morphisms between a given source and target. —/
Hom : V - V - Sort v
class CategoryStruct (obj : Type u) extends Quiver.{v + 1} obj : Type max u (v + 1) where
/—— The identity morphism on an object. -/
id : Vv X : obj, Hom X X
/-- Composition of morphisms in a category, written 'f » g'. -/
comp : V{X Y Z : obj}, (X = Y) - (Y = 2Z) - (X 2)
class Category (obj : Type u) extends CategoryStruct.{v} obj : Type max u (v + 1) where
/-— Identity morphisms are left identities for composition. -/
id_comp : ¥V {X Y : obj} (f : X — Y), 1 X » f = f := by aesop_cat
/-- Identity morphisms are right identities for composition. -/
comp_id : ¥V {X Y : obj} (f : X = Y), f»1Y="f := by aesop_cat
/—-- Composition in a category is associative. -/
assoc : YV {W XY Z:obj} (f:W—-X (g:X—Y) (h:Y_—2Z), (f»g)»h=Ff»g>»h:=by
aesop_cat

The idea of an co-category is just to
® replace all the types by oco-groupoids aka homotopy types aka anima, i.e., the

information of a topological space encoded by its homotopy groups
® and suitably weaken all the structures and axioms.

“Analytic” oco-categories in Lean 4

A popular model encodes an co-category as a quasi-category, which Johan Commelin
contributed to Mathlib:

/-- A simplicial set 'S’ is a *quasicategory* if it satisfies the following horn-filling condition:
for every 'n : N' and "0 < i <n’,
every map of simplicial sets "go : A[n, 1] -~ S° can be extended to a map ‘o : A[n] —~ S°.

[Kerodon, 803A] -/
class Quasicategory (S : SSet) : Prop where
hornFilling' : V {n : N} {i : Fin (n+3)]} (ge : A[n+2, i] = S)
((he : @ < i) (_hn : i < Fin.last (n+2)),
3 0 : A[n+2] = S, 0, = hornInclusion (n+2) i > o

where oo-groupoids can be similarly “coordinatized” as Kan complexes:

/-— A simplicial set 'S" is a xKan complexx if it satisfies the following horn-filling condition:
for every nonzero *n : N and "0 < i=<n",
every map of simplicial sets "ce : Aln, il - S° can be extended to a map ‘o : A[n] - S*. -/
class KanComplex (S : SSet.{u}) : Prop where
hornFilling : V gn : Np 4i : Fin (n + 2)p (oo : Aln + 1, il — S),
30 : Aln + 1] — S, 6o = hornInclusion (n + 1) i » o

But very few results have been formalized with these technical definitions. Indeed, only
last week, Joél Riou discovered that the definition of Kan complexes was wrong!

How are quasi-categories oo-categories? d
Recall the idea of an oo-category is just to replace all the types in an ordinary 1-category

class Quiver (V : Type u) where

/—— The type of edges/arrows/morphisms between a given source and target. -/
Hom : V - V - Sort v

class CategoryStruct (obj : Type u) extends Quiver.{v + 1} obj : Type max u (v + 1) where
/—— The identity morphism on an object. -/
id : V X : obj, Hom X X
/—— Composition of morphisms in a category, written 'f » g'. -/
comp : V {XY Z: obj}, (X = Y) > (Y =~ 2Z)- (X 2)

by co-groupoids. In particular,

® the maximal sub Kan complex in a quasi-category S defines the co-groupoid of
objects,

® a certain pullback of the exponential sHom(A[1],.S) defines the co-groupoid of
arrows between two objects,

® n-ary composition can be shown to be well-defined up to a contractible
oo-groupoid of choices.

None of this has been formalized in Mathlib.

Prospects for formalization? |

| can imagine three strategies for formalizing the theory of co-categories.

Strategy |. Give precise “analytic” definitions of co-categorical notions in some model
(e.g., using quasi-categories). Prove theorems using the combinatorics of that model. J

Strategy Il. Axiomatize the category of co-categories (e.g., using the notion of
oo-cosmos or something similar). State and prove theorems about co-categories in this
axiomatic language. To show that this theory is non-vacuous, prove that some model
satisfies the axioms and formalize other examples, as desired.

Strategy Ill. Avoid the technicalities of set-based models by developing the theory of
oo-categories “synthetically,” in a domain-specific type theory. Formalization then
requires a bespoke proof assistant (e.g., Rzk).

()

Formalizing axiomatic oo-category theory via
oo-cosmol In Lean

An axiomatic theory of oo-categories in Lean

The oco-cosmos project — co-led Mario Carneiro, Dominic Verity, and myself — aims to
formalize a particular axiomatic theory approach to oo-category theory Lean's

mathematics library Mathlib. Pietro Monticone and others helped us set up a blueprint,
website, github repository, and Zulip channel to organize the workflow.

-COSMOos

A project to formalize «-cosmoi in Lean.

Blueprint (web) Blueprint (pdf) Documentation GitHub

Useful links:

« Zulip chat for Lean for coordination
¢ Blueprint

* Blueprint as pdf

* Dependency graph

ph emilyriehl.github.io/infinity-cosmos
« Doc pages for this repository

https://emilyriehl.github.io/infinity-cosmos/

The idea of the co-cosmos project ‘

The aim of the co-cosmos project is to leverage the existing 1-category theory,
2-category theory, and enriched category theory libraries in Lean to formalize basic
oo-category theory.

This is achieved by developing the theory of co-categories more abstractly, using the
axiomatic notion of an co-cosmos, which is an enriched category whose objects are
oo-categories.

From this we can extract a 2-category whose objects are co-categories, whose
morphisms are oo-functors, and whose 2-cells are oo-natural transformations. The
formal theory of oo-categories (adjunctions, co/limits, Kan extensions) can be defined
using this 2-category and some of these notions are in the Mathlib already!

Proving that quasi-categories define an co-cosmos will be hard, but this tedious verifying
of homotopy coherences will only need to be done once rather than in every proof. J

Progress '

The co-cosmos project was launched in September 2024. After adding some background
material on enriched category theory, we have formalized the following definition:

1.2.1. Definition (co-cosmos). An co-cosmos K is a category that is enriched over quasi-categories,"’
meaning in purticu]ar that
e its morphisms f: A — B define the vertices of a quasi-category denoted Fun(A, B) and referred
to as a functor space,
that is also cquippcd with a spccificd collection of maps that we call isofibrations and denote h}* H»”
satisfying the following two axioms:

(i) (complctcncss) The quusilcutcgoricul]y enriched category (Kposscsscs a terminal oh]'cct‘ small
products, pullbacks of isofibrations, limits of countable towers of isofibrations, and cotensors
with simplicial sets, each of these limit notions satisfying a universal property that is enriched
over simplicial sets."

(ii) (isofibrations) The isofibrations contain all isomorphisms and any map whose codomain is the
terminal object; are closed under composition, product, pullback, forming inverse limits of
towers, and Leibniz cotensors with monomorphisms of simplicial sets; and have the property
thatif f: A = B is an isofibration and X is any object then Fun(X, A) - Fun(X, B) is an
isofibration of quasi-categories.

A formalized definition of an co-cosmos

variable (K : Type u) [Category.{v} KI [SimplicialCategory K]
/—— A “PreInfinityCosmos’ is a simplicially enriched category whose hom-spaces are quasi-categories
and whose morphisms come equipped with a special class of isofibrations.-/
class PreInfinityCosmos extends SimplicialCategory K where
[has_qgcat_homs : V {X Y : K}, SSet.Quasicategory (EnrichedCategory.Hom X Y)I
IsIsofibration : MorphismProperty K
variable (K : Type u) [Category.{v} K] [PreInfinityCosmos.{v} KI
7/—- An ‘InfinityCosmos® extends a ‘PreInfinityCosmos® with limit and isofibration axioms..-/
class InfinityCosmos extends PreInfinityCosmos K where
comp_isIsofibration {A B C : K} (f : A»B) (g : B»C) : IsIsofibration (f.1 » g.1)
iso_isIsofibration {X Y : K} (e : X — Y) [IsIso el : IsIsofibration e
all_objects_fibrant {X Y : K} (hY : IsConicalTerminal Y) (f : X — Y) : IsIsofibration f
[has_products : HasConicalProducts K]
prod_map_fibrant {y : Type w} {AB : y - K} (f : Vi, Ai=»Bi):
IsIsofibration (Limits.Pi.map (A i » (f i).1))
[has_isoFibration_pullbacks {E B A : K} (p : E = B) (f : A — B) : HasConicalPullback p.1 f]
pullback_is_isoFibration {E B AP : K} (p : E» B) (f : A — B)
(fst : P — E) (snd : P — A) (h : IsPullback fst snd p.1 f) : IsIsofibration snd
[has_limits_of_towers (F : N°® = K) :
(Y n : N, IsIsofibration (F.map (homOfLE (Nat.le_succ n)).op)) - HasConicalLimit F]
has_limits_of_towers_isIsofibration (F : Ne® = K) (hf) :
havel := has_limits_of_towers F hf
IsIsofibration (limit.m F (.op 0))
[has_cotensors : HasCotensors K]
leibniz_cotensor {U V : SSet} (i : U — V) [Mono il {AB : K} (f : A » B) {P : K}
(fst : P - UnA) (snd : P~ VaB)
(h : IsPullback fst snd (cotensorCovMap U f.1) (cotensorContraMap i B)) :
IsIsofibration (h.isLimit.lift <|
PullbackCone.mk (cotensorContraMap i A) (cotensorCovMap V f.1)
(cotensor_bifunctoriality i f.1)) --TODO : Prove that these pullbacks exist.
local_isoFibration {X A B : K} (f : A » B) : Isofibration (toFunMap X f.1)

Related contributions to Mathlib

One successful aspect of our project is the rapid rate of contributions to Mathlib:

codiscrete categories (Alvaro Belmonte)

reflexive quivers (Mario Carneiro, Pietro Monticone, Emily Riehl)

the opposite category of an enriched category (Daniel Carranza)

a closed monoidal category is enriched in itself (Daniel Carranza, Joél Riou)
StrictSegal simplicial sets are 2-coskeletal (Mario Carneiro and Joél Riou)

StrictSegal simplicial sets are quasicategories (Johan Commelin, Emily Riehl, Nick
Ward)

left and right lifting properties (Jack McKoen)

SSet.hoFunctor, which constructs a category from a simplicial set (Mario Carneiro,
Pietro Monticone, Emily Riehl, Joél Riou)

SimplicialSet (co)skeleton properties (Mario Carneiro, Pietro Monticone, Emily
Riehl, Joél Riou)

A key challenge is the extraordinary demands this has placed on Joél Riou as a reviewer.

Challenge: Lean's difficulty with the 1-category of categories

To define the 2-categorical quotient of an co-cosmos (WIP), Mario Carneiro and |
introduced reflexive quivers

/—— A reflexive quiver extends a quiver with a specified arrow “id X : X — X' for each X' in its
type of objects. We denote these arrows by “id" since categories can be understood as an extension
of refl quivers.
=/
class ReflQuiver (obj : Type u) extends Quiver.{v} obj : Type max u v where

/-- The identity morphism on an object. -/

id : V X : obj, Hom X X

and formalized the free category and underlying reflexive quiver adjunction between Cat

and ReflQuiv. This is now in Mathlib:

/__
The adjunction between forming the free category on a reflexive quiver, and forgetting a category
to a reflexive quiver
-/
nonrec def adj : Cat.freeRefl.{max u v, u} - ReflQuiv.forget :=
Adjunction.mkOfUnitCounit {

Challenge: Lean's difficulty with the 1-category of categories .

In formalizing the free category and underlying reflexive quiver adjunction:

left_triangle := by
ext V
apply Cat.FreeRefl.lift_unique'
simp only [id_obj, Cat.free_obj, comp_obj, Cat.freeRefl_obj_a, NatTrans.comp_app,
forget_obj, whiskerRight_app, associator_hom app, whiskerLeft_app, id_comp, Lean was Confused by
NatTrans.id_app']
[rw [Cat.id_eq_id, Cat.comp_eq_comp]l

® what category we're

simp only [Cat.freeRefl_obj_a, Functor.comp_id] in When ObjeCtS are
rw [« Functor.assoc, « Cat.freeRefl_naturality, Functor.assoc]
dsimp [Cat.freeRefl] type classes

rw [adj.counit.component_eq' (Cat.FreeRefl V)]

® competing notations

[conv => I
| enter 11, 1, 21 !

| enter 11, 1, % for functors
L apply (Quiv.comp_eq_comp (X := Quiv.of _) (Y := Quiv.of _) (Z := Quiv.of _) ..).symm}

rw [Cat.free.map_compl e whiskered

{show (_ » ((Quiv.forget » Cat.free).map (X := Cat.of _) (Y := Cat.of _) .
| commutative
L

(Cat.FreeRefl.quotientFunctor V))) » _ = _ |
[rw [Functor.assoc, « Cat.comp_eq_comp]| diagrams
{conv => enter [1, 2];iapply Quiv.adj.counit.naturality
[rw [Cat.comp_eq_comp, « Functor.assoc, « Cat.comp_eq_comp] K

exact Functor.id_comp _

Challenge: dependent equalities between the 2-cells in a 2-category ‘

On paper, 2-cells in a 2-category compose by pasting:

A—— C’/ C —— FE——=
Mo A
VL‘I Lo L‘g R, L‘2 /B [4‘3/”3
e v Yo geyY + Ry
B B T1> D D T, F

In Mathlib, the 2-cells displayed here belong to dependent types (over their boundary

1-cells and objects) and depending on how the whiskerings are encoded are not obviously
composable at all:

e.g., is RyHyLyn,G| Ry composable with Ry Hyeo LoG R, 7?

Challenge: dependent equalities between the 2-cells in a 2-category

/-— The mates equivalence commutes with vertical composition. -/
theorem mateEquiv_vcomp
(@t G » L2 — L1 » Hi) (B : Gz » L3 — L2 » Hz) :
(mateEquiv (G := G1 » Gz2) (H := Hi » Hz2) adj: adjs) (leftAdjointSquare.vcomp o B) =
rightAdjointSquare.vcomp (mateEquiv adj: adjz a) (mateEquiv adj: adjs B) := by
_unfold leftAdjointSquare.vcomp rightAdjointSquare.vcomp mateEquiv

Msuiﬁ——only [comp_obj, Equiv.coe_fn_mk, whiskerLeft_comp, whiskerLeft_twice, whiskerRight_comp, In the 2_Categ0ry Catv I

assoc, comp_app, whiskerLeft_app, whiskerRight_app, id_obj, Functor.comp_map, formalized a proof that
whiskerRight_twicel

slice_rhs 1 4 => rw [~ assoc, « assoc, « unit_naturality (adjs)] the Unit 7]2 and Counit 62
rw [Ls.map_comp, Rs.map_comp] .
S, [7) o cancel, but not via a

rw [« Rs.map_comp, « Rs.map_comp, « assoc, « Ls.map_comp, « Gz.map_comp, « Gz.map_comp]
rw [« Functor.comp_map Gz L3, B.naturality]

2-categorical pasting

rw [(Lz s Hz2).map_comp, Rs.map_comp, Rs.map_comp] argument. AS a reSUIt,
slice_rhs 4 5 => N
rw [« Rs.map_comp, Functor.comp_map L2 _, « Functor.comp_map _ Lz, « Hz.map_comp] thls prOOf doeS nOt eXtend

rw [adjz.counit.naturality]
simp only [comp_obj, Functor.comp_map, map_comp, id_obj, Functor.id_map, assocl
slice_rhs 4 5 =>

to a general 2-category.

rw [« Rs.map_comp, « H2.map_comp, « Functor.comp_map _ L2, adj:.counit.naturality]
simp only [comp_obj, id_obj, Functor.id_map, map_comp, assoc]
slice_rhs 3 4 =>

rw [« Rs.map_comp, « Hz.map_comp, left_triangle_components]
simp only [map_id, id_comp]

Challenge: dependent equalities between the 2-cells in a 2-category

/- The mates equivalence commutes with vertical composition. -/
theorem mateEquiv_vcomp (@ : g1 » 1z — 1 » h1) (B : gz » s — Lz » h2) :
mateEquiv adj: adjs (leftAdjointSquare.vcomp a B) =
rightAdjointSquare.vcomp (mateEquiv adj: adj: «) (mateEquiv adjz adjs B) := by
dsimp only [leftAdjointSquare.vcomp, mateEquiv_apply, rightAdjointSquare.vcomp]
symm
calc

=/t _e» r1ag: aadjz.unit > g2 &> r1 < o> rz b g2 ®»
((adj1.counit b (hs » r2 » g2 » 1e)) » 1b < (h: < r2 < g2 < adja.unit)) e»

hiarz rs e hi<adjz.counit b hs > rs e» 1 _ i= by After describing this Cha||enge two

bicategory

L= es r g a5 e weeks ago, Yuma Mizuno leveraged his

(ria(ap (rz »g2»1e)» (i » hi) < rz g2 <adjs.unit)) e»

((adji.counit > (h1 » r2) > (g2 » 13) » (1 b » h1 » r2) 9 B) > rs) e» bicategory taCtiC tO forma|ize the

h:1 < adjz.counit > hz > rs @» 1 _ := by
rw [~ whisker_exchange] H H H
. I desired generalization.
bicategory
=1_®> r1 <01 < (adjz.unit > (g2 > 1 e) » (12 » r2) < gz < adjs.unit) e»
(r1a(ap (rz » gz » 1) » (li » hi) < r2 aB) > ra) e

(adjs.counit > ha > (rz » 12) » (1 b » h:) < adjz.counit) > hz > rs @» 1 _ 1= by
rw [~ whisker_exchange, « whisker_exchangel
bicategory

e RIrcr e It would be great to extend this tactic
ri<g: < (adjz.unit & (g2 » 1) » (12 » rz) < B) > rs e»

ria (@> (r2 » 12) » (Lo » ha) < adjz.counit) > ha b ra e» to automate the intermediate Steps in

adji.counit > hi > hz > rs @ 1 _ := by
rw [+ whisker_exchange, - whisker_exchange, - whisker_exchangel this calculation.
bicategory
=l1®> ri<g: <92 <adjs.unit > r1 < g1 < B rs e»
((r1 » g1) < leftZigzag adjz.unit adjz.counit > (hz » r3)) e»

ri <> h: > rs e adji.counit b hi > ha b rs e» 1 _ = by
rw [~ whisker_exchange, « whisker_exchangel
bicategory

_ i= by
rw [adjz.left_trianglel
bicategory

Contributors to the co-cosmos project ‘

So far formalizations (and preliminary mathematical work) have been contributed by:

Dagur Asgeirsson, Alvaro Belmonte, Mario Carneiro, Daniel Carranza, Johan Commelin,
Jon Eugster, Jack McKoen, Yuma Mizuno, Pietro Monticone, Matej Penciak, Nima

Rasekh, Emily Riehl, Joél Riou, Joseph Tooby-Smith, Adam Topaz, Dominic Verity, Nick
Ward, and Zeyi Zhao.

Anyone is welcome to join us!

emilyriehl.github.io/infinity-cosmos

https://emilyriehl.github.io/infinity-cosmos/

&)

Formalizing synthetic co-category theory in
simplicial HoTT in Rzk

Could oo-category theory be taught to undergraduates? ‘

Recall co-categories are like categories where all the sets are replaced by oco-groupoids

Could co-Category Theory Be
Taught to Undergraduates?

Emily Riehl

sets :: co-groupoids
categories :: co-categories

The traditional foundations of mathematics are not
really suitable for “higher mathematics” such as
oo-category theory, where the basic objects are built
out of higher-dimensional types instead of mere sets.
However, there are proposals for new foundations for
mathematics based on Martin-L6f's dependent type
theory where the primative types have “higher
structure” such as

® homotopy type theory,
® higher observational type theory, and the

e simplicial type theory, that we use here.

oo-categories in simplicial homotopy type theory ‘
A

The identity type family gives each type the structure of an co-groupoid: each type
has a family of identity types over x,y : A whose terms p : © =, y are called paths.
In a "directed” extension of homotopy type theory introduced in

Emily Riehl and Michael Shulman, A type theory for synthetic co-categories,
Higher Structures 1(1):116-193, 2017

each type A also has a family of hom types Hom 4 (x,y) over 2,y : A whose terms
f:Hom 4 (z,y) are called arrows.

defn (Riehl-Shulman after Joyal and Rezk). A type A is an oo-category if:

® Every pair of arrows [: Hom ,(z,y) and g : Hom 4(y, z) has a unique composite,
defining a term go f: Hom 4(x, 2).

® Paths in A are equivalent to isomorphisms in A.

With more of the work being done by the foundation system, perhaps someday
oo-category theory will be easy enough to teach to undergraduates?

An experimental proof assistant RzK for co-category theory

rzk

MkDocs | documentation | Haddock |documentation |) Build with GHCJS and Deploy to GitHub Pages |passing;

An experimental proof assistant for synthetic o-categories.

ke an xperimentl prot
sssin o AR s

Visualising Terms of Simplicial Types.

hover,

restof the argerstape s colored sing ray colr
W canvissle terms that i e

g shae,
s
L A R I PRSP PEY ey
@ preions

The proof assistant RzZK was
written by Nikolai Kudasov:

About this project

This project has started with the idea of bringing Riehl and Shulman's 2017 paper [1] to "lfe” by implementing a proof
assistant based on their type theory with shapes. Gurrently an early prototype with an online playground is available.
The current implementation is capable of checking various formalisations. Perhaps, the largest formalisations are
available in two related projects: https://github. /SHOTT and hitp: y SHoTT.
project (originally a fork of the yoneda project) aims to cover more formalisations in simplicial HOTT and «-categories,
while yaneda project aims to compare different formalisations of the Yoneda lemma.

Internally, rzk uses a version of second-order abstract syntax allowing relatively straightforward handiing of binders
(such as lambda abstraction). I the future, rzk aims to support dependent type inference relying on E-unification
for second-order abstract syntax [2]. Using such representation is motivated by automatic handling of binders and
easily automated boilerplate code. The idea is that this should keep the implementation of rzk relatively small and
less error-prone than some of the existing approaches to implementation of dependent type checkers.

Animportant part of rzk is a tope layer solver, which is essentially a theorem prover for a part of the type theory. A
related project, dedicated just to that part is available at htips:/github.com/fizrukisimple-topes. simple-topes
supports used-defined cubes, topes, and tope layer axioms. Once stable, sinple-topes will be merged into rzk
expanding the proof assistant o the type theory with shapes, allowing formalisations for (variants of) cubical, globular,
and other geometic versions of HoTT.

rzk-lang.github.io/rzk

https://rzk-lang.github.io/rzk

Extension types in simplicial homotopy type theory

Formation rule for extension types

® C U shape A type a:P—> A

o —— A
Y 7 type
T

25 A _
Aterm [: (v -7 defines
.

f: WU — Asothat f(1) =alt) fort: ®.

The simplicial type theory allows us to prove equivalences between extension types along
composites or products of shape inclusions.

Hom types ‘

In the simplicial type theory, any type A has a family of hom types depending on two
terms in x, 1y : A:
oAl 29, 4
Hom 4 (z,y) := < N ///” > type
Al

-~

A term f: Hom 4 (z,y) defines an arrow in A from = to y.

The type Hom 4 (z,y) as the mapping oco-groupoid in A from x to .

Pre-oo-categories y

defn (Riehl-Shulman after Joyal). A type A is a pre-co-category if every pair of arrows
f:Hom 4 (z,y) and g : Hom 4(y, z) has a unique composite, i.e.,

A% [f:g] A
o is contractible.?
X

2A type C is contractible just when Zc:c Hac:C @ = a5,

v
By contractibility, < Y e > has a unique inhabitant comp; , : A* - A.
A2

Write g o f: Hom 4 (z, z) for its inner face, the composite of f and g¢.

|dentity arrows

For any x : A, the constant function defines a term

id, := M.z : Hom, (2, z) == < T /,z >’

-
-
-

Al

which we denote by id, and call the identity arrow.

For any [: Hom ,(z,y) in a pre-oo-category A, the term in the contractible type

A2 lid,., f] A
)\(S'f>f<f> ; < I /,///\{ >

-

A2

witnesses the unit axiom f = foid,.

Stating the Yoneda lemma “

Let A be a pre-oo-category and fix a,b : A.

Yoneda lemma. Evaluation at the identity defines an equivalence

evid := A\p.¢,(id,) : (H Hom 4(z,a) —» HomA(z,b)) — Hom 4(a,b)
z:A

While terms ¢ : []_, Hom 4 (2, a) — Hom 4(z,b) are just families of maps
¢. : Hom 4(z,a) — Hom 4(z,b)
indexed by terms z : A such families are automatically natural:
Prop. Any family of maps ¢ : []_, hom,(z,a) - hom(z,b) is natural:
for any ¢ : hom 4(y,a) and 7 : hom 4 (z,y)
¢y(g) o h = (goh).

Proving the Yoneda lemma “
Let A be a pre-oo-category and fix a, b : A.

Yoneda lemma. Evaluation at the identity defines an equivalence

evid := \g.¢,(id,) : (H Hom 4(z,a) — HomA(z,b)) — Hom 4(a, b)
z:A

The proof is (a simplification of) the standard argument for 1-categories!

Proof: Define an inverse map by

yon := Av. Az Af.fowv:Homy(a,b) (HHomA z,a) - Hom 4 (z, b))
z:A

By definition, evid o yon(v) :=void,, and since void, = v, so evid o yon(v) = v.
Similarly, by definition, yon o evid(¢).(f) := ¢,(id,) o f. By naturality of ¢ and another
identity law @, (id,) o f = 6.(id, o f) = 6,(f), s0 yon o evid(¢).(f) = 6,(f). L[

A formalized proof of the oo-categorical Yoneda lemma “

Nikolai Kudasov, Jonathan Weinberger, and | formalized the oo-Yoneda lemma:

For any pre-co-category A terms a b : A, the contravariant Yoneda lemma provides an equivalence between the type (z : A) - Hom

A z a - Hom A z b of natural transformations and the type Hom A a b.
One of the maps in this equivalence is evaluation at the identity. The inverse map makes use of the contravariant transport operation.

The following map, contra-evid evaluates a natural transformation out of a representable functor at the identity arrow.

#def Contra-evid

(A:U)
(ab:A)
:((z:A)>HomAza-HomAzb)->HomAab

=\ ¢ - ¢ a (Id-hom A a)

The inverse map only exists for pre-co-categories.

#def Contra-yon

(A :U)
(is-pre-w-category-A : Is-pre-«-category A)
(ab:A)

: Hom Aab-> ((z:A) ~HomA 2z a- Hom A z b)
=\ vz f - Comp-is-pre-«-category A is-pre-w-category-A z a b f v

emilyriehl.github.io/yoneda/

https://emilyriehl.github.io/yoneda/

A formalized proof of the oo-categorical Yoneda lemma

It remains to show that the Yoneda maps are inverses. One retraction is straightforward:

#def Contra-evid-yon

(A:U)
(is-pre-w-category-A : Is-pre-~-category A)
(ab:A)

(v : Hom A a b)
: Contra-evid A a b (Contra-yon A is-pre-w-category-A a b v) = v

Id-comp-is-pre-»-category A is-pre-w-category-A a b v

The other composite carries ¢ to an a priori distinct natural transformation. We first show that these are pointwise equalatall x : A
and f : Hom A x a intwo steps.

#def Contra-yon-evid-twice-pointwise
(¢ :(z:A) - Hom Az a - Hom A z b)
(x :A)
(f : Hom A x a)
: ((Contra-yon A is-pre-«-category-A a b)
((Contra-evid A ab) ¢)) x f=¢ x f
concat
(Hom A x b)
(((Contra-yon A is-pre-w=-category-A a b
((Contra-evid A a b) ¢)) x f)
(¢ x (Comp-is-pre-w-category A is-pre-w-category-A x a a f (Id-hom A a)))
(¢ xf)
(Naturality-contravariant-fiberwise-representable-transformation
A is-pre-»-category-A a b x a f (Id-hom A a) ¢)
(ap
(Hom A x a)
(Hom A x b)
(Comp-is-pre-m-category A is-pre-o-category-A x a a
f (Id-hom A a))
(f)
(¢ x)

(Comp-id-is-pre-w-category A is-pre-w-category-A x a f))

Contributors to the simplicial HoTT library “

So far formalizations to the broader project of formalizing synthetic oo-category theory
(and work on the proof assistant Rzk) have been contributed by:

Abdelrahman Aly Abounegm, Fredrik Bakke, César Bardomiano Martinez, Jonathan
Campbell, Robin Carlier, Theofanis Chatzidiamantis-Christoforidis, Aras Ergus, Matthias
Hutzler, Nikolai Kudasov, Kenji Maillard, David Martinez Carpena, Stiéphen Pradal,
Nima Rasekh, Emily Riehl, Florrie Verity, Tashi Walde, and Jonathan Weinberger.

Anyone is welcome to join us!

rzk-lang.github.io/sHoTT

https://rzk-lang.github.io/sHoTT/

You could contribute to either project! ‘

Papers:

® Emily Riehl, Could oo-category theory be taught to undergraduates?, Notices of the
AMS 70(5):727-736, May 2023; arXiv:2302.07855

® Nikolai Kudasov, Emily Riehl, Jonathan Weinberger, Formalizing the co-categorical
Yoneda lemma, CPP 2024: 274-290; arXiv:2309.08340

v

Formalization:
® Johan Commelin, Kim Morrison, Joél Riou, Adam Topaz, a nascent theory of
quasi-categories in Mathlib, AlgebraicTopology/SimplicialSet/Quasicategory

® Mario Carneiro, Emily Riehl, and Dominic Verity, a blueprint of the
model-independent theory, emilyriehl.github.io/infinity-cosmos

® Nikolai Kudasev et al, synthetic co-categories in simplicial homotopy type theory,
rzk-lang.github.io/sHoTT/

Thank you!

https://www.ams.org/journals/notices/202305/noti2692/noti2692.html
https://dl.acm.org/doi/10.1145/3636501.3636945
https://arxiv.org/abs/2309.08340
https://leanprover-community.github.io/mathlib4_docs/Mathlib/AlgebraicTopology/Quasicategory/Basic.html
https://emilyriehl.github.io/infinity-cosmos/
https://rzk-lang.github.io/sHoTT/

	Prospects for formalizing the infinity-categories literature
	Formalizing axiomatic infinity-category theory via infinity-cosmoi in Lean
	Formalizing synthetic infinity-category theory in simplicial HoTT in Rzk

