
Emily Riehl

Johns Hopkins University

A reintroduction to proofs



Plan

1. Logic, constructively

2. ∀ : Π :: ∃ : Σ

3. Peano’s axioms, revisited

∞. =



1

Logic, constructively



Conjunction and disjunction
Forget truth tables! Instead, define the logical operators “and” ∧ and “or” ∨ by:

Conjunction ∧ is the logical operator defined by the rules:
• ∧intro: If p is true and q is true, then p ∧ q is true.
• ∧elim1: If p ∧ q is true, then p is true.
• ∧elim2: If p ∧ q is true, then q is true.

Disjunction ∨ is the logical operator defined by the rules:
• ∨intro1: If p is true, then p ∨ q is true.
• ∨intro2: If q is true, then p ∨ q is true.
• ∨elim: If p ∨ q is true, and if r can be derived from p and from q, then r is true.

Introduction rules explain how to prove a proposition involving a particular connective,
while elimination rules explain how to use a hypothesis involving a particular connective.



Implication
Implication ⇒ is the logical operator defined by the rules:

• ⇒intro: If q can be derived from the assumption that p is true, then p ⇒ q is true.
• ⇒elim: If p ⇒ q is true and p is true, then q is true.

Theorem. For any propositions p, q, and r , ((p ⇒ q) ∧ (q ⇒ r)) ⇒ (p ⇒ r).

Proof: By ⇒intro, assume that
(p ⇒ q) ∧ (q ⇒ r) is true; our goal is to prove
p ⇒ r . By ∧elim1 and ∧elim2 it follows that
p ⇒ q and q ⇒ r are true. By ⇒intro again,
also assume p is true; now our goal is just to
prove r . By ⇒elim, from p and p ⇒ q, we may
conclude that q is true. By ⇒elim again, from q
and q ⇒ r , we may conclude r is true as
desired.

givens: p, q, r
(p ⇒ q) ∧ (q ⇒ r)

p ⇒ q
q ⇒ r

p
q
r

goal: ((p ⇒ q) ∧ (q ⇒ r)) ⇒ (p ⇒ r)



Type theory

Type theory is a formal system for mathematical statements and proofs that has the
following primitive notions:

• types, e.g., N , Q , Group
• terms, e.g., 17 : N ,

√
2 : R , K4 : Group

Given any types A and B, one may form the

product type A × B , function type A → B , coproduct type A + B

whose terms are governed by introduction and elimination (and computation) rules.

Mathematics in type theory:
• To state a conjecture, one forms a type that encodes its statement.
• To prove the theorem, one constructs a term in that type.



Conjunction and Products

Conjunction ∧ is the logical operator defined by the rules:
• ∧intro: If p is true and q is true, then p ∧ q is true.
• ∧elim1: If p ∧ q is true, then p is true.
• ∧elim2: If p ∧ q is true, then q is true.

Given types A and B, the product type A × B is governed by the rules:
• ×intro: given terms a : A and b : B there is a term (a, b) : A × B
• ×elim1: given a term p : A × B there is a term π1p : A
• ×elim2: given a term p : A × B there is a term π2p : B

plus computation rules that relate pairings and projections.



Implication and functions

Implication ⇒ is the logical operator defined by the rules:
• ⇒intro: If q can be derived from the assumption that p is true, then p ⇒ q is true.
• ⇒elim: If p ⇒ q is true and p is true, then q is true.

Given types A and B, the function type A → B is governed by the rules:
• →intro: if given any term x : A there is a term bx : B,

then there is a term λx .bx : A → B
• →elim: given terms f : A → B and a : A, there is a term f (a) : B

plus computation rules that relate λ-abstractions and evaluations.



A proof in type theory

Theorem. For any propositions p, q, and r , ((p ⇒ q) ∧ (q ⇒ r)) ⇒ (p ⇒ r).

Theorem. For any types P , Q, and R , ((P → Q)× (Q → R)) → (P → R).

Construction: By →intro, suppose given
h : (P → Q)× (Q → R); our goal is a term of
type P → R . By ×elim1 and ×elim2, we have
π1h : P → Q and π2h : Q → R . By →intro
again, suppose given p : P ; now our goal is a
term of type R . By →elim, from p : P and
π1h : P → Q, we obtain π1h(p) : Q. By →elim
again, from π1h(p) : Q and π2h : Q → R , we
obtain π2h(π1h(p)) : R as desired.

givens: P ,Q,R
h : (P → Q)× (Q → R)

π1h : P → Q
π2h : Q → R

p : P
π1h(p) : Q

π2h(π1h(p)) : R
goal: (P → Q)× (Q → R) → (P → R)

This constructs a term λh.λp.π2h(π1h(p)) : ((P → Q)× (Q → R)) → (P → R).



Disjunction and coproducts

Disjunction ∨ is the logical operator defined by the rules:
• ∨intro1: If p is true, then p ∨ q is true.
• ∨intro2: If q is true, then p ∨ q is true.
• ∨elim: If p ∨ q is true, and if r can be derived from p and from q, then r is true.

Given types A and B, the coproduct type A + B is governed by the rules:
• +intro1: given a term a : A, there is a term ι1a : A + B
• +intro2: given a term b : B, there is a term ι2b : A + B
• +elim: given a types C and terms ca, db : C for each a : A and b : B respectively,

there is a term +ind(c, d)(x) : C for each x : A + B
plus computation rules that relate the inclusions and the elimination.



Another proof in type theory

Theorem. For any types A, B, and C , ((A + B) → C) → ((A → C)× (B → C)).

Construction: By →intro, suppose given h : (A + B) → C ; our goal is a term of type
(A → C)× (B → C). By ×intro, it suffices to define terms of type A → C and type
B → C . By →intro, to define a term of type A → C it suffices to assume a term a : A
and define a term of type C . By +intro1, we then have a term ι1a : A + B. Then by
→elim we obtain a term h(ι1a) : C . Similarly, by →intro, +intro2, and →elim we have
λb.h(ι2b) : B → C .

• →intro: if given any term x : A there is a term bx : B, there is a term λx .bx : A → B
• ×intro: given terms a : A and b : B there is a term (a, b) : A × B
• +intro1: given a term a : A, there is a term ι1a : A + B
• →elim: given terms f : A → B and a : A, there is a term f (a) : B

This constructs λh.(λa.h(ι1a), λb.h(ι2b)) : ((A + B) → C) → ((A → C)× (B → C)).



2

∀ : Π :: ∃ : Σ



Universal and existential quantification
Let p : X → {⊥,>} be an X -indexed family of propositions, a predicate p(x) on x ∈ X .
For example:

• “22n − 1 is prime” is a predicate on n ∈ N
• “z2 = −1” is a predicate on z ∈ C

Universal quantification ∀x ∈ X , p(x) is the logical formula defined by the rules:
• ∀intro: If p(x) can be derived from the assumption that x is an arbitrary element of

X , then ∀x ∈ X , p(x) is true.
• ∀elim: If ∀x ∈ X , p(x) is true and a ∈ X , then p(a) is true.

Existential quantification ∃x ∈ X , p(x) is the logical formula defined by the rules:
• ∃intro: If a ∈ X and p(a) is true, then ∃x ∈ X , p(x) is true.
• ∃elim: If ∃x ∈ X , p(x) is true and q can be derived from the assumption that p(a)

is true for some a ∈ X , then q is true.



Exchanging quantifiers
∀-intro: If p(x) for any x ∈ X , then ∀x ∈ X , p(x). ∃-intro: If a ∈ X and p(a), then ∃x ∈ X , p(x).
∀elim: If ∀x ∈ X , p(x) and a ∈ X , then p(a). ∃elim: If ∃x ∈ X , p(x) and q follows from

p(a) for some a ∈ X , then q.

Theorem. For any predicate p(x , y) on x ∈ X and y ∈ Y ,

∃y ∈ Y , ∀x ∈ X , p(x , y) ⇒ ∀x ′ ∈ X ,∃y ′ ∈ Y , p(x ′, y ′).

Proof: By ⇒intro, we may assume
∃y ∈ Y ,∀x ∈ X , p(x , y); our goal is to prove
∀x ′ ∈ X , ∃y ′ ∈ Y , p(x ′, y ′). By ∃elim, we may
assume y0 ∈ Y makes ∀x ∈ X , p(x , y0) true. By
∀intro, we may fix x ′ ∈ X ; our goal is to prove
that ∃y ′ ∈ Y , p(x ′, y ′). But by ∀elim, we know
that p(x ′, y0) is true. So by ∃intro, it follows
that ∃y ′ ∈ Y , p(x ′, y ′) is true.

givens: p
∃y ∈ Y , ∀x ∈ X , p(x , y)

y0
∀x ∈ X , p(x , y0)

x ′

p(x ′, y0)
∃y ′ ∈ Y , p(x ′, y ′)

goal: ∃y ∈ Y , ∀x ∈ X , p(x , y)
⇒ ∀x ′ ∈ X , ∃y ′ ∈ Y , p(x ′, y ′)



Dependent type theory
Dependent type theory is a formal system for mathematical statements and proofs that
has the following primitive notions. In addition to the:

• types, e.g., N , Q , Group
• terms, e.g., 17 : N ,

√
2 : R , K4 : Group

there are also:
• dependent types, e.g., is-prime :N→Type , R• :N→Type , Mat•×• :N→N→Type
• dependent terms, e.g., ~0• :

∏
n:NRn , I• :

∏
n:N Matn,n , S• :

∏
n:N Group

all of which can occur in an arbitrary context of variables from previously-defined types.

In a mathematical statement of the form “Let …be …then …” The stuff following the
“let” likely declares the names of the variables in the context described after the “be”,
while the stuff after the “then” most likely describes a type or term in that context.



Universal quantification and dependent functions

For any predicate p : X → {⊥,>}, the universal quantification ∀x ∈ X , p(x) is the
logical formula defined by the rules:

• ∀intro: If p(x) can be derived from the assumption that x is an arbitrary element of
X , then ∀x ∈ X , p(x) is true.

• ∀elim: If ∀x ∈ X , p(x) is true and a ∈ X , then p(a) is true.

For any family of types B : A → Type, the dependent function type
∏

x :A B(x) is
governed by the rules:

• Πintro: if in the context of a variable x : A there is a term bx : B(x)
there is a term λx .bx :

∏
x :A B(x)

• Πelim: given terms f :
∏

x :A B(x) and a : A there is a term f (a) : B(a)
plus computation rules that relate λ-abstractions and evaluations.

For a constant type family B : A → Type, the dependent function type recovers A → B



Existential quantification and dependent sums

For any predicate p : X → {⊥,>}, the existential quantification ∃x ∈ X , p(x) is the
logical formula defined by the rules:

• ∃intro: If a ∈ X and p(a) is true, then ∃x ∈ X , p(x) is true.
• ∃elim: If ∃x ∈ X , p(x) is true and q can be derived from the assumption that p(a)

is true for some a ∈ X , then q is true.

For any family of types B : A → Type, the dependent sum type
∑

x :A B(x) is governed
by the rules:

• Σintro: if there are terms a : A and b : B(a), there is a term (a, b) :
∑

x :A B(x)
• Σelim: given a term p :

∑
x :A B(x) there are terms π1p : A and π2p : B(π1p)

plus computation rules that relate pairings and projections.

For a constant type family B : A → Type, the dependent sum type recovers A × B.



3

Peano’s axioms, revisited



The natural numbers

Dedekind’s Categoricity Theorem. The natural numbers N are characterized by Peano’s
postulates:

• There is a natural number 0 ∈ N.
• Every natural number n ∈ N has a successor sucn ∈ N.
• 0 is not the successor of any natural number.
• No two natural numbers have the same successor.
• The principle of mathematical induction: for all predicates p : N → {⊥,>}

P(0) ⇒ (∀k ∈ N,P(k) ⇒ P(suck)) ⇒ (∀n ∈ N,P(n))



A proof by induction

Theorem. For any n ∈ N, n2 + n is even.

Proof: By induction on n ∈ N:
• In the base case, when n = 0, 02 + 0 = 2× 0, which is even.
• For the inductive step, assume for k ∈ N that k2 + k = 2× m is even. Then

(k + 1)2 + (k + 1) = (k2 + k) + ((2× k) + 2)

= (2× m) + (2× (k + 1))

= 2× (m + k + 1) is even.

By the principle of mathematical induction

∀P ,P(0) ⇒ (∀k ∈ N,P(k) ⇒ P(suck)) ⇒ (∀n ∈ N,P(n))

this proves that n2 + n is even for all n ∈ N.



A construction by induction
The inductive proof not only demonstrates for all n ∈ N that n2 + n is even but also
defines a function m : N → N so that n2 + n = 2× m(n).

Theorem. There is a function m : N → N so that n2 + n = 2× m(n) for all n ∈ N.

Construction: By induction on n ∈ N:
• In the base case, 02 + 0 = 2× 0, so we define m(0) := 0.
• For the inductive step, assume for k ∈ N that k2 + k = 2× m(k). Then

(k + 1)2 + (k + 1) = (k2 + k) + ((2× k) + 2)

= (2× m(k)) + (2× (k + 1))

= 2× (m(k) + k + 1)

so we define m(k + 1) := m(k) + k + 1.
By the principle of mathematical recursion, this defines a function m : N → N so that
n2 + n = 2× m(n) for all n ∈ N.



Induction and recursion
Recursion can be thought of as the constructive form of induction

∀P ,P(0) ⇒ (∀k ∈ N,P(k) ⇒ P(suck)) ⇒ (∀n ∈ N,P(n))

in which the predicate

P : N → {>,⊥} such as P(n) := ∃m ∈ N, n2 + n = 2× m

is replaced by an arbitrary family of sets

P : N → Set such as P(n) := {m ∈ N | n2 + n = 2× m}.

The output of a recursive construction is a dependent function p ∈
∏

n∈N P(n) which
specifies a value p(n) ∈ P(n) for each n ∈ N.

∀P , (p0 ∈ P(0)) → (ps ∈
∏

k∈N
P(k) → P(suck)) → (p ∈

∏
n∈N

P(n))

The recursive function p ∈
∏

n∈N P(n) satisfies computation rules:

p(0) := p0 p(sucn) := ps(n, p(n)).



The natural numbers in dependent type theory

The natural numbers type N is governed by the rules:
• Nintro: there is a term 0 : N and for any term n : N there is a term sucn : N

The elimination rule strengthens the principle of mathematical induction by replacing the
predicate P : N → {⊥,>} by an arbitrary family of types P : N → Type.

• Nelim: for any type family P : N → Type, to prove p :
∏

n:N P(n) it suffices to
prove p0 : P(0) and ps :

∏
k:N P(k) → P(suck). That is

Nind : P(0) →
(∏

k∈N
P(k) → P(suck)

)
→

(∏
n∈N

P(n)
)

Computation rules establish that p is defined recursively from p0 and ps .

Note the other two Peano postulates are missing because they are provable!



∞

=



Identity types
The following rules for identity types were developed by Martin-Löf:

Given a type A and terms x , y : A, the identity type x =A y is governed by the rules:
• =intro: given a type A and term x : A there is a term reflx : x =A x

The elimination rule for the identity type defines an induction principle analogous to
recursion over the natural numbers: it provides sufficient conditions for which to define a
dependent function out of the identity type family.

• =elim: for any type family P(x , y , p) over x , y : A and p : x =A y , to prove
P(x , y , p) for all x , y , p it suffices to assume y is x and p is reflx . That is

=ind :
(∏

x :A
P(x , x , reflx)

)
→

(∏
x ,y :A

∏
p:x=Ay

P(x , y , p)
)

A computation rule establishes that the proof of P(x , x , reflx) is the given one.



Symmetry and transitivity of identifications
=elim: For any type family P(x , y , p) over x , y : A and p : x =A y ,

=ind :
(∏

x :A
P(x , x , reflx)

)
→

(∏
x ,y :A

∏
p:x=Ay

P(x , y , p)
)

Theorem (symmetry). (−)−1 :
∏

x ,y :A x =A y → y =A x .

Construction: By Πintro it suffices to assume x , y : A and p : x =A y and then define a
term of type P(x , y , p) := y =A x . By =elim, we may reduce to the case
P(x , x , reflx) := x =A x , for which we have reflx : x =A x .

Theorem (transitivity). ∗ :
∏

x ,y ,z:A x =A y → (y =A z → x =A z).

Construction: By Πintro it suffices to assume x , y : A and p : x =A y and then define a
term of type Q(x , y , p) :=

∏
z:A y =A z → x =A z. By =elim, we may reduce to the

case Q(x , x , reflx) :=
∏

z:A x =A z → x =A z, for which we have
id := λq.q : x =A z → x =A z.



Functions preserve identifications

=elim: For any type family P(x , y , p) over x , y : A and p : x =A y ,
=ind :

(∏
x :A

P(x , x , reflx)
)
→

(∏
x ,y :A

∏
p:x=Ay

P(x , y , p)
)

In set theory, a function f : X → Y is well-defined: if x = x ′ then f (x) = f (x ′).

Theorem. For any f : A → B, a, a′ : A, and p : a =A a′, there is a term

apf p : f (a) =B f (a′).

Construction: Let f : A → B. By =elim applied to the family
P(x , y , p) := f (x) =B f (y), to define apf :

∏
a,a′:A(a =A a′) → (f (a) =B f (a′)) we

may reduce to the case
∏

a:A f (a) =B f (a), for which we have
λa.reflf (a) :

∏
a:A f (a) =B f (a).



Inductive constructions over the natural numbers
Nelim: For any type family P(n) over n : N,

Nind : P(0) →
(∏

k∈N
P(k) → P(suck)

)
→

(∏
n∈N

P(n)
)

Using the elimination rule for the natural numbers type, (dependent) functions out of N
may be defined inductively by specifying their values on 0 and suck for any k : N.

• 2× : N → N is defined by
{
2× 0 := 0

2× suck := suc(suc(2× k))

• +: N → N → N is defined by
{

m + 0 := m
m + suck := suc(m + k)

• dist2× :
∏

m:N
∏

n:N 2× m + 2× n =N 2× (m + n) is defined by{
dist2×(m, 0) := refl2×m

dist2×(m, suck) := apsuc◦suc(dist2×(m, n))



A constructive proof revisited
We proved for any n ∈ N, that n2 + n is even by induction and by recursively defining
m : N → N so that n2 + n = 2× m(n).

Theorem. For square+self : N → N given by


square+self(0) := 0

square+self(suck) :=
square+self(k) + 2× suck∏

n:N
∑

m:N square+self(n) =N 2× m.

Construction: By Nelim, it suffices to prove two cases:
• For 0 : N, we have (0, refl0) :

∑
m:N square+self(0) =N 2× m.

• For suck : N, from m(k) : N and p(k) : square+self(k) =N 2× m(k) we have:

ap+2×suckp(k) : square+self(k) + 2× suck =N 2× m(k) + 2× suck
dist2×(m(k), 2× suck) : 2× m(k) + 2× suck =N 2× (m(k) + suck)

Composing these identifications yields the desired term:

(m(k) + suck, ap+2×suckp(k) · dist2×(m(k), 2× suck)) :
∑

m:N
square+self(suck) =N 2× m



References

A reintroduction to proofs using introduction and elimination rules:
• Clive Newstead, An Infinite Descent into Pure Mathematics

https://infinitedescent.xyz/

On dependent type theory and identity types (plus much more):
• Egbert Rijke, Introduction to Homotopy Type Theory,

arXiv:2212.11082 and forthcoming from Cambridge University Press

To explore computer formalization:
• Kevin Buzzard and Mohammad Pedramfar, The natural numbers game,

www.ma.imperial.ac.uk/∼buzzard/xena/natural_number_game/

Thank you!

https://infinitedescent.xyz/
https://www.ma.imperial.ac.uk/~buzzard/xena/natural_number_game/

	Logic, constructively
	: :: : 
	Peano's axioms, revisited

