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CHAPTER 1

∞-Cosmoi

1.1. Overview

Following [RV22], from which this document was excerpted, we aim to develop the basic
theory of ∞-categories in a model independent fashion using a common axiomatic framework that
is satisfied by a variety of models. In contrast with prior “analytic” treatments of the theory of ∞-
categories — in which the central categorical notions are defined in reference to the coordinates of a
particular model — our approach is “synthetic,” proceeding from definitions that can be interpreted
simultaneously in many models to which our proofs then apply.

To achieve this, our strategy is not to axiomatize what infinite-dimensional categories are,
but rather to axiomatize the categorical “universe” in which they live. This motivates the notion
of an ∞-cosmos, which axiomatizes the universe in which ∞-categories live as objects.1 So that
theorem statement about ∞-cosmoi suggest their natural interpretation, we recast ∞-category as a
technical term, to mean an object in some (typically fixed) ∞-cosmos. Several common models of
(∞, 1)-categories2 are ∞-categories in this sense, but our ∞-categories also include certain models
of (∞, 𝑛)-categories3 as well as fibered versions of all of the above. Thus each of these objects are
∞-categories in our sense and our theorems apply to all of them.4 This usage of the term “∞-
categories” is meant to interpolate between the classical one, which refers to any variety of weak
infinite-dimensional categories, and the common one, which is often taken to mean quasi-categories
or complete Segal spaces.

Much of the development of the theory of ∞-categories takes place not in the full ∞-cosmos
but in a quotient that we call the homotopy 2-category, the name chosen because an ∞-cosmos
is something like a category of fibrant objects in an enriched model category and the homotopy
2-category is then a categorification of its homotopy category. The homotopy 2-category is a strict
2-category — like the 2-category of categories, functors, and natural transformations5 — and in this
way the foundational proofs in the theory of ∞-categories closely resemble the classical foundations
of ordinary category theory except that the universal properties they characterize, e.g., when a

1Metaphorical allusions aside, our ∞-cosmoi resemble the fibrational cosmoi of Street [Str74].
2Quasi-categories, complete Segal spaces, Segal categories, and 1-complicial sets (naturally marked quasi-

categories) all define the ∞-categories in an ∞-cosmos.
3𝑛-quasi-categories, Θ𝑛-spaces, iterated complete Segal spaces, and 𝑛-complicial sets also define the ∞-

categories in an ∞-cosmos, as do saturated (née weak) complicial sets, a model for (∞, ∞)-categories.
4There is a sense, however, in which many of our definitions are optimized for those ∞-cosmoi whose objects

are (∞, 1)-categories. A good illustration is provided by the notion of discrete ∞-category. In the ∞-cosmoi of
(∞, 1)-categories, the discrete ∞-categories are the ∞-groupoids, but this is not true for the ∞-cosmoi of (∞, 𝑛)-
categories.

5In fact this is another special case: there is an ∞-cosmos whose objects are ordinary categories and its homotopy
2-category is the usual category of categories, functors, and natural transformations. This 2-category is as old as
category theory itself, introduced in Eilenberg and Mac Lane’s foundational paper [EML45].
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6 1. ∞-COSMOI

functor between ∞-categories defines a cartesian fibration, are slightly weaker than in the familiar
case of strict 1-categories.

There are many alternate choices we could have made in selecting the axioms of an ∞-cosmos.
One of our guiding principles, admittedly somewhat contrary to the setting of homotopical higher
category theory, was to allow us to work as strictly as possible, with the aim of shortening and sim-
plifying proofs. As a consequence of these choices, the ∞-categories in an ∞-cosmos and the functors
and natural transformations between them assemble into a 2-category rather than a bicategory. To
help us achieve this counterintuitive strictness, each ∞-cosmos comes with a specified class of maps
between ∞-categories called isofibrations. The isofibrations have no homotopy-theoretic meaning,
as any functor between ∞-categories is equivalent to an isofibration with the same codomain. How-
ever, isofibrations permit us to consider strictly commutative diagrams between ∞-categories and
allow us to require that the limits of such diagrams satisfy a universal property up to simplicially
enriched isomorphism. Neither feature is essential for the development of ∞-category theory. Sim-
ilar proofs carry through to a weaker setting, at the cost of more time spent considering coherence
of higher cells.

An ∞-cosmos is a particular sort of simplicially enriched category with certain simplicially
enriched limits. In §1.2, we first review some prerequisites from the theory of simplicial sets, most
of which are either currently in Mathlib or on their way. While the notion of simplicially enriched
category currently exists in Mathlib, simplicially enriched limits do not, so in §1.3 we first introduce
the prerequisite notions of simplicially enriched limits that will be required to state the definition
of an ∞-cosmos in §1.4. The homotopy 2-category of an ∞-cosmos is then obtained by applying
the general theory of change-of-base from enriched category, which is also currently missing from
Mathlib. This theory is described in §1.5 and then used to define the homotopy 2-category in §1.6.

Additional chapters will be added to this blueprint in the future, containing excerpts of the
material that can be found in [RV22, Chapters 2-5]. The broader aim of this project is to formalize
the core basic theory of ∞-categories, covering those aspects that can be defined in the homotopy
2-category of an ∞-cosmos.

The authors of this blueprint are particularly indebted to:
• Mario Carneiro, who contributed greatly to the original Lean formalization of ∞-cosmoi

and prerequisite results about the homotopy category functor;
• Johan Commelin, who suggested restructuring this as a blueprint project; and
• Pietro Monticone, who created a template for blueprint-driven formalization projects in

Lean, from which this repository was forked.
Special thanks are also due to the Hausdorff Research Institute for Mathematics and the organizers
of the Trimester Program “Prospects of Formal Mathematics,” where the genesis of this project
took place.

1.2. Simplicial sets

Before introducing an axiomatic framework that allows us to develop ∞-category theory in
general, we first consider one model in particular: quasi-categories, which were introduced in 1973 by
Boardman and Vogt [BV73] in their study of homotopy coherent diagrams. Ordinary 1-categories
give examples of quasi-categories via the construction of Definition 1.2.15. Joyal first undertook
the task of extending 1-category theory to quasi-category theory in [Joy02] and [Joy08] and in
several unpublished draft book manuscripts. The majority of the results in this section are due to
him.
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Definition 1.2.1 (the simplex category). Let 𝚫 denote the simplex category of finite
nonempty ordinals [𝑛] = {0 < 1 < ⋯ < 𝑛} and order-preserving maps.

The maps in the simplex category include in particular:

Definition 1.2.2 (elementary face maps). The elementary face operators are the maps

[𝑛 − 1] [𝑛] 0 ≤ 𝑖 ≤ 𝑛𝛿𝑖

whose images omit the element 𝑖 ∈ [𝑛].
Definition 1.2.3 (elementary degeneracy maps). The elementary degeneracy operators

are the maps

[𝑛 + 1] [𝑛] 0 ≤ 𝑖 ≤ 𝑛𝜎𝑖

whose images double up on the element 𝑖 ∈ [𝑛].
The following decomposition result is yet to be proven, though there are related results on the

image factorization in the simplex category:

Proposition 1.2.4. Every morphism in 𝚫 factors uniquely as an epimorphism followed by
a monomorphism; these epimorphisms, the degeneracy operators, decompose as composites of
elementary degeneracy operators, while the monomorphisms, the face operators, decompose as
composites of elementary face operators.

Proof. The image factorizations have been formalized but the canonical decompositions into
elementary face and degeneracy operators remain to be done. □

Definition 1.2.5 (simplicial set). A simplicial set is a presheaf on the simplex category.

Definition 1.2.6 (the category of simplicial sets). The category of simplicial sets is the
category 𝑠𝒮𝑒𝑡 ≔ 𝒮𝑒𝑡𝚫op

of presheaves on the simplex category.

Standard examples of simplicial sets include:

Definition 1.2.7 (standard simplex). We write Δ[𝑛] for the standard 𝑛-simplex the simpli-
cial set represented by [𝑛] ∈ 𝚫.

Definition 1.2.8 (simplex boundary). We write 𝜕Δ[𝑛] ⊂ Δ[𝑛] for the boundary sphere of
the 𝑛-simplex. The sphere 𝜕Δ[𝑛] is the simplicial subset generated by the codimension-one faces
of the 𝑛-simplex.

Definition 1.2.9 (simplicial horn). We write Λ𝑘[𝑛] ⊂ Δ[𝑛] for the 𝑘-horn in the 𝑛-simplex.
The horn Λ𝑘[𝑛] is the further simplicial subset of 𝜕Δ[𝑛] that omits the face opposite the vertex 𝑘,
but it is defined as a subset of Δ[𝑛].

Given a simplicial set 𝑋, it is conventional to write 𝑋𝑛 for the set of 𝑛-simplices, defined
by evaluating at [𝑛] ∈ 𝚫. This is implemented as a scoped notation “_[n]” accessible with “open
Simplicial” or “open scoped Simplicial.”

By the Yoneda lemma:

Lemma 1.2.10. Each 𝑛-simplex 𝑥 ∈ 𝑋𝑛 corresponds to a map of simplicial sets 𝑥∶ Δ[𝑛] → 𝑋.
Accordingly, we write 𝑥 ⋅ 𝛿𝑖 for the 𝑖th face of the 𝑛-simplex, an (𝑛 − 1)-simplex classified by the
composite map
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Λ𝑘[𝑛] 𝐴

Δ[𝑛]

for n �2, 0 < k < n.

Δ[𝑛 − 1] Δ[𝑛] 𝑋.𝛿𝑖 𝑥

Proof. This is a special case of the Yoneda lemma. □

The right action of the face operator defines a map 𝑋𝑛
⋅𝛿𝑖
−→ 𝑋𝑛−1. Geometrically, 𝑥 ⋅ 𝛿𝑖 is the

“face opposite the vertex 𝑖” in the 𝑛-simplex 𝑥.
The category of simplicial sets, as a presheaf category, is very well-behaved:

Corollary 1.2.11. The category of simplicial sets is complete.

Proof. Presheaf categories are complete. □
Corollary 1.2.12. The category of simplicial sets is cocomplete.

Proof. Presheaf categories are cocomplete. □
Instances of these facts currently appear in Mathlib, which likely also knows that the category

of simplicial sets is cartesian closed.
The definition of a quasi-category can be found in Mathlib as well.

Definition 1.2.13 (quasi-category). A quasi-category is a simplicial set 𝐴 in which any
inner horn can be extended to a simplex, solving the displayed lifting problem:

Quasi-categories were first introduced by Boardman and Vogt [BV73] under the name “weak
Kan complexes,” as they generalize the following notion:

Definition 1.2.14 (Kan complex). A Kan complex is a simplicial set admitting extensions
as in (1.2.13) along all horn inclusions 𝑛 ≥ 1, 0 ≤ 𝑘 ≤ 𝑛.

Since any topological space can be encoded as a Kan complex,6 in this way spaces provide
examples of quasi-categories.

Categories also provide examples of quasi-categories via the nerve construction.

Definition 1.2.15 (nerve). The category 𝒞𝑎𝑡 of 1-categories embeds fully faithfully into the
category of simplicial sets via the nerve functor. An 𝑛-simplex in the nerve of a 1-category 𝐶 is
a sequence of 𝑛 composable arrows in 𝐶, or equally a functor 𝕟+𝟙 → 𝐶 from the ordinal category
𝕟+𝟙 with objects 0, … , 𝑛 and a unique arrow 𝑖 → 𝑗 just when 𝑖 ≤ 𝑗.

Definition 1.2.16 (nerve functor). The map [𝑛] ↦ 𝕟+𝟙 defines a fully faithful embedding
𝚫 ↪ 𝒞𝑎𝑡. From this point of view, the nerve functor can be described as a “restricted Yoneda
embedding” which carries a category 𝐶 to the restriction of the representable functor hom(−, 𝐶)
to the image of this inclusion.

6The total singular complex construction defines a functor from topological spaces to simplicial sets that is
an equivalence on their respective homotopy categories — weak homotopy types of spaces correspond to homotopy
equivalence classes of Kan complexes [Qui67, §II.2]. The left adjoint “geometrically realizes” a simplicial set as a
topological space.
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This is an instance of a more general family of “nerve-type constructions.”
Proposition 1.2.17. The nerve of a category 𝐶 is 2-coskeletal as a simplicial set, meaning

that every sphere 𝜕Δ[𝑛] → 𝐶 with 𝑛 ≥ 3 is filled uniquely by an 𝑛-simplex in 𝐶, or equivalently
that the nerve is canonically isomorphic to the right Kan extension of its restriction to 2-truncated
simplicial sets.7Note a sphere 𝜕Δ[2] → 𝐶 extends to a 2-simplex if and only if that arrow along its
diagonal edge is the composite of the arrows along the edges in the inner horn Λ1[2] ⊂ 𝜕Δ[2] → 𝐶.
The simplices in dimension 3 and above witness the associativity of the composition of the path
of composable arrows found along their spine, the 1-skeletal simplicial subset formed by the edges
connecting adjacent vertices. In fact, as suggested by the proof of Proposition 1.2.18, any simplicial
set in which inner horns admit unique fillers is isomorphic to the nerve of a 1-category.

In the book that is the primary source this text [RV22], as in much of the ∞-categories
literature, we decline to introduce explicit notation for the nerve functor, preferring instead to
identify 1-categories with their nerves. As we shall discover the theory of 1-categories extends to
∞-categories modeled as quasi-categories in such a way that the restriction of each ∞-categorical
concept along the nerve embedding recovers the corresponding 1-categorical concept. For instance,
the standard simplex Δ[𝑛] is isomorphic to the nerve of the ordinal category 𝕟+𝟙, and we frequently
adopt the latter notation — writing 𝟙 ≔ Δ[0], 𝟚 ≔ Δ[1], 𝟛 ≔ Δ[2], and so on — to suggest the
correct categorical intuition. However, Mathlib notates nerves explicitly, so at some point this
document should be adapted to follow that convention.

To begin down this path, we must first verify the implicit assertion that has just been made. A
proof of the following result, due to Johan Commelin, will appear in Mathlib soon (see Wombat.lean
for now).

Proposition 1.2.18 (nerves are quasi-categories). Nerves of categories are quasi-categories.
This is not the proof that was formalized but we include it for fun:

Proof. Via the isomorphism 𝐶 ≅ cosk2𝐶 from Proposition 1.2.17 and the associated adjunc-
tion sk2 ⊣ cosk2 of, the required lifting problem displayed below-left transposes to the one displayed
below-right:

Λ𝑘[𝑛] 𝐶 ≅ cosk2𝐶 sk2Λ𝑘[𝑛] 𝐶

Δ[𝑛] sk2Δ[𝑛]
↭

The functor sk2 replaces a simplicial set by its 2-skeleton, the simplicial subset generated by the
simplices of dimension at most two. For 𝑛 ≥ 4, the inclusion sk2Λ𝑘[𝑛] ↪ sk2Δ[𝑛] is an isomorphism,
in which case the lifting problems on the right admit (unique) solutions. So it remains only to solve
the lifting problems on the left in the cases 𝑛 = 2 and 𝑛 = 3.

To that end consider

Λ1[2] 𝐶 Λ1[3] 𝐶 Λ2[3] 𝐶

Δ[2] Δ[3] Δ[3]

7The equivalence between these two perspectives is non-obvious and makes use of Reedy category theory (see
[RV22, §C.4-5]), which does not currently exist in Mathlib.
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An inner horn Λ1[2] → 𝐶 defines a composable pair of arrows in 𝐶; an extension to a 2-simplex
exists precisely because any composable pair of arrows admits a (unique) composite.

An inner horn Λ1[3] → 𝐶 specifies the data of three composable arrows in 𝐶, as displayed in
the following diagram, together with the composites 𝑔𝑓 , ℎ𝑔, and (ℎ𝑔)𝑓 .

𝑐1

𝑐0 𝑐3

𝑐2

ℎ𝑔𝑓

𝑔𝑓

(ℎ𝑔)𝑓

ℎ
𝑔

Because composition is associative, the arrow (ℎ𝑔)𝑓 is also the composite of 𝑔𝑓 followed by ℎ, which
proves that the 2-simplex opposite the vertex 𝑐1 is present in 𝐶; by 2-coskeletality, the 3-simplex
filling this boundary sphere is also present in 𝐶. The filler for a horn Λ2[3] → 𝐶 is constructed
similarly. □

We now turn to the homotopy category functor. The following definitions and results are not
currently in Mathlib.

Definition 1.2.19 (homotopy relation on 1-simplices). A parallel pair of 1-simplices 𝑓, 𝑔 in
a simplicial set 𝑋 are homotopic if there exists a 2-simplex whose boundary takes either of the
following forms8

𝑦 𝑥

𝑥 𝑦 𝑥 𝑦
𝑓𝑓

𝑔 𝑔
or if 𝑓 and 𝑔 are in the same equivalence class generated by this relation.

In a quasi-category, the relation witnessed by either of the types of 2-simplex on display in
Definition 1.2.19 is an equivalence relation and these equivalence relations coincide.

Lemma 1.2.20 (homotopic 1-simplices in a quasi-category). Parallel 1-simplices 𝑓 and 𝑔 in a
quasi-category are homotopic if and only if there exists a 2-simplex of any or equivalently all of the
forms displayed in Definition 1.2.19.

Proof. A lengthy exercise in low-dimensional horn filling. □
Definition 1.2.21. By 1-truncating, any simplicial set 𝑋 has an underlying reflexive quiver

or reflexive directed graph with the 0-simplices of 𝑋 defining the objects and the 1-simplices
defining the arrows:

𝑋1 𝑋0,
⋅𝛿1

⋅𝛿0

⋅𝜎0

By convention, the source of an arrow 𝑓 ∈ 𝑋1 is its 0th face 𝑓 ⋅ 𝛿1 (the face opposite 1) while the
target is its 1st face 𝑓 ⋅ 𝛿0 (the face opposite 0).

Proposition 1.2.22. The functor that carries a category to its underlying reflexive quiver has
a left adjoint, defining the free category on a reflexive quiver:

8The symbol “=” is used in diagrams to denote a degenerate simplex or an identity arrow.
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𝒞𝑎𝑡 𝑟𝒬𝑢𝑖𝑣
𝑈
⊥
𝐹

Proof. This has been formalized and is currently in the CatHasColimits branch of Mathlib.
□

Definition 1.2.23 (the homotopy category [GZ67, §2.4]). The free category on this reflexive
directed graph has 𝑋0 as its object set, degenerate 1-simplices serving as identity morphisms,
and nonidentity morphisms defined to be finite directed paths of nondegenerate 1-simplices. The
homotopy category h𝑋 of 𝑋 is the quotient of the free category on its underlying reflexive
directed graph by the congruence9 generated by imposing a composition relation ℎ = 𝑔∘𝑓 witnessed
by 2-simplices

𝑥1

𝑥0 𝑥2

𝑔𝑓

ℎ

By soundness of the quotient construction:
Lemma 1.2.24. Homotopic 1-simplices in a simplicial set represent the same arrow in the

homotopy category.
Proof. This should be relatively straightforward. □
Proposition 1.2.25. The homotopy category of the nerve of a 1-category is isomorphic to the

original category, as the 2-simplices in the nerve witness all of the composition relations satisfied
by the arrows in the underlying reflexive directed graph.

Proof. This has been formalized and is currently in the CatHasColimits branch of Mathlib.
□

Indeed, the natural isomorphism h𝐶 ≅ 𝐶 forms the counit of an adjunction, embedding 𝒞𝑎𝑡 as
a reflective subcategory of 𝑠𝒮𝑒𝑡.

Proposition 1.2.26. The nerve embedding admits a left adjoint, namely the functor which
sends a simplicial set to its homotopy category:

𝒞𝑎𝑡 𝑠𝒮𝑒𝑡⊥
h

The adjunction of Proposition 1.2.26 exists for formal reasons, via results which have already
been formalized in Mathlib, once the category 𝒞𝑎𝑡 is known to be cocomplete. A proof of this fact
did not exist in Mathlib, however, and in fact the adjunction between the homotopy category and
the nerve can be used to construct colimits of categories, as it embeds 𝒞𝑎𝑡 as a reflective subcategory
of a cocomplete category (see [Rie16, 4.5.16]). Thus, we instead formalized a direct proof.

Proof. This has been formalized and is currently in the CatHasColimits branch of Mathlib.
For any simplicial set 𝑋, there is a natural map from 𝑋 to the nerve of its homotopy category

h𝑋; since nerves are 2-coskeletal, it suffices to define the map sk2𝑋 → h𝑋, and this is given
immediately by the construction of Definition 1.2.23. Note that the quotient map 𝑋 → h𝑋 becomes

9A binary relation ∼ on parallel arrows of a 1-category is a congruence if it is an equivalence relation that is
closed under pre- and post-composition: if 𝑓 ∼ 𝑔 then ℎ𝑓𝑘 ∼ ℎ𝑔𝑘.

https://github.com/leanprover-community/mathlib4/tree/CatHasColimits
https://github.com/leanprover-community/mathlib4/tree/CatHasColimits
https://github.com/leanprover-community/mathlib4/tree/CatHasColimits
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an isomorphism upon applying the homotopy category functor and is already an isomorphism
whenever 𝑋 is the nerve of a category. Thus the adjointness follows by direct verification of the
triangle equalities.

□

By inspection:

Proposition 1.2.27. The nerve functor is fully faithful.

Proof. This has been formalized and is currently in the CatHasColimits branch of Mathlib.
□

As a corollary, it follows that 𝒞𝑎𝑡 has colimits.
The homotopy category of a quasi-category admits a simplified description.

Lemma 1.2.28 (the homotopy category of a quasi-category). If 𝐴 is a quasi-category then its
homotopy category h𝐴 has

• the set of 0-simplices 𝐴0 as its objects
• the set of homotopy classes of 1-simplices 𝐴1 as its arrows
• the identity arrow at 𝑎 ∈ 𝐴0 represented by the degenerate 1-simplex 𝑎 ⋅ 𝜎0 ∈ 𝐴1
• a composition relation ℎ = 𝑔∘𝑓 in h𝐴 between the homotopy classes of arrows represented

by any given 1-simplices 𝑓, 𝑔, ℎ ∈ 𝐴1 if and only if there exists a 2-simplex with boundary
𝑎1

𝑎0 𝑎2

𝑔𝑓

ℎ

Proof. Another lengthy exercise in low-dimensional horn filling. □

Later we will require either of the following results:

Lemma 1.2.29.
(i) The functor h ∶ 𝑠𝒮𝑒𝑡 → 𝒞𝑎𝑡 preserves finite products.
(ii) The functor h ∶ 𝒬𝒞𝑎𝑡 → 𝒞𝑎𝑡 preserves small products.

Proof. For the first statement, preservation of the terminal object is by direct calculation. By
Proposition 1.2.25, preservation of binary products is equivalent to the statement that the canonical
map 𝑁(𝒟𝒞) → 𝑁(𝒟)𝑁𝒞 involving nerves of categories is an isomorphism. On 𝑛-simplices, this is
defined by uncurrying, which is bijection since 𝒞𝑎𝑡 is cartesian closed.

For the second statement, we have a canonical comparison functor from the homotopy category
of the products to the product of the homotopy categories. It follows from Lemma 1.2.28 that this
is an isomorphism on underlying quivers, which suffices. □

Definition 1.2.30 (isomorphism in a quasi-category). A 1-simplex in a quasi-category is an
isomorphism10 just when it represents an isomorphism in the homotopy category. By Lemma
1.2.28 this means that 𝑓 ∶ 𝑎 → 𝑏 is an isomorphism if and only if there exists a 1-simplex 𝑓−1 ∶ 𝑏 → 𝑎
together with a pair of 2-simplices

10Joyal refers to these maps as “isomorphisms” while Lurie refers to them as “equivalences.” We prefer, wherever
possible, to use the same term for ∞-categorical concepts as for the analogous 1-categorical ones.

https://github.com/leanprover-community/mathlib4/tree/CatHasColimits
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𝑏 𝑎

𝑎 𝑎 𝑏 𝑏
𝑓−1 𝑓𝑓 𝑓−1

The properties of the isomorphisms in a quasi-category are somewhat technical to prove and
will likely be a pain to formalize (see [RV22, §D]). Here we focus on a few essential results, which
are more easily obtainable.

Definition 1.2.31. The homotopy coherent isomorphism 𝕀, is the nerve of the free-living
isomorphism.

Just as the arrows in a quasi-category 𝐴 are represented by simplicial maps 𝟚 → 𝐴 whose domain
is the nerve of the free-living arrow, the isomorphisms in a quasi-category can be represented by
diagrams 𝕀 → 𝐴 whose domain is the homotopy coherent isomorphism:

Proposition 1.2.32. An arrow 𝑓 in a quasi-category 𝐴 is an isomorphism if and only if it
extends to a homotopy coherent isomorphism

𝟚 𝐴

𝕀

𝑓

Remark 1.2.33. If this result proves too annoying to formalize without the general theory of
“special-outer horn filling,” we might instead substitute a finite model of the homotopy coherent
isomorphism for 𝕀.

Quasi-categories define the fibrant objects in a model structure due to Joyal. We use the term
isofibration to refer to the fibrations between fibrant objects in this model structure, which admit
the following concrete description.

Definition 1.2.34 (isofibration). A simplicial map 𝑓 ∶ 𝐴 → 𝐵 between quasi-categories is an
isofibration if it lifts against the inner horn inclusions, as displayed below-left, and also against
the inclusion of either vertex into the free-living isomorphism 𝕀.

Λ𝑘[𝑛] 𝐴 𝟙 𝐴

Δ[𝑛] 𝐵 𝕀 𝐵
𝑓 𝑓

To notationally distinguish the isofibrations, we depict them as arrows “↠” with two heads.
We now introduce the weak equivalences and trivial fibrations between fibrant objects in the

Joyal model structure.
Definition 1.2.35 (equivalences of quasi-categories). A map 𝑓 ∶ 𝐴 → 𝐵 between quasi-categories

is an equivalence if it extends to the data of a “homotopy equivalence” with the free-living iso-
morphism 𝕀 serving as the interval: that is, if there exist maps 𝑔 ∶ 𝐵 → 𝐴,

𝐴 𝐵

𝐴 𝐴𝕀 and 𝐵 𝐵𝕀

𝐴 𝐵
𝑔𝑓

𝛼

ev0

ev1

𝛽

𝑓𝑔 ev0

ev1
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We write “ ∼−→” to decorate equivalences and 𝐴 ≃ 𝐵 to indicate the presence of an equivalence
𝐴 ∼−→ 𝐵.

Lemma 1.2.36. If 𝑓 ∶ 𝐴 → 𝐵 is an equivalence of quasi-categories, then the functor h𝑓 ∶ h𝐴 →
h𝐵 is an equivalence of categories, where the data displayed above defines an equivalence inverse
h𝑔 ∶ h𝐵 → h𝐴 and natural isomorphisms encoded by the composite11 functors

h𝐴 h(𝐴𝕀) (h𝐴)𝕀 h𝐵 h(𝐵𝕀) (h𝐵)𝕀h𝛼 h𝛽

Definition 1.2.37. A map 𝑓 ∶ 𝑋 → 𝑌 between simplicial sets is a trivial fibration if it admits
lifts against the boundary inclusions for all simplices

𝜕Δ[𝑛] 𝑋

Δ[𝑛] 𝑌
∼ 𝑓 for n �0

We write “ ∼−→→ ” to decorate trivial fibrations.12

The notation “ ∼−→→ ” is suggestive: the trivial fibrations between quasi-categories are exactly
those maps that are both isofibrations and equivalences. This can be proven by a relatively standard
although rather technical argument in simplicial homotopy theory [RV22, D.5.6].

1.3. Enriched limits

A simplicially enriched category—commonly called a “simplicial category” for short—is a cate-
gory that is enriched over the cartesian monoidal category of simplicial sets. We recall the definition,
which already exists in Mathlib.

Definition 1.3.1 (simplicial categories as enriched categories).
The data of a simplicial category is a simplicially enriched category with a set of objects

and a simplicial set 𝒜(𝑥, 𝑦) of morphisms between each ordered pair of objects. Each endo-hom
space contains a distinguished 0-simplex id𝑥 ∈ 𝒜(𝑥, 𝑦)0, and composition is required to define a
simplicial map

𝒜(𝑦, 𝑧) × 𝒜(𝑥, 𝑦) 𝒜(𝑥, 𝑧)∘

The composition is required to be associative and unital, in a sense expressed by the commutative
diagrams of simplicial sets

𝒜(𝑦, 𝑧) × 𝒜(𝑥, 𝑦) × 𝒜(𝑤, 𝑥) 𝒜(𝑥, 𝑧) × 𝒜(𝑤, 𝑥)

𝒜(𝑦, 𝑧) × 𝒜(𝑤, 𝑦) 𝒜(𝑤, 𝑧)
id×∘

∘×id

∘

∘

𝒜(𝑥, 𝑦) 𝒜(𝑦, 𝑦) × 𝒜(𝑥, 𝑦)

𝒜(𝑥, 𝑦) × 𝒜(𝑥, 𝑥) 𝒜(𝑥, 𝑦)

id𝑦×id

idid×id𝑥 ∘

∘

Definition 1.3.2. For each 𝑛 ≥ 0, an 𝑛-simplex in 𝒜(𝑥, 𝑦) is referred to as an 𝑛-arrow from
𝑥 to 𝑦.

11Note that h(𝐴𝕀) ≇ (h𝐴)𝕀 in general. Objects in the latter are homotopy classes of isomorphisms in 𝐴, while
objects in the former are homotopy coherent isomorphisms, given by a specified 1-simplex in 𝐴, a specified inverse
1-simplex, together with an infinite tower of coherence data indexed by the nondegenerate simplices in 𝕀.

12Please help us find an html friendly version of this symbol.
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Lemma 1.3.3. For any simplicial category 𝒜 and 𝑛 ≥ 0, the 𝑛-arrows assemble into the arrows
of an ordinary category 𝒜𝑛 with the same set of objects as 𝒜.

Proof. The category of 𝑛-arrows is easy to construct directly. Alternatively, this result can
be proven by applying the theory of change-of-base of §1.5 to the functor ev𝑛 ∶ 𝑠𝒮𝑒𝑡 → 𝒮𝑒𝑡. □

In particular:

Definition 1.3.4. The category 𝒜0 of 0-arrows is the underlying category of the simplicial
category 𝒜, which forgets the higher dimensional simplicial structure.

There is alternate presentation of the data of a simplicial category as a simplicial object in the
category of categories and identity-on-objects functors.13

Digression 1.3.5 (simplicial categories as simplicial objects). A simplicial category 𝒜 is
equivalently given by categories 𝒜𝑛, with a common set of objects and whose arrows are called
𝑛-arrows, that assemble into a diagram 𝚫op → 𝒞𝑎𝑡 of identity-on-objects functors

⋯ 𝒜3 𝒜2 𝒜1 𝒜0

⋅𝛿0

⋅𝛿1

⋅𝛿2

⋅𝛿3

⋅𝜎1

⋅𝜎0

⋅𝜎2

⋅𝛿1

⋅𝛿2

⋅𝛿0
⋅𝜎0

⋅𝜎1 ⋅𝛿1

⋅𝛿0
⋅𝜎0 ≕ 𝒜

By contrast, the notion of simplicially enriched limit remains to be formalized. Fortunately, we
do not (immediately) require the general notion of weighted limits, as the notion of an ∞-cosmos
only requires two special cases: cotensors and conical limits.

Definition 1.3.6 (simplicial cotensors). Let 𝒜 be a simplicial category. The cotensor of an
object 𝐴 ∈ 𝒜 by a simplicial set 𝑈 is given by the data of an object 𝐴𝑈 ∈ 𝒜 together with a cone
𝑈 → 𝒜(𝐴𝑈 , 𝐴) so that the induced map defines an isomorphism of simplicial sets:
(1.3.7) 𝒜(𝑋, 𝐴𝑈) ≅ 𝒜(𝑋, 𝐴)𝑈

Note by construction the isomorphism (1.3.7) is automatically simplicially natural in 𝑋. This
simplicial naturality is an important aspect of the enriched universal property.

Definition 1.3.8 (simplicial cotensors). A simplicial category 𝒜 has cotensors when all
cotensors exist.

Lemma 1.3.9. When a simplicial category has cotensors, cotensors are associative: given 𝐴 ∈ 𝒜
and simplicial sets 𝑈 and 𝑉 there are canonical isomorphisms

(𝐴𝑈)𝑉 ≅ 𝐴𝑈×𝑉 ≅ (𝐴𝑉 )𝑈 .
Proof. By the enriched Yoneda lemma, these objects represent the same simplicial functors

𝒜op → 𝑠𝒮𝑒𝑡. □
Lemma 1.3.10. Assuming such objects exist, the simplicial cotensor defines a bifunctor

𝑠𝒮𝑒𝑡op × 𝒜 𝒜

(𝑈, 𝐴) 𝐴𝑈

13The phrase “simplicial object in 𝒞𝑎𝑡” is reserved for the more general yet less common notion of a diagram
𝚫op → 𝒞𝑎𝑡 that is not necessarily comprised of identity-on-objects functors.
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in a unique way making the isomorphism (1.3.7) natural in 𝑈 and 𝐴 as well.

Proof. Functoriality in each variable follows from the universal property. □

The other simplicial limit notions postulated by axiom 1.4.1i are conical, which is the term
used for ordinary 1-categorical limit shapes that satisfy an enriched analog of the usual universal
property. Such limits also define limits in the underlying category, but the usual universal property
is strengthened.

Definition 1.3.11 (simplicial conical limits). Consider a limit cone (lim𝑗∈𝐽 𝐴𝑗 → 𝐴𝑗)𝑗∈𝐽 in
the underlying category 𝒜0 of a simplicially-enriched category 𝒜. By applying the covariant rep-
resentable functor 𝒜(𝑋, −)∶ 𝒜0 → 𝑠𝒮𝑒𝑡 to a limit cone (lim𝑗∈𝐽 𝐴𝑗 → 𝐴𝑗)𝑗∈𝐽 in 𝒜0, we obtain a
natural comparison map

(1.3.12) 𝒜(𝑋, lim
𝑗∈𝐽

𝐴𝑗) → lim
𝑗∈𝐽

𝒜(𝑋, 𝐴𝑗).

We say that lim𝑗∈𝐽 𝐴𝑗 defines a simplicially enriched limit if and only if (1.3.12) is an isomor-
phism of simplicial sets for all 𝑋 ∈ 𝒜.

Remark 1.3.13. The notion of cotensors and conical limits could be introduced for categories
enriched over arbitrary cartesian monoidal categories or more generally for categories enriched over
symmetric monoidal categories. This might be worth doing as a service to the broader Mathlib.

1.4. ∞-Cosmoi

There are a variety of models of infinite-dimensional categories for which the category of “∞-
categories,” as we call them, and “∞-functors” between them is enriched over quasi-categories and
admits classes of isofibrations, equivalences, and trivial fibrations satisfying certain properties that
are familiar from abstract homotopy theory.14 In particular, the use of isofibrations in diagrams
guarantees that their strict limits are equivalence invariant, so we can take advantage of up-to-
isomorphism universal properties and strict functoriality of these constructions while still working
“homotopically.” This motivates the following axiomatization:

Definition 1.4.1 (∞-cosmos). An ∞-cosmos 𝒦 is a category that is enriched over quasi-
categories,15 meaning in particular that

• its morphisms 𝑓 ∶ 𝐴 → 𝐵 define the vertices of a quasi-category denoted Fun(𝐴, 𝐵) and
referred to as a functor space,

that is also equipped with a specified collection of maps that we call isofibrations and denote by
“↠” satisfying the following two axioms:

(i) (completeness) The quasi-categorically enriched category 𝒦 possesses a terminal object,
small products, pullbacks of isofibrations, limits of countable towers of isofibrations, and
cotensors with simplicial sets, each of these limit notions satisfying a universal property
that is enriched over simplicial sets.16

14More specifically, these classes form a category of fibrant objects à la Brown [Bro73].
15This is to say 𝒦 is a simplicially enriched category (see Definition 1.3.1) whose hom spaces are all quasi-

categories.
16This is to say, these are simplicially enriched limit notions, in the sense described in Definitions 1.3.6 and

1.3.11.
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(ii) (isofibrations) The isofibrations contain all isomorphisms and any map whose codomain
is the terminal object; are closed under composition, product, pullback, forming inverse
limits of towers, and Leibniz cotensors with monomorphisms of simplicial sets; and have
the property that if 𝑓 ∶ 𝐴 ↠ 𝐵 is an isofibration and 𝑋 is any object then Fun(𝑋, 𝐴) ↠
Fun(𝑋, 𝐵) is an isofibration of quasi-categories.

For ease of reference, we refer to the simplicially enriched limits of diagrams of isofibrations
enumerated in i as the cosmological limit notions.

Definition 1.4.2. In an ∞-cosmos 𝒦, a morphism 𝑓 ∶ 𝐴 → 𝐵 is an equivalence just when the
induced map 𝑓∗ ∶ Fun(𝑋, 𝐴) ∼−→ Fun(𝑋, 𝐵) on functor spaces is an equivalence of quasi-categories
for all 𝑋 ∈ 𝒦.

Definition 1.4.3. In an ∞-cosmos 𝒦, a morphism 𝑓 ∶ 𝐴 → 𝐵 is a trivial fibration just when
𝑓 is both an isofibration and an equivalence.

These classes are denoted by “ ∼−→” and “ ∼−→→ ”, respectively.17

Put more concisely, one might say that an ∞-cosmos is a “quasi-categorically enriched category
of fibrant objects.”

Convention 1.4.4 (∞-category, as a technical term). Henceforth, we recast ∞-category as a
technical term to refer to an object in an arbitrary ambient ∞-cosmos. Similarly, we use the term
∞-functor — or more commonly the elision “functor” — to refer to a morphism 𝑓 ∶ 𝐴 → 𝐵 in an
∞-cosmos. This explains why we refer to the quasi-category Fun(𝐴, 𝐵) between two ∞-categories
in an ∞-cosmos as a “functor space”: its vertices are the (∞-)functors from 𝐴 to 𝐵.

Definition 1.4.5. The underlying category 𝒦0 of an ∞-cosmos 𝒦 is the category whose
objects are the ∞-categories in 𝒦 and whose morphisms are the 0-arrows, i.e., the vertices in the
functor spaces.

In all of the examples to appear in what follows, this recovers the expected category of ∞-
categories in a particular model and functors between them.

The following theorem should be quite difficult to formalize:

Proposition 1.4.6 (the ∞-cosmos of quasi-categories). The full subcategory 𝒬𝒞𝑎𝑡 ⊂ 𝑠𝒮𝑒𝑡 of
quasi-categories defines an ∞-cosmos in which the isofibrations, equivalences, and trivial fibrations
coincide with the classes already bearing these names.

Proof. The proof requires myriad combinatorial results about the class of isofibrations be-
tween quasi-categories. See [RV22, §D]. □

Two further examples fit into a common paradigm: both arise as full subcategories of the ∞-
cosmos of quasi-categories and inherit their ∞-cosmos structures from this inclusion (see Lemma
[RV22, 6.1.4]), but it is also instructive, and ultimately takes less work, to describe the resulting
∞-cosmos structures directly.

Proposition 1.4.7 (the ∞-cosmos of categories). The category 𝒞𝑎𝑡 of 1-categories defines an
∞-cosmos whose isofibrations are the isofibrations: functors satisfying the displayed right lifting
property:

17Please help us find an html friendly version of the trivial fibration symbol.
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𝟙 𝐴

𝕀 𝐵
𝑓

The equivalences are the equivalences of categories and the trivial fibrations are surjective equiv-
alences: equivalences of categories that are also surjective on objects.

Proof. It is well-known that the 2-category of categories is complete (and in fact also cocom-
plete) as a 𝒞𝑎𝑡-enriched category (see [Kel89]). The categorically enriched category of categories
becomes a quasi-categorically enriched category by applying the nerve functor to the hom-categories
(see §1.5). Since the nerve functor is a right adjoint, it follows formally that these 2-categorical
limits become simplicially enriched limits. In particular, as proscribed in Proposition 1.5.9, the
cotensor of a category 𝐴 by a simplicial set 𝑈 is defined to be the functor category 𝐴h𝑈 . This
completes the verification of axiom i.

Since the class of isofibrations is characterized by a right lifting property, the isofibrations are
closed under all of the limit constructions of 1.4.1ii except for the last two. For these, the Leibniz
closure subsumes the closure under exponentiation.

To verify that isofibrations of categories 𝑓 ∶ 𝐴 ↠ 𝐵 are stable under forming Leibniz cotensors
with monomorphisms of simplicial sets 𝑖 ∶ 𝑈 ↪ 𝑉 , we must solve the lifting problem below-left

𝟙 𝐴h𝑉 h𝑈 × 𝕀 ∪h𝑈 h𝑉 𝐴

𝕀 𝐵h𝑉 ×𝐵h𝑈 𝐴h𝑈 h𝑉 × 𝕀 𝐵

𝑠

𝑗 h𝑖 �̂� ↭

⟨𝛼,𝑠⟩

h𝑖×̂𝑗 𝑓𝛾

⟨𝛽,𝛼⟩ 𝛽

𝛾

which transposes to the lifting problem above-right, which we can solve by hand. Here the map 𝛽
defines a natural isomorphism between 𝑓𝑠∶ h𝑉 → 𝐵 and a second functor. Our task is to lift this to
a natural isomorphism 𝛾 from 𝑠 to another functor that extends the natural isomorphism 𝛼 along
h𝑖 ∶ h𝑈 → h𝑉 . Note this functor h𝑖 need not be an inclusion, but it is injective on objects, which is
enough.

We define the components of 𝛾 by cases. If an object 𝑣 ∈ h𝑉 is equal to 𝑖(𝑢) for some 𝑢 ∈ h𝑈
define 𝛾𝑖(𝑢) ≔ 𝛼𝑢; otherwise, use the fact that 𝑓 is an isofibration to define 𝛾𝑣 to be any lift of the
isomorphism 𝛽𝑣 to an isomorphism in 𝐴 with domain 𝑠(𝑣). The data of the map 𝛾 ∶ h𝑉 ×𝕀 → 𝐴 also
entails the specification of the functor h𝑉 → 𝐴 that is the codomain of the natural isomorphism 𝛾.
On objects, this functor is given by 𝑣 ↦ cod(𝛾𝑣). On morphisms, this functor defined in the unique
way that makes 𝛾 into a natural transformation:

(𝑘 ∶ 𝑣 → 𝑣′) ↦ 𝛾𝑣′ ∘ 𝑠(𝑘) ∘ 𝛾−1
𝑣 .

This completes the proof that 𝒞𝑎𝑡 defines an ∞-cosmos. Since the nerve of a functor category,
such as 𝐴𝕀, is isomorphic to the exponential between their nerves, the equivalences of categories
coincide with the equivalences of Definition 1.2.35. It follows that the equivalences in the ∞-cosmos
of categories coincide with equivalences of categories, and since the surjective equivalences are the
intersection of the equivalences and the isofibrations, this completes the proof. □

Similarly:
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Proposition 1.4.8 (the ∞-cosmos of Kan complexes). The category 𝒦𝑎𝑛 of Kan complexes
defines an ∞-cosmos whose isofibrations are the Kan fibrations: maps that lift against all horn
inclusions Λ𝑘[𝑛] ↪ Δ[𝑛] for 𝑛 ≥ 1 and 0 ≤ 𝑘 ≤ 𝑛.

Several consequences of the ∞-cosmos axioms are mentioned in [RV22, §1.2]. For now, we
focus on just one.

By a Yoneda-style argument, the “homotopy equivalence” characterization of the equivalences
in the ∞-cosmos of quasi-categories of Definition 1.2.35 extends to an analogous characterization
of the equivalences in any ∞-cosmos:

Lemma 1.4.9 (equivalences are homotopy equivalences). A map 𝑓 ∶ 𝐴 → 𝐵 between ∞-categories
in an ∞-cosmos 𝒦 is an equivalence if and only if it extends to the data of a “homotopy equivalence”
with the free-living isomorphism 𝕀 serving as the interval: that is, if there exist maps 𝑔 ∶ 𝐵 → 𝐴

𝐴 𝐵

𝐴 𝐴𝕀 and 𝐵 𝐵𝕀

𝐴 𝐵
𝑔𝑓

𝛼

∼ ev0

∼ ev1

𝛽

𝑓𝑔 ∼ ev0

∼ ev1

in the ∞-cosmos.

Proof. By hypothesis, if 𝑓 ∶ 𝐴 → 𝐵 defines an equivalence in the ∞-cosmos 𝒦 then the
induced map on post-composition 𝑓∗ ∶ Fun(𝐵, 𝐴) ∼−→ Fun(𝐵, 𝐵) is an equivalence of quasi-categories
in the sense of Definition 1.2.35. Evaluating the inverse equivalence ̃𝑔 ∶ Fun(𝐵, 𝐵) ∼−→ Fun(𝐵, 𝐴)
and homotopy ̃𝛽 ∶ Fun(𝐵, 𝐵) → Fun(𝐵, 𝐵)𝕀 at the 0-arrow id𝐵 ∈ Fun(𝐵, 𝐵), we obtain a 0-arrow
𝑔 ∶ 𝐵 → 𝐴 together with an isomorphism 𝛽 ∶ 𝕀 → Fun(𝐵, 𝐵) from the composite 𝑓𝑔 to id𝐵. By the
defining universal property of the cotensor (1.3.7), this isomorphism internalizes to define the map
𝛽 ∶ 𝐵 → 𝐵𝕀 in 𝒦 displayed on the right of the displayed equation in the statement.

Now the hypothesis that 𝑓 is an equivalence also provides an equivalence of quasi-categories
𝑓∗ ∶ Fun(𝐴, 𝐴) ∼−→ Fun(𝐴, 𝐵), and the map 𝛽𝑓 ∶ 𝐴 → 𝐵𝕀 represents an isomorphism in Fun(𝐴, 𝐵)
from 𝑓𝑔𝑓 to 𝑓 . Since 𝑓∗ is an equivalence, we conclude from Lemma 1.2.36 that id𝐴 and 𝑔𝑓 are
isomorphic in the quasi-category Fun(𝐴, 𝐴): explicitly, such an isomorphism may be defined by
applying the inverse equivalence ℎ̃ ∶ Fun(𝐴, 𝐵) → Fun(𝐴, 𝐴) and composing with the components
at id𝐴, 𝑔𝑓 ∈ Fun(𝐴, 𝐴) of the isomorphism ̃𝛼 ∶ Fun(𝐴, 𝐴) → Fun(𝐴, 𝐴)𝕀 from idFun(𝐴,𝐴) to ℎ̃𝑓∗. Now
by Proposition 1.2.32 this isomorphism is represented by a map 𝕀 → Fun(𝐴, 𝐴) from id𝐴 to 𝑔𝑓 ,
which internalizes to a map 𝛼∶ 𝐴 → 𝐴𝕀 in 𝒦 displayed on the left of the displayed equation in the
statement.

The converse is easy: the simplicial cotensor construction commutes with Fun(𝑋, −), so a
homotopy equivalence induces a homotopy equivalence of quasi-categories as in Definition 1.2.35.

□
Many, though not all, of the ∞-cosmoi we encounter “in the wild” satisfy an additional axiom:

Definition 1.4.10 (cartesian closed ∞-cosmoi). An ∞-cosmos 𝒦 is cartesian closed if the
product bifunctor − × −∶ 𝒦 × 𝒦 → 𝒦 extends to a simplicially enriched two-variable adjunction

Fun(𝐴 × 𝐵, 𝐶) ≅ Fun(𝐴, 𝐶𝐵) ≅ Fun(𝐵, 𝐶𝐴)
in which the right adjoints (−)𝐴 ∶ 𝒦 → 𝒦 preserve isofibrations for all 𝐴 ∈ 𝒦.
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For instance, the ∞-cosmos of quasi-categories is cartesian closed, with the exponentials defined
as (special cases of) simplicial cotensors. This is one of the reasons that we use the same notation
for cotensor and for exponential. Note in this case the functor spaces and the exponentials coincide.
The same is true for the cartesian closed ∞-cosmoi of categories and of Kan complexes. In general,
the functor space from 𝐴 to 𝐵 is the “underlying quasi-category” of the exponential 𝐵𝐴 whenever
it exists.

1.5. Change of base

“Change of base,” first considered by Eilenberg and Kelly in [EK66], refers to a systematic
procedure by which enrichment over one category 𝒱 is converted into enrichment over another
category 𝒲. This will be applied in §1.6 to convert an ∞-cosmos into a simpler structure. For a
cartesian closed category 𝒱, there is a 2-category 𝒱-𝒞𝑎𝑡 of 𝒱-categories, 𝒱-functors, and 𝒱-natural
transformations. The first main result, appearing as Proposition 1.5.4, gives conditions under
which a functor 𝑇 ∶ 𝒱 → 𝒲 between cartesian closed categories induces a change-of-base 2-functor
𝑇∗ ∶ 𝒱-𝒞𝑎𝑡 → 𝒲-𝒞𝑎𝑡.

As the context we are working in here is less general than the one considered by Eilenberg
and Kelly — our base categories are cartesian closed while theirs are closed symmetric monoidal
— we take a shortcut which covers all of our examples and is easier to explain. In general, all
that is needed to produce a change of base 2-functor is a lax monoidal functor between symmetric
monoidal categories, but the lax monoidal functors we encounter between cartesian closed categories
are in fact finite-product-preserving, so we content ourselves with explicating the results in that
case instead.

However, lax monoidal functors exist in Mathlib already, so we briefly recall the definition.

Definition 1.5.1. A (lax) monoidal functor between cartesian closed categories 𝒱 and 𝒲
is a functor 𝑇 ∶ 𝒱 → 𝒲 equipped with natural transformations

𝒱 × 𝒱 𝒲 × 𝒲 𝟙 𝒱

𝒱 𝒲 𝒲

𝑇 ×𝑇

⇓𝜙× ×

1

1 𝑇

𝑇

⇑𝜙0

so that the evident associativity and unit diagrams commute.

Except in a special case that we now introduce, the maps 𝜙 and 𝜙0 are to be regarded as part
of the structure of a lax monoidal functor, rather than a property the functor 𝑇 enjoys.

Recall that a functor 𝑇 ∶ 𝒱 → 𝒲 between cartesian closed categories preserves finite prod-
ucts just when the natural maps defined for any 𝑢, 𝑣 ∈ 𝒱

𝑇 (𝑢 × 𝑣) ≅−→ 𝑇 𝑢 × 𝑇 𝑣 and 𝑇 1 ≅−→ 1
are isomorphisms. These maps satisfy the duals of the coherence conditions mentioned in Definition
1.5.1 and make 𝑇 into a strong monoidal functor between the cartesian closed categories 𝒱 and
𝒲. The inverse isomorphisms then provide the structure maps of Definition 1.5.1.

For example:

Example 1.5.2. Since representable functors preserve products, for any cartesian closed cate-
gory 𝒱, the underlying set functor (−)0 ∶ 𝒱 → 𝒮𝑒𝑡 is product-preserving
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Example 1.5.3. In a cartesian closed category 𝒱, finite products distribute over arbitrary
coproducts. In particular, for any sets 𝑋 and 𝑌 there is an isomorphism

⨿𝑋×𝑌 1 ≅ (⨿𝑋1) × (⨿𝑌 1)
between coproducts of the terminal object 1, which proves that the functor

𝒮𝑒𝑡 𝒱⨿−1

is finite-product-preserving.

A finite-product-preserving functor may be used to change the base as follows

Proposition 1.5.4. A finite-product-preserving functor 𝑇 ∶ 𝒱 → 𝒲 between cartesian closed
categories induces a change-of-base 2-functor

𝒱-𝒞𝑎𝑡 𝒲-𝒞𝑎𝑡 .𝑇∗

An early observation along these lines was first stated as [EK66, II.6.3], with the proof left to
the reader. We adopt the same tactic and leave the diagram chases to the reader or to [Cru08,
4.2.4] and instead just give the construction of the change-of-base 2-functor, which is the important
thing.

Proof. Let 𝒞 be a 𝒱-category and define a 𝒲-category 𝑇∗𝒞 to have the same objects and to
have mapping objects 𝑇∗𝒞(𝑥, 𝑦) ≔ 𝑇 𝒞(𝑥, 𝑦). The composition and identity maps are given by the
composites

𝑇 𝒞(𝑦, 𝑧) × 𝑇 𝒞(𝑥, 𝑦) 𝑇 (𝒞(𝑦, 𝑧) × 𝒞(𝑥, 𝑦)) 𝑇 𝒞(𝑥, 𝑧) 1 𝑇 1 𝑇 𝒞(𝑥, 𝑥)≅ 𝑇 ∘ ≅ 𝑇 id𝑥

which make use of the inverses of the natural maps that arise when a finite-product-preserving
functor is applied to a finite product. A straightforward diagram chase verifies that 𝑇∗𝒞 is a 𝒲-
category.

If 𝐹 ∶ 𝒞 → 𝒟 is a 𝒱-functor, then we define a 𝒲-functor 𝑇∗𝐹 ∶ 𝑇∗𝒞 → 𝑇∗𝒟 to act on objects by
𝑐 ∈ 𝒞 ↦ 𝐹𝑐 ∈ 𝒟 and with internal action on arrows defined by

𝑇 𝒞(𝑥, 𝑦) 𝑇 𝒟(𝐹𝑥, 𝐹𝑦)𝑇 𝐹𝑥,𝑦

Again, a straightforward diagram chase verifies that 𝑇∗𝐹 is 𝒲-functorial. It is evident from this
definition that 𝑇∗(𝐺𝐹) = 𝑇∗𝐺 ⋅ 𝑇∗𝐹 .

Finally, let 𝛼∶ 𝐹 ⇒ 𝐺 be a 𝒱-natural transformation between 𝒱-functors 𝐹, 𝐺∶ 𝒞 → 𝒟 and
define a 𝒲-natural transformation 𝑇∗𝛼∶ 𝑇∗𝐹 ⇒ 𝑇∗𝐺 to have components

1 𝑇 1 𝑇 𝒟(𝐹𝑐, 𝐺𝑐)≅ 𝑇 𝛼𝑐

Another straightforward diagram chase verifies that 𝑇∗𝛼 is 𝒲-natural.
It remains to verify this assignment is functorial for both horizontal and vertical composition

of enriched natural transformations. The component of 𝑇∗(𝛽 ⋅ 𝛼) is defined by the top-horizontal
composite below while the component of the vertical composite of 𝑇∗𝛼 with 𝑇∗𝛽 ∶ 𝑇∗𝐺 ⇒ 𝑇∗𝐻 is
defined by the bottom composite:
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1 𝑇 1 𝑇 (𝒟(𝐺𝑐, 𝐻𝑐) × 𝒟(𝐹𝑐, 𝐺𝑐)) 𝑇 𝒟(𝐹𝑐, 𝐻𝑐)

𝑇 1 × 𝑇 1 𝑇 𝒟(𝐺𝑐, 𝐻𝑐) × 𝑇 𝒟(𝐹𝑐, 𝐺𝑐)

≅

≅

𝑇 (𝛽𝑐×𝛼𝑐) 𝑇 ∘

≅

𝑇 𝛽𝑐×𝑇 𝛼𝑐

≅

The square commutates by the naturality of the isomorphism 𝑇 (𝑢×𝑣) ≅ 𝑇 𝑢×𝑇 𝑣, while the triangle
commutes because 1 is terminal, so the inverses of the displayed isomorphisms form a commutative
triangle. The argument for functoriality of horizontal composites is similar. □

Remark 1.5.5. In fact, the “change of base” procedure 𝒱 ↦ 𝒱-𝒞𝑎𝑡 is itself a 2-functor from the
2-category of cartesian closed categories, finite-product-preserving functors, and natural transfor-
mations to the 2-category of 2-categories, 2-functors, and 2-natural transformations. See [Cru08,
§4.3] for a discussion and proof.

As an immediate consequence of the 2-functoriality of Remark 1.5.5:

Proposition 1.5.6. Any adjunction between cartesian closed categories whose left adjoint pre-
serves finite products induces a change-of-base 2-adjunction

𝒱 𝒲 𝒱-𝒞𝑎𝑡 𝒲-𝒞𝑎𝑡
𝐹
⊥
𝑈

⇝
𝐹∗

⊥
𝑈∗

Proof. Of course right adjoints always preserve products, so the adjoint pair of functors 𝐹 ⊣ 𝑈
defines an adjunction in the 2-category of cartesian closed categories and finite-product-preserving
functors described in Remark 1.5.5. The 2-functor 𝒱 ↦ 𝒱-𝒞𝑎𝑡 then carries the adjunction displayed
on the left to the adjunction displayed on the right. □

As a special case:

Corollary 1.5.7. For any cartesian closed category 𝒱 with coproducts, the underlying category
construction and free category construction define adjoint 2-functors

𝒞𝑎𝑡 𝒱-𝒞𝑎𝑡⊥
(−)0

In light of Proposition 1.5.6 and results to follow, an adjunction between cartesian closed
categories whose left adjoint preserves finite products provides a change-of-base adjunction.
While Proposition 1.5.6 permits the change of base along either adjoint of a finite-product-preserving
adjunction, the next series of results reveal that change of base along the right adjoint is somewhat
better behaved.

Lemma 1.5.8. Any adjunction comprised of finite-product-preserving functors between cartesian
closed categories

𝒱 𝒲 𝒱 𝑈∗𝒲
𝐹
⊥
𝑈

⇝
𝐹
⊥
𝑈

defines a 𝒱-enriched adjunction between the 𝒱-categories 𝒱 and 𝑈∗𝒲; i.e., there exists a 𝒱-natural
isomorphism 𝑈𝒲(𝐹𝑣, 𝑤) ≅ 𝒱(𝑣, 𝑈𝑤).

Proof. The internal action 𝑈𝑎,𝑏 ∶ 𝑈𝒲(𝑎, 𝑏) → 𝒱(𝑈𝑎, 𝑈𝑏) of the 𝒱-functor 𝑈 ∶ 𝑈∗𝒲 → 𝒱 is
defined by the transpose of the map 𝑈ev ∶ 𝑈𝒲(𝑎, 𝑏)×𝑈𝑎 → 𝑈𝑏 defined by applying 𝑈 to the counit
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of the cartesian closure adjunction of 𝒲. The 𝒱-functoriality of this map follows from naturality
of evaluation in a cartesian closed category.

By the 𝒱-functoriality of 𝑈 ∶ 𝑈∗𝒲 → 𝒱, the map

𝑈𝒲(𝐹𝑣, 𝑤) 𝒱(𝑈𝐹𝑣, 𝑈𝑤) 𝒱(𝑣, 𝑈𝑤)𝑈𝐹𝑣,𝑤 −∘𝜂𝑣

is 𝒱-natural in 𝑤 ∈ 𝑈∗𝒲 for all 𝑣 ∈ 𝒱. By a general result about enriching adjoints, to construct a
compatible 𝒱-enrichment of 𝐹 , we need only demonstrate that this map in an isomorphism in 𝒱.

We do this by constructing an explicit inverse, namely

𝒱(𝑣, 𝑈𝑤) 𝑈𝐹𝒱(𝑣, 𝑈𝑤) 𝑈𝒲(𝐹𝑣, 𝐹𝑈𝑤) 𝑈𝒲(𝐹𝑣, 𝑤)𝜂 𝑈(𝐹𝑣,𝑈𝑤) 𝜖𝑤∘−

where the middle map is defined by applying the unenriched functor 𝑈 to the action map from the
𝒲-functor 𝐹 ∶ 𝐹∗𝒱 → 𝒲, which is defined similarly to the 𝒱-functor 𝑈 ∶ 𝑈∗𝒲 → 𝒱.

The proof that these maps are inverses involves a pair of diagram chases, the first of which
demonstrates that the top-right composite reduces to the left-bottom composite, which is the iden-
tity:

𝒱(𝑣, 𝑈𝑤) 𝑈𝐹𝒱(𝑣, 𝑈𝑤) 𝑈𝒲(𝐹𝑣, 𝐹𝑈𝑤) 𝑈𝒲(𝐹𝑣, 𝑤)

𝒱(𝑈𝐹𝑣, 𝑈𝐹𝑈𝑤) 𝒱(𝑈𝐹𝑣, 𝑈𝑤)

𝒱(𝑣, 𝑈𝐹𝑈𝑤) 𝒱(𝑣, 𝑈𝑤)

𝜂

𝜂𝑈𝑤∘−

𝑈(𝐹𝑣,𝑈𝑤)

𝑈𝐹𝑣,𝑈𝑤

𝜖𝑤∘−

𝑈𝐹𝑣,𝐹𝑈𝑤 𝑈𝐹𝑣,𝑤

𝑈𝜖𝑤∘−

−∘𝜂𝑣 −∘𝜂𝑣

𝑈𝜖𝑤∘−

The only subtle point is the commutativity of the trapezoidal region, which expresses the fact
that 𝜂 ∶ id𝒱 ⇒ 𝑈𝐹 is a closed natural transformation between product-preserving functors between
cartesian closed categories. This region commutes because the transposed diagram does:

𝒱(𝑣, 𝑈𝑤) × 𝑣 𝒱(𝑣, 𝑈𝑤) × 𝑣 𝑈𝑤

𝑈𝐹𝒱(𝑣, 𝑈𝑤) × 𝑈𝐹𝑣 𝑈𝐹(𝒱(𝑣, 𝑈𝑊) × 𝑣) 𝑈𝐹𝑈𝑤
𝜂×𝜂𝑣 𝜂

ev

𝜂𝑈𝑤

≅ 𝑈𝐹ev

the right-hand square by naturality, and the left-hand square because any naturally transformation
between product-preserving functors is automatically a monoidal natural transformation. The other
diagram chase is similar. □

Proposition 1.5.9. Given an adjunction between cartesian closed categories

𝒱 𝒲
𝐹
⊥
𝑈

whose left adjoint preserves finite products then if 𝒞 is co/tensored as a 𝒲-category, 𝑈∗𝒞 is
co/tensored as 𝒱-category with the co/tensor of 𝑐 ∈ 𝒞 by 𝑣 ∈ 𝒱 defined by

𝑣 ⊗ 𝑐 ≔ 𝐹𝑣 ⊗ 𝑐 and 𝑐𝑣 ≔ 𝑐𝐹𝑣.
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Proof. Suppose 𝒞 admits cotensors as a 𝒲-category. To verify that 𝑈∗𝒞 admits cotensors as
a 𝒱-category we must supply an isomorphism

𝑈𝒞(𝑥, 𝑐𝐹𝑣) ≅ (𝑈𝒞(𝑥, 𝑐))𝑣

in 𝒱 that is 𝒱-natural in 𝑥. By the enriched Yoneda lemma, we can extract this isomorphism from
an isomorphism

𝒱(𝑢, 𝑈𝒞(𝑥, 𝑐𝐹𝑣)) ≅ 𝒱(𝑢, (𝑈𝒞(𝑥, 𝑐))𝑣)
that is 𝒱-natural in 𝑢 ∈ 𝒱. To that end, by composing the 𝒱-natural isomorphisms of Lemma 1.5.8,
the enriched natural isomorphisms arising from the cartesian closed structure on 𝒱 and on 𝑈∗𝒲,
and the isomorphisms that characterize the cotensor on 𝒞 and express the fact that 𝐹 preserves
binary products, we have:

𝒱(𝑢, 𝑈𝒞(𝑥, 𝑐𝐹𝑣)) ≅ 𝑈𝒲(𝐹𝑢, 𝒞(𝑥, 𝑐𝐹𝑣)) ≅ 𝑈𝒲(𝐹𝑢, 𝒞(𝑥, 𝑐)𝐹𝑣)
≅ 𝑈𝒲(𝐹𝑢 × 𝐹𝑣, 𝒞(𝑥, 𝑐)) ≅ 𝑈𝒲(𝐹(𝑢 × 𝑣), 𝒞(𝑥, 𝑐))
≅ 𝒱(𝑢 × 𝑣, 𝑈𝒞(𝑥, 𝑐)) ≅ 𝒱(𝑢, (𝑈𝒞(𝑥, 𝑐))𝑣). □

The general theory of change-of-base will be applied in the following case the next section.

Example 1.5.10. Both adjoints of the adjunction

𝑠𝒮𝑒𝑡 𝒞𝑎𝑡
h
⊥

of Proposition 1.2.26 preserve finite products. Hence, Proposition 1.5.6 induces a change-of-base
adjunction defined by the 2-functors

𝑠𝒞𝑎𝑡 2-𝒞𝑎𝑡
h∗

⊥
that act identically on objects and act by applying the homotopy category functor or nerve func-
tor, respectively, on homs. The right adjoint, which builds a simplicially enriched category from a
2-category, respects the underlying category: the underlying category of objects and 1-cells is iden-
tified with the underlying category of objects and 0-arrows. In this case, the functor h ∶ 𝑠𝒮𝑒𝑡 → 𝒞𝑎𝑡
commutes with the underlying set functors, so in fact both adjoints preserve underlying categories,
as is evident from direct computation. In particular, the homotopy 2-category of an ∞-cosmos
has the same underlying 1-category. Since the nerve embedding is fully faithful, 2-categories can
be identified as a full subcategory comprised of those simplicial categories whose hom spaces are
nerves of categories.

1.6. The homotopy 2-category

Small 1-categories define the objects of a strict 2-category 𝒞𝑎𝑡 of categories, functors, and
natural transformations. Many basic categorical notions — those defined in terms of categories,
functors, and natural transformations — can be defined internally to the 2-category 𝒞𝑎𝑡. This
suggests a natural avenue for generalization: reinterpreting these same definitions in a generic 2-
category using its objects in place of small categories, its 1-cells in place of functors, and its 2-cells
in place of natural transformations.

A significant portion of the theory of ∞-categories in any fixed ∞-cosmos can be developed by
following exactly this outline, working internally to a 2-category that we refer to as the homotopy 2-
category that we associate to any ∞-cosmos. The homotopy 2-category of an ∞-cosmos is a quotient
of the full ∞-cosmos, replacing each quasi-categorical functor space by its homotopy category.
Surprisingly, this rather destructive quotienting operation preserves quite a lot of information. This
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said, we caution the reader against becoming overly seduced by homotopy 2-categories, which are
more of a technical convenience for reducing the complexity of our arguments than a fundamental
notion of ∞-category theory.

Paralleling our discussion of simplicial categories in Definition 1.3.1 and Digression 1.3.5, there
are two perspectives on the notion of a 2-category, which can be understood equally as:

(i) “two-dimensional” categories, with objects; 1-cells, whose boundary are given by a pair
of objects; and 2-cells, whose boundary are given by a parallel pair of 1-cells between
a pair of objects — together with partially defined composition operations governed by
this boundary data

(ii) or as categories enriched over 𝒞𝑎𝑡.
Both notions exist in Mathlib in some form. The notion i is called a strict bicategory and

is defined as a special case of a bicategory, in which the associators and unitors are identities
(converted into 2-cells). The general notion of enriched category can be specialized to the case
of enriching over the cartesian monoidal category of categories, but the connection between these
notions remains to be explored.

Proposition 1.6.1. There is an equivalence between categories enriched in categories and strict
bicategories. In particular, each can be converted into the other.

The homotopy 2-category is most efficiently defined as a category enriched in 𝒞𝑎𝑡 by applying
the theory of change-of-base developed in §1.5. The homotopy 2-category for the ∞-cosmos of
quasi-categories was first introduced by Joyal in his work on the foundations of quasi-category
theory [Joy08].

Definition 1.6.2 (homotopy 2-category). Let 𝒦 be an ∞-cosmos. Its homotopy 2-category
is the 2-category 𝔥𝒦 whose

• objects are the objects 𝐴, 𝐵 of 𝒦, i.e., the ∞-categories;
• 1-cells 𝑓 ∶ 𝐴 → 𝐵 are the 0-arrows in the functor space Fun(𝐴, 𝐵), i.e., the ∞-functors;

and
• 2-cells

𝐴 𝐵
𝑓

𝑔
⇓𝛼

are homotopy classes of 1-simplices in Fun(𝐴, 𝐵), which we call ∞-natural transfor-
mations.

Put another way 𝔥𝒦 is the 2-category with the same objects as 𝒦 and with hom-categories defined
by

hFun(𝐴, 𝐵) ≔ h(Fun(𝐴, 𝐵)),
that is, hFun(𝐴, 𝐵) is the homotopy category of the quasi-category Fun(𝐴, 𝐵).

Definition 1.6.3 (underlying category of a 2-category). The underlying category of a 2-
category is defined by simply forgetting its 2-cells. Note that an ∞-cosmos 𝒦 and its homotopy
2-category 𝔥𝒦 share the same underlying category 𝒦0 of ∞-categories and ∞-functors in 𝒦.

Lemma 1.6.4. The underlying category of the homotopy 2-category of an ∞-cosmos is isomor-
phic to the underlying category of the ∞-cosmos.

We elaborate on the connection between data in the homotopy 2-category and data in the
∞-cosmos.
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Lemma 1.6.5.
(i) Every 2-cell

𝐴 𝐵
𝑓

𝑔
⇓𝛼

in the homotopy 2-category of an ∞-cosmos is represented by a map of quasi-categories
as below-left or equivalently by a functor as below-right

𝟙 + 𝟙 𝐴 𝐵𝟚

𝟚 Fun(𝐴, 𝐵) 𝐵 × 𝐵
(𝑓,𝑔)

⌜𝛼⌝

(𝑔,𝑓) (𝑝1,𝑝0)
𝛼

↭

and two such maps represent the same 2-cell if and only if they are homotopic as 1-
simplices in Fun(𝐴, 𝐵).

(ii) Every invertible 2-cell

𝐴 𝐵
𝑓

𝑔
≅⇓𝛼

in the homotopy 2-category of an ∞-cosmos is represented by a map of quasi-categories
as below-left or equivalently by a functor as below-right

𝟙 + 𝟙 𝐴 𝐵𝕀

𝕀 Fun(𝐴, 𝐵) 𝐵 × 𝐵
(𝑓,𝑔)

⌜𝛼⌝

(𝑔,𝑓) (𝑝1,𝑝0)
𝛼

↭

and two such maps represent the same invertible 2-cell if and only if their common
restrictions along 𝟚 ↪ 𝕀 are homotopic as 1-simplices in Fun(𝐴, 𝐵).

The notion of homotopic 1-simplices referenced here is defined in Lemma 1.2.20. Since the
2-cells in the homotopy 2-category are referred to as ∞-natural transformations, we refer to the
invertible 2-cells in the homotopy 2-category as ∞-natural isomorphisms.

Proof. The statement i records the definition of the 2-cells in the homotopy 2-category and
the universal property (1.3.7) of the simplicial cotensor. For ii, a 2-cell in the homotopy 2-category
is invertible if and only if it defines an isomorphism in the appropriate hom-category hFun(𝐴, 𝐵).
By Proposition 1.2.32 it follows that each invertible 2-cell 𝛼 is represented by a homotopy coherent
isomorphism 𝛼∶ 𝕀 → Fun(𝐴, 𝐵), which similarly internalizes to define a functor ⌜𝛼⌝ ∶ 𝐴 → 𝐵𝕀. □

We now begin to relate the simplicially enriched structures of an ∞-cosmos to the 2-categorical
structures in its homotopy 2-category by proving that homotopy 2-categories inherit products from
their ∞-cosmoi that satisfy a 2-categorical universal property. To illustrate, recall that the terminal
∞-category 1 ∈ 𝒦 has the universal property Fun(𝑋, 1) ≅ 𝟙 for all 𝑋 ∈ 𝒦. Applying the homotopy
category functor we see that 1 ∈ 𝔥𝒦 has the universal property hFun(𝑋, 1) ≅ 𝟙 for all 𝑋 ∈ 𝔥𝒦,
which is expressed by saying that the ∞-category 1 defines a 2-terminal object in the homotopy
2-category. This 2-categorical universal property has both a 1-dimensional and a 2-dimensional
aspect. Since hFun(𝑋, 1) ≅ 𝟙 is a category with a single object, there exists a unique morphism
𝑋 → 1 in 𝒦, and since hFun(𝑋, 1) ≅ 𝟙 has only a single morphism, the only 2-cells in 𝔥𝒦 with
codomain 1 are identities.

Proposition 1.6.6 (cartesian (closure)).
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(i) The homotopy 2-category of any ∞-cosmos has 2-categorical products.
(ii) The homotopy 2-category of a cartesian closed ∞-cosmos is cartesian closed as a 2-

category.

Proof. While the functor h ∶ 𝑠𝒮𝑒𝑡 → 𝒞𝑎𝑡 only preserves finite products, the restricted functor
h ∶ 𝒬𝒞𝑎𝑡 → 𝒞𝑎𝑡 preserves all products on account of the simplified description of the homotopy
category of a quasi-category given in Lemma 1.2.28. Thus for any set 𝐼 and family of ∞-categories
(𝐴𝑖)𝑖∈𝐼 in 𝒦, the homotopy category functor carries the isomorphism of functor spaces to an
isomorphism of hom-categories

Fun(𝑋, ∏𝑖∈𝐼 𝐴𝑖) ∏𝑖∈𝐼 Fun(𝑋, 𝐴𝑖) hFun(𝑋, ∏𝑖∈𝐼 𝐴𝑖) ∏𝑖∈𝐼 hFun(𝑋, 𝐴𝑖).≅ h ≅

This proves that the homotopy 2-category 𝔥𝒦 has products whose universal properties have both
a 1- and 2-dimensional component, as described in the empty case for terminal objects above.

If 𝒦 is a cartesian closed ∞-cosmos, then for any triple of ∞-categories 𝐴, 𝐵, 𝐶 ∈ 𝒦 there
exist exponential objects 𝐶𝐴, 𝐶𝐵 ∈ 𝒦 characterized by natural isomorphisms

Fun(𝐴 × 𝐵, 𝐶) ≅ Fun(𝐴, 𝐶𝐵) ≅ Fun(𝐵, 𝐶𝐴).
Passing to homotopy categories we have natural isomorphisms

hFun(𝐴 × 𝐵, 𝐶) ≅ hFun(𝐴, 𝐶𝐵) ≅ hFun(𝐵, 𝐶𝐴),
which demonstrates that 𝔥𝒦 is cartesian closed as a 2-category: functors 𝐴 × 𝐵 → 𝐶 transpose to
define functors 𝐴 → 𝐶𝐵 and 𝐵 → 𝐶𝐴, and natural transformations transpose similarly. □

There is a standard definition of isomorphism between two objects in any 1-category, preserved
by any functor. Similarly, there is a standard definition of equivalence between two objects in any
2-category, preserved by any 2-functor:

Definition 1.6.7 (equivalence). An equivalence in a 2-category is given by
• a pair of objects 𝐴 and 𝐵;
• a pair of 1-cells 𝑓 ∶ 𝐴 → 𝐵 and 𝑔 ∶ 𝐵 → 𝐴; and
• a pair of invertible 2-cells

𝐴 𝐴 and 𝐵 𝐵
𝑔𝑓

≅⇓𝛼
𝑓𝑔

≅⇓𝛽

When 𝐴 and 𝐵 are equivalent, we write 𝐴 ≃ 𝐵 and refer to the 1-cells 𝑓 and 𝑔 as equivalences,
denoted by “ ∼−→.”

In the case of the homotopy 2-category of an ∞-cosmos we have a competing definition of
equivalence from 1.4.1: namely a 1-cell 𝑓 ∶ 𝐴 ∼−→ 𝐵 that induces an equivalence 𝑓∗ ∶ Fun(𝑋, 𝐴) ∼−→
Fun(𝑋, 𝐵) on functor spaces — or equivalently, by Lemma 1.4.9, a homotopy equivalence defined
relative to the interval 𝕀. Crucially, all three notions of equivalence coincide:

Theorem 1.6.8 (equivalences are equivalences). In any ∞-cosmos 𝒦, the following are equiv-
alent and characterize what it means for a functor 𝑓 ∶ 𝐴 → 𝐵 between ∞-categories to define an
equivalence.

(i) For all 𝑋 ∈ 𝒦, the post-composition map 𝑓∗ ∶ Fun(𝑋, 𝐴) ∼−→ Fun(𝑋, 𝐵) defines an equiv-
alence of quasi-categories.
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(ii) There exists a functor 𝑔 ∶ 𝐵 → 𝐴 and natural isomorphisms 𝛼∶ id𝐴 ≅ 𝑔𝑓 and 𝛽 ∶ 𝑓𝑔 ≅ id𝐵
in the homotopy 2-category.

(iii) There exists a functor 𝑔 ∶ 𝐵 → 𝐴 and maps
𝐴 𝐵

𝐴 𝐴𝕀 and 𝐵 𝐵𝕀

𝐴 𝐵
𝑔𝑓

𝛼

∼ ev0

∼ ev1

𝛽

𝑓𝑔 ∼ ev0

∼ ev1

in the ∞-cosmos 𝒦.

As an illustrative comparison of 2-categorical and quasi-categorical techniques, rather than
appealing to Lemma 1.4.9 to prove i⇔iii, we re-prove it.

Proof. For i⇒ii, if the induced map 𝑓∗ ∶ Fun(𝑋, 𝐴) ∼−→ Fun(𝑋, 𝐵) defines an equivalence of
quasi-categories then the functor 𝑓∗ ∶ hFun(𝑋, 𝐴) ∼−→ hFun(𝑋, 𝐵) defines an equivalence of cate-
gories, by Lemma 1.2.36. In particular, the equivalence 𝑓∗ ∶ hFun(𝐵, 𝐴) ∼−→ hFun(𝐵, 𝐵) is essentially
surjective so there exists 𝑔 ∈ hFun(𝐵, 𝐴) and an isomorphism 𝛽 ∶ 𝑓𝑔 ≅ id𝐵 ∈ hFun(𝐵, 𝐵). Now
since 𝑓∗ ∶ hFun(𝐴, 𝐴) ∼−→ hFun(𝐴, 𝐵) is fully faithful, the isomorphism 𝛽𝑓 ∶ 𝑓𝑔𝑓 ≅ 𝑓 ∈ hFun(𝐴, 𝐵)
can be lifted to define an isomorphism 𝛼−1 ∶ 𝑔𝑓 ≅ id𝐴 ∈ hFun(𝐴, 𝐴). This defines the data of a
2-categorical equivalence in Definition 1.6.7.

To see that ii⇒iii recall from Lemma 1.6.5 that the natural isomorphisms 𝛼∶ id𝐴 ≅ 𝑔𝑓 and
𝛽 ∶ 𝑓𝑔 ≅ id𝐵 in 𝔥𝒦 are represented by maps 𝛼∶ 𝐴 → 𝐴𝕀 and 𝛽 ∶ 𝐵 → 𝐵𝕀 in 𝒦 as in Lemma 1.4.9.

Finally, iii⇒i since Fun(𝑋, −) carries the data of iii to the data of an equivalence of quasi-
categories as in Definition 1.2.35. □

It is hard to overstate the importance of Theorem 1.6.8 for the work that follows. The categorical
constructions that we introduce for ∞-categories, ∞-functors, and ∞-natural transformations are
invariant under 2-categorical equivalence in the homotopy 2-category and the universal properties
we develop similarly characterize 2-categorical equivalence classes of ∞-categories. Theorem 1.6.8
then asserts that such constructions are “homotopically correct”: both invariant under equivalence
in the ∞-cosmos and precisely identifying equivalence classes of objects.

The equivalence invariance of the functor space in the codomain variable is axiomatic, but
equivalence invariance in the domain variable is not.18 Nor is it evident how this could be proven
from either i or iii of Theorem 1.6.8. But using ii and 2-categorical techniques, there is now a short
proof.

Corollary 1.6.9. Equivalences of ∞-categories 𝐴′ ∼−→ 𝐴 and 𝐵 ∼−→ 𝐵′ induce an equivalence
of functor spaces Fun(𝐴, 𝐵) ∼−→ Fun(𝐴′, 𝐵′).

Proof. The representable simplicial functors Fun(𝐴, −)∶ 𝒦 → 𝒬𝒞𝑎𝑡 and Fun(−, 𝐵)∶ 𝒦op →
𝒬𝒞𝑎𝑡 induce 2-functors Fun(𝐴, −)∶ 𝔥𝒦 → 𝔥𝒬𝒞𝑎𝑡 and Fun(−, 𝐵)∶ 𝔥𝒦op → 𝔥𝒬𝒞𝑎𝑡, which preserve
the 2-categorical equivalences of Definition 1.6.7. By Theorem 1.6.8 this is what we wanted to
show. □

18The functor Fun(𝐴, −) is a cosmological functor, preserving all of the structure of Definition 1.4.1. Cosmo-
logical functors then preserve a large class of cosmological notions, including equivalences. These results, however,
do not apply to Fun(−, 𝐵) since this functor is not cosmological.
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There is also a standard 2-categorical notion of an isofibration, defined in the statement of
Proposition 1.6.10. We now show that any isofibration in an ∞-cosmos defines an isofibration in
its homotopy 2-category.

Proposition 1.6.10 (isofibrations are isofibrations). An isofibration 𝑝 ∶ 𝐸 ↠ 𝐵 in an ∞-
cosmos 𝒦 also defines an isofibration in the homotopy 2-category 𝔥𝒦: given any invertible 2-cell
as displayed below-left abutting to 𝐵 with a specified lift of one of its boundary 1-cells through 𝑝,
there exists an invertible 2-cell abutting to 𝐸 with this boundary 1-cell as displayed below-right that
whiskers with 𝑝 to the original 2-cell.

𝑋 𝐸 𝑋 𝐸

𝐵 𝐵

𝑒

𝑏

𝑝≅⇓𝛽 =

𝑒

̄𝑒
≅⇓𝛾

𝑝

Proof. The universal property of the statement says that the functor

𝑝∗ ∶ hFun(𝑋, 𝐸) ↠ hFun(𝑋, 𝐵)
is an isofibration of categories in the sense defined in Proposition 1.4.7. By axiom 1.4.1ii, since
𝑝 ∶ 𝐸 ↠ 𝐵 is an isofibration in 𝒦, the induced map 𝑝∗ ∶ Fun(𝑋, 𝐸) ↠ Fun(𝑋, 𝐵) is an isofibration
of quasi-categories. So it suffices to show that the functor h ∶ 𝒬𝒞𝑎𝑡 → 𝒞𝑎𝑡 carries isofibrations of
quasi-categories to isofibrations of categories.

So let us now consider an isofibration 𝑝 ∶ 𝐸 ↠ 𝐵 between quasi-categories. By Proposition
1.2.32, every isomorphism 𝛽 in the homotopy category h𝐵 of the quasi-category 𝐵 is represented
by a simplicial map 𝛽 ∶ 𝕀 → 𝐵. By Definition 1.2.34, the lifting problem

𝟙 𝐸

𝕀 𝐵

𝑒

𝑝𝛾

𝛽

can be solved, and the map 𝛾 ∶ 𝕀 → 𝐸 so produced represents a lift of the isomorphism from h𝐵 to
an isomorphism in h𝐸 with domain 𝑒. □

Convention 1.6.11 (on isofibrations in homotopy 2-categories). Since the converse to Propo-
sition 1.6.10 does not hold, there is a potential ambiguity when using the term “isofibration” to
refer to a map in the homotopy 2-category of an ∞-cosmos. We adopt the convention that when
we declare a map in 𝔥𝒦 to be an isofibration we always mean this is the stronger sense of defining
an isofibration in 𝒦. This stronger condition gives us access to the 2-categorical lifting property of
Proposition 1.6.10 and also to homotopical properties axiomatized in Definition 1.4.1, which ensure
that the strictly defined limits of 1.4.1i are automatically equivalence invariant constructions (see
[RV22, 6.2.8,§C.1]).

We conclude this chapter with a final definition that can be extracted from the homotopy
2-category of an ∞-cosmos. The 1- and 2-cells in the homotopy 2-category from the terminal ∞-
category 1 ∈ 𝒦 to a generic ∞-category 𝐴 ∈ 𝒦 define the objects and morphisms in the homotopy
category of the ∞-category 𝐴.
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Definition 1.6.12 (homotopy category of an ∞-category). The homotopy category of an
∞-category 𝐴 in an ∞-cosmos 𝒦 is defined to be the homotopy category of its underlying quasi-
category, that is:

h𝐴 ≔ hFun(1, 𝐴) ≔ h(Fun(1, 𝐴)).
As we shall discover, homotopy categories generally inherit “derived” analogues of structures

present at the level of ∞-categories.
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