Other Yoneda formalizations¶
Below is an incomplete list of Yoneda lemma formalizations in different systems:
Library | System | Foundations | Yoneda |
---|---|---|---|
agda-categories | Agda | Traditional, proof relevant | 1-categories1 |
agda-unimath | Agda | HoTT/UF | 1-categories |
UniMath | Coq | HoTT/UF | 1-categories, bicategories2 |
1lab | Cubical Agda | HoTT/UF (cubical) | 1-categories |
mathlib | Lean 4 | Traditional | 1-categories |
sinhp/CovariantYonedaLean3 | Lean 3 | Traditional | 1-categories |
sinhp/CovariantYonedaLean4 | Lean 4 | Traditional | 1-categories |
Archive of Formal Proofs | Isabelle/HOL | Traditional | 1-categories3 4 5 |
This project | Rzk | HoTT/UF (simplicial) | ∞-categories |
-
The agda-categories library internalizes a version of Hom-equality to each category, resulting in a flavour of bicategory theory. ↩
-
B. Ahrens, D. Frumin, M. Maggesi, N. Veltri, and N. van der Weide. Bicategories in univalent foundations. Mathematical Structures in Computer Science, vol. 31, no. 10, pp. 1232–1269, 2021. https://arxiv.org/abs/1903.01152 ↩