Other Yoneda formalizations¶
Below is an incomplete list of Yoneda lemma formalizations in different systems:
| Library | System | Foundations | Yoneda |
|---|---|---|---|
| agda-categories | Agda | Traditional, proof relevant | 1-categories1 |
| agda-unimath | Agda | HoTT/UF | 1-categories |
| UniMath | Coq | HoTT/UF | 1-categories, bicategories2 |
| 1lab | Cubical Agda | HoTT/UF (cubical) | 1-categories |
| mathlib | Lean 4 | Traditional | 1-categories |
| sinhp/CovariantYonedaLean3 | Lean 3 | Traditional | 1-categories |
| sinhp/CovariantYonedaLean4 | Lean 4 | Traditional | 1-categories |
| Archive of Formal Proofs | Isabelle/HOL | Traditional | 1-categories3 4 5 |
| This project | Rzk | HoTT/UF (simplicial) | ∞-categories |
-
The agda-categories library internalizes a version of Hom-equality to each category, resulting in a flavour of bicategory theory. ↩
-
B. Ahrens, D. Frumin, M. Maggesi, N. Veltri, and N. van der Weide. Bicategories in univalent foundations. Mathematical Structures in Computer Science, vol. 31, no. 10, pp. 1232–1269, 2021. https://arxiv.org/abs/1903.01152 ↩