structure
CategoryTheory.Enriched.ConicalLimitCone
{J : Type u₁}
[Category.{v₁, u₁} J]
(V : outParam (Type u'))
[Category.{v', u'} V]
[MonoidalCategory V]
{C : Type u}
[Category.{v, u} C]
[EnrichedOrdinaryCategory V C]
(F : Functor J C)
:
Type (max (max (max (max u u') u₁) v) v')
Mirrors LimitCone F
.
- limitCone : Limits.LimitCone F
- isConicalLimit (X : C) : Limits.IsLimit ((eCoyoneda V X).mapCone self.limitCone.cone)
Instances For
noncomputable def
CategoryTheory.Enriched.HasConicalLimit.getConicalLimitCone
{J : Type u₁}
[Category.{v₁, u₁} J]
(V : Type u')
[Category.{v', u'} V]
[MonoidalCategory V]
{C : Type u}
[Category.{v, u} C]
[EnrichedOrdinaryCategory V C]
(F : Functor J C)
[HasConicalLimit V F]
:
ConicalLimitCone V F
Use the axiom of choice to extract explicit ConicalLimitCone F
from HasConicalLimit F
.
Equations
- CategoryTheory.Enriched.HasConicalLimit.getConicalLimitCone V F = { limitCone := CategoryTheory.Limits.getLimitCone F, isConicalLimit := fun (X : C) => Classical.choice ⋯ }
Instances For
noncomputable def
CategoryTheory.Enriched.HasConicalLimit.conicalLimitCone
{J : Type u₁}
[Category.{v₁, u₁} J]
(V : Type u')
[Category.{v', u'} V]
[MonoidalCategory V]
{C : Type u}
[Category.{v, u} C]
[EnrichedOrdinaryCategory V C]
(F : Functor J C)
[HasConicalLimit V F]
:
ConicalLimitCone V F
An arbitrary choice of conical limit cone for a functor.
Equations
Instances For
noncomputable def
CategoryTheory.Enriched.HasConicalLimit.conicalLimit
{J : Type u₁}
[Category.{v₁, u₁} J]
(V : Type u')
[Category.{v', u'} V]
[MonoidalCategory V]
{C : Type u}
[Category.{v, u} C]
[EnrichedOrdinaryCategory V C]
(F : Functor J C)
[HasConicalLimit V F]
:
C
An arbitrary choice of conical limit object of a functor.
Equations
Instances For
noncomputable def
CategoryTheory.Enriched.HasConicalLimit.conicalLimit.π
{J : Type u₁}
[Category.{v₁, u₁} J]
(V : Type u')
[Category.{v', u'} V]
[MonoidalCategory V]
{C : Type u}
[Category.{v, u} C]
[EnrichedOrdinaryCategory V C]
(F : Functor J C)
[HasConicalLimit V F]
(j : J)
:
The projection from the conical limit object to a value of the functor.
Equations
Instances For
@[simp]
theorem
CategoryTheory.Enriched.HasConicalLimit.conicalLimit.w
{J : Type u₁}
[Category.{v₁, u₁} J]
(V : Type u')
[Category.{v', u'} V]
[MonoidalCategory V]
{C : Type u}
[Category.{v, u} C]
[EnrichedOrdinaryCategory V C]
(F : Functor J C)
[HasConicalLimit V F]
{j j' : J}
(f : j ⟶ j')
:
@[simp]
theorem
CategoryTheory.Enriched.HasConicalLimit.conicalLimit.w_assoc
{J : Type u₁}
[Category.{v₁, u₁} J]
(V : Type u')
[Category.{v', u'} V]
[MonoidalCategory V]
{C : Type u}
[Category.{v, u} C]
[EnrichedOrdinaryCategory V C]
(F : Functor J C)
[HasConicalLimit V F]
{j j' : J}
(f : j ⟶ j')
{Z : C}
(h : F.obj j' ⟶ Z)
:
CategoryStruct.comp (conicalLimit.π V F j) (CategoryStruct.comp (F.map f) h) = CategoryStruct.comp (conicalLimit.π V F j') h
theorem
CategoryTheory.Enriched.HasConicalLimitsOfSize.of_univLE
(V : Type u')
[Category.{v', u'} V]
[MonoidalCategory V]
(C : Type u)
[Category.{v, u} C]
[EnrichedOrdinaryCategory V C]
[HasConicalLimitsOfSize.{v₁, u₁, v', v, u, u'} V C]
[UnivLE.{v₂, v₁}]
[UnivLE.{u₂, u₁}]
:
A category that has larger conical limits also has smaller conical limits.
theorem
CategoryTheory.Enriched.HasConicalLimitsOfSize.shrink
(V : Type u')
[Category.{v', u'} V]
[MonoidalCategory V]
(C : Type u)
[Category.{v, u} C]
[EnrichedOrdinaryCategory V C]
[HasConicalLimitsOfSize.{max v₁ v₂, max u₁ u₂, v', v, u, u'} V C]
:
shrink.{v, u} C
tries to obtain HasConicalLimitsOfSize.{v, u} C
from some other HasConicalLimitsOfSize.{v₁, u₁} C
.