TODO: module docstring
@[reducible, inline]
abbrev
CategoryTheory.Enriched.HasConicalTerminal
(V : outParam (Type u_1))
[Category.{u_2, u_1} V]
[MonoidalCategory V]
(C : Type u_3)
[Category.{u_4, u_3} C]
[EnrichedOrdinaryCategory V C]
:
A category has a conical terminal object if it has a conical limit over the empty diagram.
Equations
Instances For
instance
CategoryTheory.Enriched.HasConicalTerminal_hasTerminal
(V : Type u')
[Category.{v', u'} V]
[MonoidalCategory V]
{C : Type u}
[Category.{v, u} C]
[EnrichedOrdinaryCategory V C]
[hyp : HasConicalTerminal V C]
:
noncomputable def
CategoryTheory.Enriched.HasConicalTerminal.conicalTerminal
(V : Type u')
[Category.{v', u'} V]
[MonoidalCategory V]
(C : Type u)
[Category.{v, u} C]
[EnrichedOrdinaryCategory V C]
[HasConicalTerminal V C]
:
C
Equations
Instances For
noncomputable def
CategoryTheory.Enriched.HasConicalTerminal.conicalTerminalIsConicalTerminal
(V : Type u')
[Category.{v', u'} V]
[MonoidalCategory V]
{C : Type u}
[Category.{v, u} C]
[EnrichedOrdinaryCategory V C]
[HasConicalTerminal V C]
:
IsConicalTerminal V (conicalTerminal V C)
Equations
- One or more equations did not get rendered due to their size.
Instances For
noncomputable def
CategoryTheory.Enriched.HasConicalTerminal.isTerminalIsConicalTerminal
(V : Type u')
[Category.{v', u'} V]
[MonoidalCategory V]
{C : Type u}
[Category.{v, u} C]
[EnrichedOrdinaryCategory V C]
[HasConicalTerminal V C]
{T : C}
(hT : Limits.IsTerminal T)
:
Equations
- One or more equations did not get rendered due to their size.
Instances For
noncomputable def
CategoryTheory.Enriched.HasConicalTerminal.terminalIsConicalTerminal
{V : Type u'}
[Category.{v', u'} V]
[MonoidalCategory V]
{C : Type u}
[Category.{v, u} C]
[EnrichedOrdinaryCategory V C]
[HasConicalTerminal V C]
:
IsConicalTerminal V (⊤_ C)
The terminal object is a conical terminal object.
Equations
Instances For
Conical Products #
instance
CategoryTheory.Enriched.HasConicalProducts.hasConicalTerminal
(V : Type u')
[Category.{v', u'} V]
[MonoidalCategory V]
{C : Type u}
[Category.{v, u} C]
[EnrichedOrdinaryCategory V C]
[hyp : HasConicalProducts V C]
:
instance
CategoryTheory.Enriched.HasConicalProducts.hasConicalTerminal'
(V : Type u')
[Category.{v', u'} V]
[MonoidalCategory V]
{C : Type u}
[Category.{v, u} C]
[EnrichedOrdinaryCategory V C]
[hyp : HasConicalProducts V C]
: