The opposite category of an enriched category #
When a monoidal category V
is braided, we may define the opposite V
-category of a
V
-cagtegory. The symmetry map is required to define the composition morphism.
The underlying type of the enriched opposite category.
This takes V
as an argument so that, if C
is enriched over multiple categories,
the instances of the underlying categories on ForgetEnrichment C
do not coincide
- as : C
Instances For
Equations
- CategoryTheory.eOpposite.op x = { as := x }
Instances For
Equations
- x.unop = x.as
Instances For
@[simp]
theorem
CategoryTheory.eOpposite.op_of_unop
(V : Type u₁)
{C : Type u}
(x : CategoryTheory.eOpposite V C)
:
CategoryTheory.eOpposite.op x.unop = x
@[simp]
theorem
CategoryTheory.eOpposite.unop_of_op
(V : Type u₁)
{C : Type u}
(x : C)
:
(CategoryTheory.eOpposite.op x).unop = x
def
CategoryTheory.eOpposite.equivToEnrichedOpposite
(V : Type u₁)
(C : Type u)
:
C ≃ CategoryTheory.eOpposite V C
The type-level equivalence between a type and its enriched opposite.
Equations
- CategoryTheory.eOpposite.equivToEnrichedOpposite V C = { toFun := CategoryTheory.eOpposite.op, invFun := CategoryTheory.eOpposite.unop, left_inv := ⋯, right_inv := ⋯ }
Instances For
instance
CategoryTheory.eOpposite.EnrichedCategory.opposite
(V : Type u₁)
[CategoryTheory.Category.{v₁, u₁} V]
[CategoryTheory.MonoidalCategory V]
[CategoryTheory.BraidedCategory V]
(C : Type u)
[CategoryTheory.EnrichedCategory V C]
:
The enriched category structure on eOpposite V C
Equations
- One or more equations did not get rendered due to their size.