Documentation
Init
.
Control
.
Lawful
.
Lemmas
Search
return to top
source
Imports
Init.ByCases
Init.RCases
Init.Control.Lawful.Basic
Imported by
map_inj_of_left_inverse
map_inj_of_inj
source
theorem
map_inj_of_left_inverse
{m :
Type
u_1 →
Type
u_2
}
{α β :
Type
u_1}
[
Applicative
m
]
[
LawfulApplicative
m
]
{f :
α
→
β
}
(w :
∃
(
g
:
β
→
α
)
,
∀ (
x
:
α
),
g
(
f
x
)
=
x
)
{x y :
m
α
}
(h :
f
<$>
x
=
f
<$>
y
)
:
x
=
y
source
theorem
map_inj_of_inj
{m :
Type
u_1 →
Type
u_2
}
{α β :
Type
u_1}
[
Applicative
m
]
[
LawfulApplicative
m
]
[
Nonempty
α
]
{f :
α
→
β
}
(w :
∀ (
x
y
:
α
),
f
x
=
f
y
→
x
=
y
)
{x y :
m
α
}
(h :
f
<$>
x
=
f
<$>
y
)
:
x
=
y