Documentation

Init.Data.BitVec.Basic

We define the basic algebraic structure of bitvectors. We choose the Fin representation over others for its relative efficiency (Lean has special support for Nat), and the fact that bitwise operations on Fin are already defined. Some other possible representations are List Bool, { l : List Bool // l.length = w }, Fin w → Bool.

We define many of the bitvector operations from the QF_BV logic. of SMT-LIBv2.

@[inline, deprecated BitVec.ofNatLT (since := "2025-02-13")]
def BitVec.ofNatLt {n : Nat} (i : Nat) (p : i < 2 ^ n) :

The BitVec with value i, given a proof that i < 2^n.

Equations
instance BitVec.natCastInst {w : Nat} :
Equations
@[simp]

Theorem for normalizing the bit vector literal representation.

@[simp]
theorem BitVec.natCast_eq_ofNat (w x : Nat) :
x = BitVec.ofNat w x

All empty bitvectors are equal

@[reducible, inline]
abbrev BitVec.nil :

The empty bitvector

Equations
theorem BitVec.eq_nil (x : BitVec 0) :
x = nil

Every bitvector of length 0 is equal to nil, i.e., there is only one empty bitvector

def BitVec.zero (n : Nat) :

Return a bitvector 0 of size n. This is the bitvector with all zero bits.

Equations
Equations

Bit vector of size n where all bits are 1s

Equations
Instances For
@[inline]
def BitVec.getLsb' {w : Nat} (x : BitVec w) (i : Fin w) :

Return the i-th least significant bit.

This will be renamed getLsb after the existing deprecated alias is removed.

Equations
@[inline]
def BitVec.getLsb? {w : Nat} (x : BitVec w) (i : Nat) :

Return the i-th least significant bit or none if i ≥ w.

Equations
@[inline]
def BitVec.getMsb' {w : Nat} (x : BitVec w) (i : Fin w) :

Return the i-th most significant bit.

This will be renamed getMsb after the existing deprecated alias is removed.

Equations
@[inline]
def BitVec.getMsb? {w : Nat} (x : BitVec w) (i : Nat) :

Return the i-th most significant bit or none if i ≥ w.

Equations
@[inline]
def BitVec.getLsbD {w : Nat} (x : BitVec w) (i : Nat) :

Return the i-th least significant bit or false if i ≥ w.

Equations
@[deprecated BitVec.getLsbD (since := "2024-08-29")]
def BitVec.getLsb {w : Nat} (x : BitVec w) (i : Nat) :

Return the i-th least significant bit or false if i ≥ w.

Equations
@[inline]
def BitVec.getMsbD {w : Nat} (x : BitVec w) (i : Nat) :

Return the i-th most significant bit or false if i ≥ w.

Equations
@[deprecated BitVec.getMsbD (since := "2024-08-29")]
def BitVec.getMsb {w : Nat} (x : BitVec w) (i : Nat) :

Return the i-th most significant bit or false if i ≥ w.

Equations
@[inline]
def BitVec.msb {n : Nat} (x : BitVec n) :

Return most-significant bit in bitvector.

Equations
instance BitVec.instGetElemNatBoolLt {w : Nat} :
GetElem (BitVec w) Nat Bool fun (x : BitVec w) (i : Nat) => i < w
Equations
@[simp]
theorem BitVec.getLsb'_eq_getElem {w : Nat} (x : BitVec w) (i : Fin w) :
x.getLsb' i = x[i]

We prefer x[i] as the simp normal form for getLsb'

@[simp]
theorem BitVec.getLsb?_eq_getElem? {w : Nat} (x : BitVec w) (i : Nat) :
x.getLsb? i = x[i]?

We prefer x[i]? as the simp normal form for getLsb?

theorem BitVec.getElem_eq_testBit_toNat {w : Nat} (x : BitVec w) (i : Nat) (h : i < w) :
@[simp]
theorem BitVec.getLsbD_eq_getElem {w : Nat} {x : BitVec w} {i : Nat} (h : i < w) :
x.getLsbD i = x[i]
def BitVec.toInt {n : Nat} (x : BitVec n) :

Interpret the bitvector as an integer stored in two's complement form.

Equations
def BitVec.ofInt (n : Nat) (i : Int) :

The BitVec with value (2^n + (i mod 2^n)) mod 2^n.

Equations
instance BitVec.instIntCast {w : Nat} :
Equations

Notation for bit vector literals. i#n is a shorthand for BitVec.ofNat n i.

Conventions for notations in identifiers:

  • The recommended spelling of 0#n in identifiers is zero (not ofNat_zero).

  • The recommended spelling of 1#n in identifiers is one (not ofNat_one).

Equations
  • One or more equations did not get rendered due to their size.

Unexpander for bit vector literals.

Equations
  • One or more equations did not get rendered due to their size.

Notation for bit vector literals without truncation. i#'lt is a shorthand for BitVec.ofNatLT i lt.

Equations
  • One or more equations did not get rendered due to their size.

Unexpander for bit vector literals without truncation.

Equations
  • One or more equations did not get rendered due to their size.
def BitVec.toHex {n : Nat} (x : BitVec n) :

Convert bitvector into a fixed-width hex number.

Equations
instance BitVec.instRepr {n : Nat} :
Equations
Equations
def BitVec.neg {n : Nat} (x : BitVec n) :

Negation for bit vectors. This can be interpreted as either signed or unsigned negation modulo 2^n.

SMT-Lib name: bvneg.

Equations
instance BitVec.instNeg {n : Nat} :
Equations
def BitVec.abs {n : Nat} (x : BitVec n) :

Return the absolute value of a signed bitvector.

Equations
def BitVec.mul {n : Nat} (x y : BitVec n) :

Multiplication for bit vectors. This can be interpreted as either signed or unsigned multiplication modulo 2^n.

SMT-Lib name: bvmul.

Equations
instance BitVec.instMul {n : Nat} :
Equations
def BitVec.udiv {n : Nat} (x y : BitVec n) :

Unsigned division for bit vectors using the Lean convention where division by zero returns zero.

Equations
instance BitVec.instDiv {n : Nat} :
Equations
def BitVec.umod {n : Nat} (x y : BitVec n) :

Unsigned modulo for bit vectors.

SMT-Lib name: bvurem.

Equations
instance BitVec.instMod {n : Nat} :
Equations
def BitVec.smtUDiv {n : Nat} (x y : BitVec n) :

Unsigned division for bit vectors using the SMT-Lib convention where division by zero returns the allOnes bitvector.

SMT-Lib name: bvudiv.

Equations
def BitVec.sdiv {n : Nat} (x y : BitVec n) :

Signed t-division for bit vectors using the Lean convention where division by zero returns zero.

sdiv 7#4 2 = 3#4
sdiv (-9#4) 2 = -4#4
sdiv 5#4 -2 = -2#4
sdiv (-7#4) (-2) = 3#4
Equations
def BitVec.smtSDiv {n : Nat} (x y : BitVec n) :

Signed division for bit vectors using SMTLIB rules for division by zero.

Specifically, smtSDiv x 0 = if x >= 0 then -1 else 1

SMT-Lib name: bvsdiv.

Equations
def BitVec.srem {n : Nat} (x y : BitVec n) :

Remainder for signed division rounding to zero.

SMT_Lib name: bvsrem.

Equations
def BitVec.smod {m : Nat} (x y : BitVec m) :

Remainder for signed division rounded to negative infinity.

SMT_Lib name: bvsmod.

Equations
  • One or more equations did not get rendered due to their size.

Turn a Bool into a bitvector of length 1

Equations
def BitVec.fill (w : Nat) (b : Bool) :

Fills a bitvector with w copies of the bit b.

Equations
def BitVec.ult {n : Nat} (x y : BitVec n) :

Unsigned less-than for bit vectors.

SMT-Lib name: bvult.

Equations
def BitVec.ule {n : Nat} (x y : BitVec n) :

Unsigned less-than-or-equal-to for bit vectors.

SMT-Lib name: bvule.

Equations
def BitVec.slt {n : Nat} (x y : BitVec n) :

Signed less-than for bit vectors.

BitVec.slt 6#4 7 = true
BitVec.slt 7#4 8 = false

SMT-Lib name: bvslt.

Equations
def BitVec.sle {n : Nat} (x y : BitVec n) :

Signed less-than-or-equal-to for bit vectors.

SMT-Lib name: bvsle.

Equations
@[inline]
def BitVec.cast {n m : Nat} (eq : n = m) (x : BitVec n) :

cast eq x embeds x into an equal BitVec type.

Equations
@[simp]
theorem BitVec.cast_ofNat {n m : Nat} (h : n = m) (x : Nat) :
@[simp]
theorem BitVec.cast_cast {n m k : Nat} (h₁ : n = m) (h₂ : m = k) (x : BitVec n) :
BitVec.cast h₂ (BitVec.cast h₁ x) = BitVec.cast x
@[simp]
theorem BitVec.cast_eq {n : Nat} (h : n = n) (x : BitVec n) :
def BitVec.extractLsb' {n : Nat} (start len : Nat) (x : BitVec n) :
BitVec len

Extraction of bits start to start + len - 1 from a bit vector of size n to yield a new bitvector of size len. If start + len > n, then the vector will be zero-padded in the high bits.

Equations
def BitVec.extractLsb {n : Nat} (hi lo : Nat) (x : BitVec n) :
BitVec (hi - lo + 1)

Extraction of bits hi (inclusive) down to lo (inclusive) from a bit vector of size n to yield a new bitvector of size hi - lo + 1.

SMT-Lib name: extract.

Equations
def BitVec.setWidth' {n w : Nat} (le : n w) (x : BitVec n) :

A version of setWidth that requires a proof the new width is at least as large, and is a computational noop.

Equations
@[reducible, inline, deprecated BitVec.setWidth' (since := "2024-09-18")]
abbrev BitVec.zeroExtend' {n w : Nat} (le : n w) (x : BitVec n) :

A version of setWidth that requires a proof the new width is at least as large, and is a computational noop.

Equations
def BitVec.shiftLeftZeroExtend {w : Nat} (msbs : BitVec w) (m : Nat) :
BitVec (w + m)

shiftLeftZeroExtend x n returns zeroExtend (w+n) x <<< n without needing to compute x % 2^(2+n).

Equations
def BitVec.setWidth {w : Nat} (v : Nat) (x : BitVec w) :

Transform x of length w into a bitvector of length v, by either:

  • zero extending, that is, adding zeros in the high bits until it has length v, if v > w, or
  • truncating the high bits, if v < w.

SMT-Lib name: zero_extend.

Equations
@[reducible, inline]
abbrev BitVec.zeroExtend {w : Nat} (v : Nat) (x : BitVec w) :

Transform x of length w into a bitvector of length v, by either:

  • zero extending, that is, adding zeros in the high bits until it has length v, if v > w, or
  • truncating the high bits, if v < w.

SMT-Lib name: zero_extend.

Equations
@[reducible, inline]
abbrev BitVec.truncate {w : Nat} (v : Nat) (x : BitVec w) :

Transform x of length w into a bitvector of length v, by either:

  • zero extending, that is, adding zeros in the high bits until it has length v, if v > w, or
  • truncating the high bits, if v < w.

SMT-Lib name: zero_extend.

Equations
def BitVec.signExtend {w : Nat} (v : Nat) (x : BitVec w) :

Sign extend a vector of length w, extending with i additional copies of the most significant bit in x. If x is an empty vector, then the sign is treated as zero.

SMT-Lib name: sign_extend.

Equations
def BitVec.and {n : Nat} (x y : BitVec n) :

Bitwise AND for bit vectors.

0b1010#4 &&& 0b0110#4 = 0b0010#4

SMT-Lib name: bvand.

Equations
instance BitVec.instAndOp {w : Nat} :
Equations
def BitVec.or {n : Nat} (x y : BitVec n) :

Bitwise OR for bit vectors.

0b1010#4 ||| 0b0110#4 = 0b1110#4

SMT-Lib name: bvor.

Equations
instance BitVec.instOrOp {w : Nat} :
Equations
def BitVec.xor {n : Nat} (x y : BitVec n) :

Bitwise XOR for bit vectors.

0b1010#4 ^^^ 0b0110#4 = 0b1100#4

SMT-Lib name: bvxor.

Equations
instance BitVec.instXor {w : Nat} :
Equations
def BitVec.not {n : Nat} (x : BitVec n) :

Bitwise NOT for bit vectors.

~~~(0b0101#4) == 0b1010

SMT-Lib name: bvnot.

Equations
Equations
def BitVec.shiftLeft {n : Nat} (x : BitVec n) (s : Nat) :

Left shift for bit vectors. The low bits are filled with zeros. As a numeric operation, this is equivalent to x * 2^s, modulo 2^n.

SMT-Lib name: bvshl except this operator uses a Nat shift value.

Equations
def BitVec.ushiftRight {n : Nat} (x : BitVec n) (s : Nat) :

(Logical) right shift for bit vectors. The high bits are filled with zeros. As a numeric operation, this is equivalent to x / 2^s, rounding down.

SMT-Lib name: bvlshr except this operator uses a Nat shift value.

Equations
def BitVec.sshiftRight {n : Nat} (x : BitVec n) (s : Nat) :

Arithmetic right shift for bit vectors. The high bits are filled with the most-significant bit. As a numeric operation, this is equivalent to x.toInt >>> s.

SMT-Lib name: bvashr except this operator uses a Nat shift value.

Equations
instance BitVec.instHShiftLeft {m n : Nat} :
Equations
Equations
def BitVec.sshiftRight' {n m : Nat} (a : BitVec n) (s : BitVec m) :

Arithmetic right shift for bit vectors. The high bits are filled with the most-significant bit. As a numeric operation, this is equivalent to a.toInt >>> s.toNat.

SMT-Lib name: bvashr.

Equations
def BitVec.rotateLeftAux {w : Nat} (x : BitVec w) (n : Nat) :

Auxiliary function for rotateLeft, which does not take into account the case where the rotation amount is greater than the bitvector width.

Equations
def BitVec.rotateLeft {w : Nat} (x : BitVec w) (n : Nat) :

Rotate left for bit vectors. All the bits of x are shifted to higher positions, with the top n bits wrapping around to fill the low bits.

rotateLeft  0b0011#4 3 = 0b1001

SMT-Lib name: rotate_left except this operator uses a Nat shift amount.

Equations
def BitVec.rotateRightAux {w : Nat} (x : BitVec w) (n : Nat) :

Auxiliary function for rotateRight, which does not take into account the case where the rotation amount is greater than the bitvector width.

Equations
def BitVec.rotateRight {w : Nat} (x : BitVec w) (n : Nat) :

Rotate right for bit vectors. All the bits of x are shifted to lower positions, with the bottom n bits wrapping around to fill the high bits.

rotateRight 0b01001#5 1 = 0b10100

SMT-Lib name: rotate_right except this operator uses a Nat shift amount.

Equations
def BitVec.append {n m : Nat} (msbs : BitVec n) (lsbs : BitVec m) :
BitVec (n + m)

Concatenation of bitvectors. This uses the "big endian" convention that the more significant input is on the left, so 0xAB#8 ++ 0xCD#8 = 0xABCD#16.

SMT-Lib name: concat.

Equations
instance BitVec.instHAppendHAddNat {w v : Nat} :
HAppend (BitVec w) (BitVec v) (BitVec (w + v))
Equations
def BitVec.replicate {w : Nat} (i : Nat) :
BitVec wBitVec (w * i)

replicate i x concatenates i copies of x into a new vector of length w*i.

Equations

Cons and Concat #

We give special names to the operations of adding a single bit to either end of a bitvector. We follow the precedent of Vector.cons/Vector.concat both for the name, and for the decision to have the resulting size be n + 1 for both operations (rather than 1 + n, which would be the result of appending a single bit to the front in the naive implementation).

def BitVec.concat {n : Nat} (msbs : BitVec n) (lsb : Bool) :
BitVec (n + 1)

Append a single bit to the end of a bitvector, using big endian order (see append). That is, the new bit is the least significant bit.

Equations
def BitVec.shiftConcat {n : Nat} (x : BitVec n) (b : Bool) :

x.shiftConcat b shifts all bits of x to the left by 1 and sets the least significant bit to b. It is a non-dependent version of concat that does not change the total bitwidth.

Equations
def BitVec.cons {n : Nat} (msb : Bool) (lsbs : BitVec n) :
BitVec (n + 1)

Prepend a single bit to the front of a bitvector, using big endian order (see append). That is, the new bit is the most significant bit.

Equations
theorem BitVec.append_ofBool {w : Nat} (msbs : BitVec w) (lsb : Bool) :
msbs ++ ofBool lsb = msbs.concat lsb
theorem BitVec.ofBool_append {w : Nat} (msb : Bool) (lsbs : BitVec w) :
ofBool msb ++ lsbs = BitVec.cast (cons msb lsbs)
def BitVec.twoPow (w i : Nat) :

twoPow w i is the bitvector 2^i if i < w, and 0 otherwise. That is, 2 to the power i. For the bitwise point of view, it has the ith bit as 1 and all other bits as 0.

Equations
@[irreducible]
def BitVec.hash {n : Nat} (bv : BitVec n) :

Compute a hash of a bitvector, combining 64-bit words using mixHash.

Equations

We add simp-lemmas that rewrite bitvector operations into the equivalent notation

@[simp]
theorem BitVec.append_eq {w v : Nat} (x : BitVec w) (y : BitVec v) :
x.append y = x ++ y
@[simp]
theorem BitVec.shiftLeft_eq {w : Nat} (x : BitVec w) (n : Nat) :
x.shiftLeft n = x <<< n
@[simp]
theorem BitVec.ushiftRight_eq {w : Nat} (x : BitVec w) (n : Nat) :
x.ushiftRight n = x >>> n
@[simp]
theorem BitVec.not_eq {w : Nat} (x : BitVec w) :
x.not = ~~~x
@[simp]
theorem BitVec.and_eq {w : Nat} (x y : BitVec w) :
x.and y = x &&& y
@[simp]
theorem BitVec.or_eq {w : Nat} (x y : BitVec w) :
x.or y = x ||| y
@[simp]
theorem BitVec.xor_eq {w : Nat} (x y : BitVec w) :
x.xor y = x ^^^ y
@[simp]
theorem BitVec.neg_eq {w : Nat} (x : BitVec w) :
x.neg = -x
@[simp]
theorem BitVec.add_eq {w : Nat} (x y : BitVec w) :
x.add y = x + y
@[simp]
theorem BitVec.sub_eq {w : Nat} (x y : BitVec w) :
x.sub y = x - y
@[simp]
theorem BitVec.mul_eq {w : Nat} (x y : BitVec w) :
x.mul y = x * y
@[simp]
theorem BitVec.udiv_eq {w : Nat} (x y : BitVec w) :
x.udiv y = x / y
@[simp]
theorem BitVec.umod_eq {w : Nat} (x y : BitVec w) :
x.umod y = x % y
@[simp]
theorem BitVec.zero_eq {n : Nat} :

Converts a list of Bools to a big-endian BitVec.

Equations

Converts a list of Bools to a little-endian BitVec.

Equations

Overflow #

def BitVec.uaddOverflow {w : Nat} (x y : BitVec w) :

uaddOverflow x y returns true if addition of x and y results in unsigned overflow.

SMT-Lib name: bvuaddo.

Equations
def BitVec.saddOverflow {w : Nat} (x y : BitVec w) :

saddOverflow x y returns true if addition of x and y results in signed overflow, treating x and y as 2's complement signed bitvectors.

SMT-Lib name: bvsaddo.

Equations
def BitVec.reverse {w : Nat} :
BitVec wBitVec w

Reverse the bits in a bitvector.

Equations