Documentation

Mathlib.Algebra.Opposites

Multiplicative opposite and algebraic operations on it #

In this file we define MulOpposite α = αᵐᵒᵖ to be the multiplicative opposite of α. It inherits all additive algebraic structures on α (in other files), and reverses the order of multipliers in multiplicative structures, i.e., op (x * y) = op y * op x, where MulOpposite.op is the canonical map from α to αᵐᵒᵖ.

We also define AddOpposite α = αᵃᵒᵖ to be the additive opposite of α. It inherits all multiplicative algebraic structures on α (in other files), and reverses the order of summands in additive structures, i.e. op (x + y) = op y + op x, where AddOpposite.op is the canonical map from α to αᵃᵒᵖ.

Notation #

Implementation notes #

In mathlib3 αᵐᵒᵖ was just a type synonym for α, marked irreducible after the API was developed. In mathlib4 we use a structure with one field, because it is not possible to change the reducibility of a declaration after its definition, and because Lean 4 has definitional eta reduction for structures (Lean 3 does not).

Tags #

multiplicative opposite, additive opposite

structure PreOpposite (α : Type u_3) :
Type u_3

Auxiliary type to implement MulOpposite and AddOpposite.

It turns out to be convenient to have MulOpposite α = AddOpposite α true by definition, in the same way that it is convenient to have Additive α = α; this means that we also get the defeq AddOpposite (Additive α) = MulOpposite α, which is convenient when working with quotients.

This is a compromise between making MulOpposite α = AddOpposite α = α (what we had in Lean 3) and having no defeqs within those three types (which we had as of https://github.com/leanprover-community/mathlib4/pull/1036).

  • op' :: (
    • unop' : α

      The element of α represented by x : PreOpposite α.

  • )
def MulOpposite (α : Type u_3) :
Type u_3

Multiplicative opposite of a type. This type inherits all additive structures on α and reverses left and right in multiplication.

Equations
Instances For
def AddOpposite (α : Type u_3) :
Type u_3

Additive opposite of a type. This type inherits all multiplicative structures on α and reverses left and right in addition.

Equations
Instances For

Multiplicative opposite of a type.

Equations

Additive opposite of a type.

Equations
def MulOpposite.op {α : Type u_1} :
ααᵐᵒᵖ

The element of MulOpposite α that represents x : α.

Equations
def AddOpposite.op {α : Type u_1} :
ααᵃᵒᵖ

The element of αᵃᵒᵖ that represents x : α.

Equations
def MulOpposite.unop {α : Type u_1} :
αᵐᵒᵖα

The element of α represented by x : αᵐᵒᵖ.

Equations
def AddOpposite.unop {α : Type u_1} :
αᵃᵒᵖα

The element of α represented by x : αᵃᵒᵖ.

Equations
@[simp]
theorem MulOpposite.unop_op {α : Type u_1} (x : α) :
unop (op x) = x
@[simp]
theorem AddOpposite.unop_op {α : Type u_1} (x : α) :
unop (op x) = x
@[simp]
theorem MulOpposite.op_unop {α : Type u_1} (x : αᵐᵒᵖ) :
op (unop x) = x
@[simp]
theorem AddOpposite.op_unop {α : Type u_1} (x : αᵃᵒᵖ) :
op (unop x) = x
@[simp]
@[simp]
@[simp]
@[simp]
def MulOpposite.rec' {α : Type u_1} {F : αᵐᵒᵖSort u_3} (h : (X : α) → F (op X)) (X : αᵐᵒᵖ) :
F X

A recursor for MulOpposite. Use as induction x.

Equations
def AddOpposite.rec' {α : Type u_1} {F : αᵃᵒᵖSort u_3} (h : (X : α) → F (op X)) (X : αᵃᵒᵖ) :
F X

A recursor for AddOpposite. Use as induction x.

Equations
def MulOpposite.opEquiv {α : Type u_1} :

The canonical bijection between α and αᵐᵒᵖ.

Equations
def AddOpposite.opEquiv {α : Type u_1} :

The canonical bijection between α and αᵃᵒᵖ.

Equations
@[simp]
theorem MulOpposite.opEquiv_apply {α : Type u_1} :
@[simp]
theorem AddOpposite.opEquiv_apply {α : Type u_1} :
@[simp]
theorem MulOpposite.op_inj {α : Type u_1} {x y : α} :
op x = op y x = y
@[simp]
theorem AddOpposite.op_inj {α : Type u_1} {x y : α} :
op x = op y x = y
@[simp]
theorem MulOpposite.unop_inj {α : Type u_1} {x y : αᵐᵒᵖ} :
unop x = unop y x = y
@[simp]
theorem AddOpposite.unop_inj {α : Type u_1} {x y : αᵃᵒᵖ} :
unop x = unop y x = y
@[simp]
theorem MulOpposite.forall {α : Type u_1} {p : αᵐᵒᵖProp} :
(∀ (a : αᵐᵒᵖ), p a) ∀ (a : α), p (op a)
@[simp]
theorem AddOpposite.forall {α : Type u_1} {p : αᵃᵒᵖProp} :
(∀ (a : αᵃᵒᵖ), p a) ∀ (a : α), p (op a)
@[simp]
theorem MulOpposite.exists {α : Type u_1} {p : αᵐᵒᵖProp} :
( (a : αᵐᵒᵖ), p a) (a : α), p (op a)
@[simp]
theorem AddOpposite.exists {α : Type u_1} {p : αᵃᵒᵖProp} :
( (a : αᵃᵒᵖ), p a) (a : α), p (op a)
instance MulOpposite.instZero {α : Type u_1} [Zero α] :
Equations
instance MulOpposite.instOne {α : Type u_1} [One α] :
Equations
instance AddOpposite.instZero {α : Type u_1} [Zero α] :
Equations
instance MulOpposite.instAdd {α : Type u_1} [Add α] :
Equations
instance MulOpposite.instSub {α : Type u_1} [Sub α] :
Equations
instance MulOpposite.instNeg {α : Type u_1} [Neg α] :
Equations
instance MulOpposite.instMul {α : Type u_1} [Mul α] :
Equations
instance AddOpposite.instAdd {α : Type u_1} [Add α] :
Equations
instance MulOpposite.instInv {α : Type u_1} [Inv α] :
Equations
instance AddOpposite.instNeg {α : Type u_1} [Neg α] :
Equations
instance MulOpposite.instSMul {α : Type u_1} {β : Type u_2} [SMul α β] :
Equations
instance AddOpposite.instVAdd {α : Type u_1} {β : Type u_2} [VAdd α β] :
Equations
@[simp]
theorem MulOpposite.op_zero {α : Type u_1} [Zero α] :
op 0 = 0
@[simp]
theorem MulOpposite.unop_zero {α : Type u_1} [Zero α] :
unop 0 = 0
@[simp]
theorem MulOpposite.op_one {α : Type u_1} [One α] :
op 1 = 1
@[simp]
theorem AddOpposite.op_zero {α : Type u_1} [Zero α] :
op 0 = 0
@[simp]
theorem MulOpposite.unop_one {α : Type u_1} [One α] :
unop 1 = 1
@[simp]
theorem AddOpposite.unop_zero {α : Type u_1} [Zero α] :
unop 0 = 0
@[simp]
theorem MulOpposite.op_add {α : Type u_1} [Add α] (x y : α) :
op (x + y) = op x + op y
@[simp]
theorem MulOpposite.unop_add {α : Type u_1} [Add α] (x y : αᵐᵒᵖ) :
unop (x + y) = unop x + unop y
@[simp]
theorem MulOpposite.op_neg {α : Type u_1} [Neg α] (x : α) :
op (-x) = -op x
@[simp]
theorem MulOpposite.unop_neg {α : Type u_1} [Neg α] (x : αᵐᵒᵖ) :
unop (-x) = -unop x
@[simp]
theorem MulOpposite.op_mul {α : Type u_1} [Mul α] (x y : α) :
op (x * y) = op y * op x
@[simp]
theorem AddOpposite.op_add {α : Type u_1} [Add α] (x y : α) :
op (x + y) = op y + op x
@[simp]
theorem MulOpposite.unop_mul {α : Type u_1} [Mul α] (x y : αᵐᵒᵖ) :
unop (x * y) = unop y * unop x
@[simp]
theorem AddOpposite.unop_add {α : Type u_1} [Add α] (x y : αᵃᵒᵖ) :
unop (x + y) = unop y + unop x
@[simp]
theorem MulOpposite.op_inv {α : Type u_1} [Inv α] (x : α) :
@[simp]
theorem AddOpposite.op_neg {α : Type u_1} [Neg α] (x : α) :
op (-x) = -op x
@[simp]
theorem MulOpposite.unop_inv {α : Type u_1} [Inv α] (x : αᵐᵒᵖ) :
@[simp]
theorem AddOpposite.unop_neg {α : Type u_1} [Neg α] (x : αᵃᵒᵖ) :
unop (-x) = -unop x
@[simp]
theorem MulOpposite.op_sub {α : Type u_1} [Sub α] (x y : α) :
op (x - y) = op x - op y
@[simp]
theorem MulOpposite.unop_sub {α : Type u_1} [Sub α] (x y : αᵐᵒᵖ) :
unop (x - y) = unop x - unop y
@[simp]
theorem MulOpposite.op_smul {α : Type u_1} {β : Type u_2} [SMul α β] (a : α) (b : β) :
op (a b) = a op b
@[simp]
theorem AddOpposite.op_vadd {α : Type u_1} {β : Type u_2} [VAdd α β] (a : α) (b : β) :
op (a +ᵥ b) = a +ᵥ op b
@[simp]
theorem MulOpposite.unop_smul {α : Type u_1} {β : Type u_2} [SMul α β] (a : α) (b : βᵐᵒᵖ) :
unop (a b) = a unop b
@[simp]
theorem AddOpposite.unop_vadd {α : Type u_1} {β : Type u_2} [VAdd α β] (a : α) (b : βᵃᵒᵖ) :
unop (a +ᵥ b) = a +ᵥ unop b
@[simp]
theorem MulOpposite.unop_eq_zero_iff {α : Type u_1} [Zero α] (a : αᵐᵒᵖ) :
unop a = 0 a = 0
@[simp]
theorem MulOpposite.op_eq_zero_iff {α : Type u_1} [Zero α] (a : α) :
op a = 0 a = 0
theorem MulOpposite.unop_ne_zero_iff {α : Type u_1} [Zero α] (a : αᵐᵒᵖ) :
unop a 0 a 0
theorem MulOpposite.op_ne_zero_iff {α : Type u_1} [Zero α] (a : α) :
op a 0 a 0
@[simp]
theorem MulOpposite.unop_eq_one_iff {α : Type u_1} [One α] (a : αᵐᵒᵖ) :
unop a = 1 a = 1
@[simp]
theorem AddOpposite.unop_eq_zero_iff {α : Type u_1} [Zero α] (a : αᵃᵒᵖ) :
unop a = 0 a = 0
@[simp]
theorem MulOpposite.op_eq_one_iff {α : Type u_1} [One α] (a : α) :
op a = 1 a = 1
@[simp]
theorem AddOpposite.op_eq_zero_iff {α : Type u_1} [Zero α] (a : α) :
op a = 0 a = 0
instance AddOpposite.instOne {α : Type u_1} [One α] :
Equations
@[simp]
theorem AddOpposite.op_one {α : Type u_1} [One α] :
op 1 = 1
@[simp]
theorem AddOpposite.unop_one {α : Type u_1} [One α] :
unop 1 = 1
@[simp]
theorem AddOpposite.op_eq_one_iff {α : Type u_1} [One α] {a : α} :
op a = 1 a = 1
@[simp]
theorem AddOpposite.unop_eq_one_iff {α : Type u_1} [One α] {a : αᵃᵒᵖ} :
unop a = 1 a = 1
instance AddOpposite.instMul {α : Type u_1} [Mul α] :
Equations
@[simp]
theorem AddOpposite.op_mul {α : Type u_1} [Mul α] (a b : α) :
op (a * b) = op a * op b
@[simp]
theorem AddOpposite.unop_mul {α : Type u_1} [Mul α] (a b : αᵃᵒᵖ) :
unop (a * b) = unop a * unop b
instance AddOpposite.instInv {α : Type u_1} [Inv α] :
Equations
@[simp]
theorem AddOpposite.op_inv {α : Type u_1} [Inv α] (a : α) :
@[simp]
theorem AddOpposite.unop_inv {α : Type u_1} [Inv α] (a : αᵃᵒᵖ) :
instance AddOpposite.instDiv {α : Type u_1} [Div α] :
Equations
@[simp]
theorem AddOpposite.op_div {α : Type u_1} [Div α] (a b : α) :
op (a / b) = op a / op b
@[simp]
theorem AddOpposite.unop_div {α : Type u_1} [Div α] (a b : αᵃᵒᵖ) :
unop (a / b) = unop a / unop b