Positive & negative parts #
Mathematical structures possessing an absolute value often also possess a unique decomposition of elements into "positive" and "negative" parts which are in some sense "disjoint" (e.g. the Jordan decomposition of a measure).
This file provides instances of PosPart
and NegPart
, the positive and negative parts of an
element in a lattice ordered group.
Main statements #
posPart_sub_negPart
: Every elementa
can be decomposed intoa⁺ - a⁻
, the difference of its positive and negative parts.posPart_inf_negPart_eq_zero
: The positive and negative parts are coprime.
References #
- [Birkhoff, Lattice-ordered Groups][birkhoff1942]
- [Bourbaki, Algebra II][bourbaki1981]
- [Fuchs, Partially Ordered Algebraic Systems][fuchs1963]
- [Zaanen, Lectures on "Riesz Spaces"][zaanen1966]
- [Banasiak, Banach Lattices in Applications][banasiak]
Tags #
positive part, negative part
@[simp]
Alias of the reverse direction of oneLePart_eq_self
.
@[simp]
Alias of the reverse direction of oneLePart_eq_one
.
@[simp]
@[simp]
@[simp]
Alias of the reverse direction of leOnePart_eq_inv
.
@[simp]
@[simp]
Alias of the reverse direction of leOnePart_eq_one
.
@[simp]
@[simp]
theorem
one_lt_ltOnePart
{α : Type u_1}
[Lattice α]
[Group α]
{a : α}
[MulLeftMono α]
(ha : a < 1)
:
@[simp]
@[simp]
@[simp]
theorem
oneLePart_leOnePart_injective
{α : Type u_1}
[Lattice α]
[Group α]
[MulLeftMono α]
:
Function.Injective fun (a : α) => (a⁺ᵐ , a⁻ᵐ)
theorem
posPart_negPart_injective
{α : Type u_1}
[Lattice α]
[AddGroup α]
[AddLeftMono α]
:
Function.Injective fun (a : α) => (a⁺, a⁻)
theorem
leOnePart_anti
{α : Type u_1}
[Lattice α]
[Group α]
[MulLeftMono α]
[MulRightMono α]
:
Antitone leOnePart
theorem
negPart_anti
{α : Type u_1}
[Lattice α]
[AddGroup α]
[AddLeftMono α]
[AddRightMono α]
:
Antitone negPart
theorem
leOnePart_eq_inv_inf_one
{α : Type u_1}
[Lattice α]
[Group α]
[MulLeftMono α]
[MulRightMono α]
(a : α)
:
theorem
negPart_eq_neg_inf_zero
{α : Type u_1}
[Lattice α]
[AddGroup α]
[AddLeftMono α]
[AddRightMono α]
(a : α)
:
theorem
oneLePart_mul_leOnePart
{α : Type u_1}
[Lattice α]
[Group α]
[MulLeftMono α]
[MulRightMono α]
(a : α)
:
theorem
posPart_add_negPart
{α : Type u_1}
[Lattice α]
[AddGroup α]
[AddLeftMono α]
[AddRightMono α]
(a : α)
:
theorem
leOnePart_mul_oneLePart
{α : Type u_1}
[Lattice α]
[Group α]
[MulLeftMono α]
[MulRightMono α]
(a : α)
:
theorem
negPart_add_posPart
{α : Type u_1}
[Lattice α]
[AddGroup α]
[AddLeftMono α]
[AddRightMono α]
(a : α)
:
theorem
oneLePart_inf_leOnePart_eq_one
{α : Type u_1}
[Lattice α]
[Group α]
[MulLeftMono α]
[MulRightMono α]
(a : α)
:
theorem
posPart_inf_negPart_eq_zero
{α : Type u_1}
[Lattice α]
[AddGroup α]
[AddLeftMono α]
[AddRightMono α]
(a : α)
:
theorem
sup_eq_add_posPart_sub
{α : Type u_1}
[Lattice α]
[AddCommGroup α]
[AddLeftMono α]
(a : α)
(b : α)
:
theorem
inf_eq_sub_posPart_sub
{α : Type u_1}
[Lattice α]
[AddCommGroup α]
[AddLeftMono α]
(a : α)
(b : α)
:
theorem
le_iff_posPart_negPart
{α : Type u_1}
[Lattice α]
[AddCommGroup α]
[AddLeftMono α]
(a : α)
(b : α)
:
theorem
abs_add_eq_two_nsmul_posPart
{α : Type u_1}
[Lattice α]
[AddCommGroup α]
[AddLeftMono α]
(a : α)
:
theorem
add_abs_eq_two_nsmul_posPart
{α : Type u_1}
[Lattice α]
[AddCommGroup α]
[AddLeftMono α]
(a : α)
:
theorem
abs_sub_eq_two_nsmul_negPart
{α : Type u_1}
[Lattice α]
[AddCommGroup α]
[AddLeftMono α]
(a : α)
:
theorem
sub_abs_eq_neg_two_nsmul_negPart
{α : Type u_1}
[Lattice α]
[AddCommGroup α]
[AddLeftMono α]
(a : α)
:
@[simp]
@[simp]
theorem
oneLePart_of_one_lt_oneLePart
{α : Type u_1}
[LinearOrder α]
[Group α]
{a : α}
(ha : 1 < a⁺ᵐ)
:
theorem
posPart_eq_of_posPart_pos
{α : Type u_1}
[LinearOrder α]
[AddGroup α]
{a : α}
(ha : 0 < a⁺)
:
@[simp]
@[simp]
@[simp]
theorem
leOnePart_lt
{α : Type u_1}
[LinearOrder α]
[Group α]
{a : α}
{b : α}
[MulLeftMono α]
[MulRightMono α]
:
@[simp]
theorem
negPart_lt
{α : Type u_1}
[LinearOrder α]
[AddGroup α]
{a : α}
{b : α}
[AddLeftMono α]
[AddRightMono α]
: