Absolute values in linear ordered rings. #
abs
as a MonoidWithZeroHom
.
Equations
- absHom = { toFun := abs, map_zero' := ⋯, map_one' := ⋯, map_mul' := ⋯ }
Instances For
@[simp]
theorem
abs_lt_of_sq_lt_sq
{α : Type u_1}
[LinearOrderedRing α]
{a : α}
{b : α}
(h : a ^ 2 < b ^ 2)
(hb : 0 ≤ b)
:
|a| < b
theorem
abs_le_of_sq_le_sq
{α : Type u_1}
[LinearOrderedRing α]
{a : α}
{b : α}
(h : a ^ 2 ≤ b ^ 2)
(hb : 0 ≤ b)
:
|a| ≤ b
theorem
le_of_sq_le_sq
{α : Type u_1}
[LinearOrderedRing α]
{a : α}
{b : α}
(h : a ^ 2 ≤ b ^ 2)
(hb : 0 ≤ b)
:
a ≤ b
@[simp]
@[simp]
@[simp]
@[simp]