Documentation

Mathlib.CategoryTheory.Limits.Shapes.Kernels

Kernels and cokernels #

In a category with zero morphisms, the kernel of a morphism f : X ⟶ Y is the equalizer of f and 0 : X ⟶ Y. (Similarly the cokernel is the coequalizer.)

The basic definitions are

Main statements #

Besides the definition and lifts, we prove

and the corresponding dual statements.

Future work #

Implementation notes #

As with the other special shapes in the limits library, all the definitions here are given as abbreviations of the general statements for limits, so all the simp lemmas and theorems about general limits can be used.

References #

@[reducible, inline]
abbrev CategoryTheory.Limits.HasKernel {C : Type u} [Category.{v, u} C] [HasZeroMorphisms C] {X Y : C} (f : X Y) :

A morphism f has a kernel if the functor ParallelPair f 0 has a limit.

Equations
@[reducible, inline]

A morphism f has a cokernel if the functor ParallelPair f 0 has a colimit.

Equations
@[reducible, inline]
abbrev CategoryTheory.Limits.KernelFork {C : Type u} [Category.{v, u} C] [HasZeroMorphisms C] {X Y : C} (f : X Y) :
Type (max u v)

A kernel fork is just a fork where the second morphism is a zero morphism.

Equations
@[reducible, inline]
abbrev CategoryTheory.Limits.KernelFork.ofι {C : Type u} [Category.{v, u} C] [HasZeroMorphisms C] {X Y : C} {f : X Y} {Z : C} (ι : Z X) (w : CategoryStruct.comp ι f = 0) :

A morphism ι satisfying ι ≫ f = 0 determines a kernel fork over f.

Equations
@[simp]
theorem CategoryTheory.Limits.KernelFork.ι_ofι {C : Type u} [Category.{v, u} C] [HasZeroMorphisms C] {X Y P : C} (f : X Y) (ι : P X) (w : CategoryStruct.comp ι f = 0) :
Fork.ι (ofι ι w) = ι
def CategoryTheory.Limits.isoOfι {C : Type u} [Category.{v, u} C] [HasZeroMorphisms C] {X Y : C} {f : X Y} (s : Fork f 0) :
s Fork.ofι s.ι

Every kernel fork s is isomorphic (actually, equal) to fork.ofι (fork.ι s) _.

Equations
def CategoryTheory.Limits.ofιCongr {C : Type u} [Category.{v, u} C] [HasZeroMorphisms C] {X Y : C} {f : X Y} {P : C} {ι ι' : P X} {w : CategoryStruct.comp ι f = 0} (h : ι = ι') :

If ι = ι', then fork.ofι ι _ and fork.ofι ι' _ are isomorphic.

Equations

If F is an equivalence, then applying F to a diagram indexing a (co)kernel of f yields the diagram indexing the (co)kernel of F.map f.

Equations
  • One or more equations did not get rendered due to their size.
def CategoryTheory.Limits.KernelFork.IsLimit.lift' {C : Type u} [Category.{v, u} C] [HasZeroMorphisms C] {X Y : C} {f : X Y} {s : KernelFork f} (hs : IsLimit s) {W : C} (k : W X) (h : CategoryStruct.comp k f = 0) :

If s is a limit kernel fork and k : W ⟶ X satisfies k ≫ f = 0, then there is some l : W ⟶ s.X such that l ≫ fork.ι s = k.

Equations
def CategoryTheory.Limits.isLimitAux {C : Type u} [Category.{v, u} C] [HasZeroMorphisms C] {X Y : C} {f : X Y} (t : KernelFork f) (lift : (s : KernelFork f) → s.pt t.pt) (fac : ∀ (s : KernelFork f), CategoryStruct.comp (lift s) (Fork.ι t) = Fork.ι s) (uniq : ∀ (s : KernelFork f) (m : s.pt t.pt), CategoryStruct.comp m (Fork.ι t) = Fork.ι sm = lift s) :

This is a slightly more convenient method to verify that a kernel fork is a limit cone. It only asks for a proof of facts that carry any mathematical content

Equations
def CategoryTheory.Limits.KernelFork.IsLimit.ofι {C : Type u} [Category.{v, u} C] [HasZeroMorphisms C] {X Y : C} {f : X Y} {W : C} (g : W X) (eq : CategoryStruct.comp g f = 0) (lift : {W' : C} → (g' : W' X) → CategoryStruct.comp g' f = 0 → (W' W)) (fac : ∀ {W' : C} (g' : W' X) (eq' : CategoryStruct.comp g' f = 0), CategoryStruct.comp (lift g' eq') g = g') (uniq : ∀ {W' : C} (g' : W' X) (eq' : CategoryStruct.comp g' f = 0) (m : W' W), CategoryStruct.comp m g = g'm = lift g' eq') :

This is a more convenient formulation to show that a KernelFork constructed using KernelFork.ofι is a limit cone.

Equations
  • One or more equations did not get rendered due to their size.
def CategoryTheory.Limits.KernelFork.IsLimit.ofι' {C : Type u} [Category.{v, u} C] [HasZeroMorphisms C] {X Y K : C} {f : X Y} (i : K X) (w : CategoryStruct.comp i f = 0) (h : {A : C} → (k : A X) → CategoryStruct.comp k f = 0{ l : A K // CategoryStruct.comp l i = k }) [hi : Mono i] :

This is a more convenient formulation to show that a KernelFork of the form KernelFork.ofι i _ is a limit cone when we know that i is a monomorphism.

Equations
  • One or more equations did not get rendered due to their size.
def CategoryTheory.Limits.isKernelCompMono {C : Type u} [Category.{v, u} C] [HasZeroMorphisms C] {X Y : C} {f : X Y} {c : KernelFork f} (i : IsLimit c) {Z : C} (g : Y Z) [hg : Mono g] {h : X Z} (hh : h = CategoryStruct.comp f g) :

Every kernel of f induces a kernel of f ≫ g if g is mono.

Equations
  • One or more equations did not get rendered due to their size.
theorem CategoryTheory.Limits.isKernelCompMono_lift {C : Type u} [Category.{v, u} C] [HasZeroMorphisms C] {X Y : C} {f : X Y} {c : KernelFork f} (i : IsLimit c) {Z : C} (g : Y Z) [hg : Mono g] {h : X Z} (hh : h = CategoryStruct.comp f g) (s : KernelFork h) :
(isKernelCompMono i g hh).lift s = i.lift (Fork.ofι (Fork.ι s) )
def CategoryTheory.Limits.isKernelOfComp {C : Type u} [Category.{v, u} C] [HasZeroMorphisms C] {X Y : C} {f : X Y} {W : C} (g : Y W) (h : X W) {c : KernelFork h} (i : IsLimit c) (hf : CategoryStruct.comp (Fork.ι c) f = 0) (hfg : CategoryStruct.comp f g = h) :

Every kernel of f ≫ g is also a kernel of f, as long as c.ι ≫ f vanishes.

Equations
  • One or more equations did not get rendered due to their size.

X identifies to the kernel of a zero map X ⟶ Y.

Equations
  • One or more equations did not get rendered due to their size.

Any zero object identifies to the kernel of a given monomorphisms.

Equations
theorem CategoryTheory.Limits.KernelFork.IsLimit.isIso_ι {C : Type u} [Category.{v, u} C] [HasZeroMorphisms C] {X Y : C} {f : X Y} (c : KernelFork f) (hc : IsLimit c) (hf : f = 0) :
def CategoryTheory.Limits.KernelFork.isLimitOfIsLimitOfIff {C : Type u} [Category.{v, u} C] [HasZeroMorphisms C] {X Y : C} {g : X Y} {c : KernelFork g} (hc : IsLimit c) {X' Y' : C} (g' : X' Y') (e : X X') (iff : ∀ ⦃W : C⦄ (φ : W X), CategoryStruct.comp φ g = 0 CategoryStruct.comp φ (CategoryStruct.comp e.hom g') = 0) :

If c is a limit kernel fork for g : X ⟶ Y, e : X ≅ X' and g' : X' ⟶ Y is a morphism, then there is a limit kernel fork for g' with the same point as c if for any morphism φ : W ⟶ X, there is an equivalence φ ≫ g = 0 ↔ φ ≫ e.hom ≫ g' = 0.

Equations
  • One or more equations did not get rendered due to their size.
def CategoryTheory.Limits.KernelFork.isLimitOfIsLimitOfIff' {C : Type u} [Category.{v, u} C] [HasZeroMorphisms C] {X Y : C} {g : X Y} {c : KernelFork g} (hc : IsLimit c) {Y' : C} (g' : X Y') (iff : ∀ ⦃W : C⦄ (φ : W X), CategoryStruct.comp φ g = 0 CategoryStruct.comp φ g' = 0) :
IsLimit (ofι (Fork.ι c) )

If c is a limit kernel fork for g : X ⟶ Y, and g' : X ⟶ Y' is a another morphism, then there is a limit kernel fork for g' with the same point as c if for any morphism φ : W ⟶ X, there is an equivalence φ ≫ g = 0 ↔ φ ≫ g' = 0.

Equations
  • One or more equations did not get rendered due to their size.
def CategoryTheory.Limits.KernelFork.mapOfIsLimit {C : Type u} [Category.{v, u} C] [HasZeroMorphisms C] {X Y : C} {f : X Y} {X' Y' : C} {f' : X' Y'} (kf : KernelFork f) {kf' : KernelFork f'} (hf' : IsLimit kf') (φ : Arrow.mk f Arrow.mk f') :
kf.pt kf'.pt

The morphism between points of kernel forks induced by a morphism in the category of arrows.

Equations
@[simp]
theorem CategoryTheory.Limits.KernelFork.mapOfIsLimit_ι {C : Type u} [Category.{v, u} C] [HasZeroMorphisms C] {X Y : C} {f : X Y} {X' Y' : C} {f' : X' Y'} (kf : KernelFork f) {kf' : KernelFork f'} (hf' : IsLimit kf') (φ : Arrow.mk f Arrow.mk f') :
@[simp]
theorem CategoryTheory.Limits.KernelFork.mapOfIsLimit_ι_assoc {C : Type u} [Category.{v, u} C] [HasZeroMorphisms C] {X Y : C} {f : X Y} {X' Y' : C} {f' : X' Y'} (kf : KernelFork f) {kf' : KernelFork f'} (hf' : IsLimit kf') (φ : Arrow.mk f Arrow.mk f') {Z : C} (h : (parallelPair f' 0).obj WalkingParallelPair.zero Z) :
def CategoryTheory.Limits.KernelFork.mapIsoOfIsLimit {C : Type u} [Category.{v, u} C] [HasZeroMorphisms C] {X Y : C} {f : X Y} {X' Y' : C} {f' : X' Y'} {kf : KernelFork f} {kf' : KernelFork f'} (hf : IsLimit kf) (hf' : IsLimit kf') (φ : Arrow.mk f Arrow.mk f') :
kf.pt kf'.pt

The isomorphism between points of limit kernel forks induced by an isomorphism in the category of arrows.

Equations
@[simp]
theorem CategoryTheory.Limits.KernelFork.mapIsoOfIsLimit_inv {C : Type u} [Category.{v, u} C] [HasZeroMorphisms C] {X Y : C} {f : X Y} {X' Y' : C} {f' : X' Y'} {kf : KernelFork f} {kf' : KernelFork f'} (hf : IsLimit kf) (hf' : IsLimit kf') (φ : Arrow.mk f Arrow.mk f') :
(mapIsoOfIsLimit hf hf' φ).inv = kf'.mapOfIsLimit hf φ.inv
@[simp]
theorem CategoryTheory.Limits.KernelFork.mapIsoOfIsLimit_hom {C : Type u} [Category.{v, u} C] [HasZeroMorphisms C] {X Y : C} {f : X Y} {X' Y' : C} {f' : X' Y'} {kf : KernelFork f} {kf' : KernelFork f'} (hf : IsLimit kf) (hf' : IsLimit kf') (φ : Arrow.mk f Arrow.mk f') :
(mapIsoOfIsLimit hf hf' φ).hom = kf.mapOfIsLimit hf' φ.hom
@[reducible, inline]
abbrev CategoryTheory.Limits.kernel {C : Type u} [Category.{v, u} C] [HasZeroMorphisms C] {X Y : C} (f : X Y) [HasKernel f] :
C

The kernel of a morphism, expressed as the equalizer with the 0 morphism.

Equations

The kernel built from kernel.ι f is limiting.

Equations
  • One or more equations did not get rendered due to their size.
@[reducible, inline]
abbrev CategoryTheory.Limits.kernel.lift {C : Type u} [Category.{v, u} C] [HasZeroMorphisms C] {X Y : C} (f : X Y) [HasKernel f] {W : C} (k : W X) (h : CategoryStruct.comp k f = 0) :

Given any morphism k : W ⟶ X satisfying k ≫ f = 0, k factors through kernel.ι f via kernel.lift : W ⟶ kernel f.

Equations
Instances For
@[simp]
theorem CategoryTheory.Limits.kernel.lift_ι {C : Type u} [Category.{v, u} C] [HasZeroMorphisms C] {X Y : C} (f : X Y) [HasKernel f] {W : C} (k : W X) (h : CategoryStruct.comp k f = 0) :
@[simp]
theorem CategoryTheory.Limits.kernel.lift_ι_assoc {C : Type u} [Category.{v, u} C] [HasZeroMorphisms C] {X Y : C} (f : X Y) [HasKernel f] {W : C} (k : W X) (h : CategoryStruct.comp k f = 0) {Z : C} (h✝ : X Z) :
@[simp]
theorem CategoryTheory.Limits.kernel.lift_zero {C : Type u} [Category.{v, u} C] [HasZeroMorphisms C] {X Y : C} (f : X Y) [HasKernel f] {W : C} {h : CategoryStruct.comp 0 f = 0} :
lift f 0 h = 0
instance CategoryTheory.Limits.kernel.lift_mono {C : Type u} [Category.{v, u} C] [HasZeroMorphisms C] {X Y : C} (f : X Y) [HasKernel f] {W : C} (k : W X) (h : CategoryStruct.comp k f = 0) [Mono k] :
Mono (lift f k h)
def CategoryTheory.Limits.kernel.lift' {C : Type u} [Category.{v, u} C] [HasZeroMorphisms C] {X Y : C} (f : X Y) [HasKernel f] {W : C} (k : W X) (h : CategoryStruct.comp k f = 0) :

Any morphism k : W ⟶ X satisfying k ≫ f = 0 induces a morphism l : W ⟶ kernel f such that l ≫ kernel.ι f = k.

Equations
@[reducible, inline]
abbrev CategoryTheory.Limits.kernel.map {C : Type u} [Category.{v, u} C] [HasZeroMorphisms C] {X Y : C} (f : X Y) [HasKernel f] {X' Y' : C} (f' : X' Y') [HasKernel f'] (p : X X') (q : Y Y') (w : CategoryStruct.comp f q = CategoryStruct.comp p f') :

A commuting square induces a morphism of kernels.

Equations
theorem CategoryTheory.Limits.kernel.lift_map {C : Type u} [Category.{v, u} C] [HasZeroMorphisms C] {X Y Z X' Y' Z' : C} (f : X Y) (g : Y Z) [HasKernel g] (w : CategoryStruct.comp f g = 0) (f' : X' Y') (g' : Y' Z') [HasKernel g'] (w' : CategoryStruct.comp f' g' = 0) (p : X X') (q : Y Y') (r : Z Z') (h₁ : CategoryStruct.comp f q = CategoryStruct.comp p f') (h₂ : CategoryStruct.comp g r = CategoryStruct.comp q g') :
CategoryStruct.comp (lift g f w) (map g g' q r h₂) = CategoryStruct.comp p (lift g' f' w')

Given a commutative diagram X --f--> Y --g--> Z | | | | | | v v v X' -f'-> Y' -g'-> Z' with horizontal arrows composing to zero, then we obtain a commutative square X ---> kernel g | | | | kernel.map | | v v X' --> kernel g'

def CategoryTheory.Limits.kernel.mapIso {C : Type u} [Category.{v, u} C] [HasZeroMorphisms C] {X Y : C} (f : X Y) [HasKernel f] {X' Y' : C} (f' : X' Y') [HasKernel f'] (p : X X') (q : Y Y') (w : CategoryStruct.comp f q.hom = CategoryStruct.comp p.hom f') :

A commuting square of isomorphisms induces an isomorphism of kernels.

Equations
  • One or more equations did not get rendered due to their size.
@[simp]
theorem CategoryTheory.Limits.kernel.mapIso_hom {C : Type u} [Category.{v, u} C] [HasZeroMorphisms C] {X Y : C} (f : X Y) [HasKernel f] {X' Y' : C} (f' : X' Y') [HasKernel f'] (p : X X') (q : Y Y') (w : CategoryStruct.comp f q.hom = CategoryStruct.comp p.hom f') :
(mapIso f f' p q w).hom = map f f' p.hom q.hom w
@[simp]
theorem CategoryTheory.Limits.kernel.mapIso_inv {C : Type u} [Category.{v, u} C] [HasZeroMorphisms C] {X Y : C} (f : X Y) [HasKernel f] {X' Y' : C} (f' : X' Y') [HasKernel f'] (p : X X') (q : Y Y') (w : CategoryStruct.comp f q.hom = CategoryStruct.comp p.hom f') :
(mapIso f f' p q w).inv = map f' f p.inv q.inv

Every kernel of the zero morphism is an isomorphism

def CategoryTheory.Limits.kernelIsoOfEq {C : Type u} [Category.{v, u} C] [HasZeroMorphisms C] {X Y : C} {f g : X Y} [HasKernel f] [HasKernel g] (h : f = g) :

If two morphisms are known to be equal, then their kernels are isomorphic.

Equations
@[simp]
@[simp]
theorem CategoryTheory.Limits.lift_comp_kernelIsoOfEq_hom {C : Type u} [Category.{v, u} C] [HasZeroMorphisms C] {X Y Z : C} {f g : X Y} [HasKernel f] [HasKernel g] (h : f = g) (e : Z X) (he : CategoryStruct.comp e f = 0) :
@[simp]
theorem CategoryTheory.Limits.lift_comp_kernelIsoOfEq_hom_assoc {C : Type u} [Category.{v, u} C] [HasZeroMorphisms C] {X Y Z : C} {f g : X Y} [HasKernel f] [HasKernel g] (h : f = g) (e : Z X) (he : CategoryStruct.comp e f = 0) {Z✝ : C} (h✝ : kernel g Z✝) :
@[simp]
theorem CategoryTheory.Limits.lift_comp_kernelIsoOfEq_inv {C : Type u} [Category.{v, u} C] [HasZeroMorphisms C] {X Y Z : C} {f g : X Y} [HasKernel f] [HasKernel g] (h : f = g) (e : Z X) (he : CategoryStruct.comp e g = 0) :
@[simp]
theorem CategoryTheory.Limits.lift_comp_kernelIsoOfEq_inv_assoc {C : Type u} [Category.{v, u} C] [HasZeroMorphisms C] {X Y Z : C} {f g : X Y} [HasKernel f] [HasKernel g] (h : f = g) (e : Z X) (he : CategoryStruct.comp e g = 0) {Z✝ : C} (h✝ : kernel f Z✝) :
@[simp]
theorem CategoryTheory.Limits.kernelIsoOfEq_trans {C : Type u} [Category.{v, u} C] [HasZeroMorphisms C] {X Y : C} {f g h : X Y} [HasKernel f] [HasKernel g] [HasKernel h] (w₁ : f = g) (w₂ : g = h) :

When g is a monomorphism, the kernel of f ≫ g is isomorphic to the kernel of f.

Equations
  • One or more equations did not get rendered due to their size.
@[simp]
@[simp]

When f is an isomorphism, the kernel of f ≫ g is isomorphic to the kernel of g.

Equations
  • One or more equations did not get rendered due to their size.
def CategoryTheory.Limits.kernel.congr {C : Type u} [Category.{v, u} C] [HasZeroMorphisms C] {X Y : C} (f g : X Y) [HasKernel f] [HasKernel g] (h : f = g) :

Equal maps have isomorphic kernels.

Equations
  • One or more equations did not get rendered due to their size.
@[simp]
theorem CategoryTheory.Limits.kernel.congr_hom {C : Type u} [Category.{v, u} C] [HasZeroMorphisms C] {X Y : C} (f g : X Y) [HasKernel f] [HasKernel g] (h : f = g) :
(congr f g h).hom = lift g (ι f)
@[simp]
theorem CategoryTheory.Limits.kernel.congr_inv {C : Type u} [Category.{v, u} C] [HasZeroMorphisms C] {X Y : C} (f g : X Y) [HasKernel f] [HasKernel g] (h : f = g) :
(congr f g h).inv = lift f (ι g)

The morphism from the zero object determines a cone on a kernel diagram

Equations

The kernel of a monomorphism is isomorphic to the zero object

Equations
  • One or more equations did not get rendered due to their size.

The kernel morphism of a monomorphism is a zero morphism

def CategoryTheory.Limits.zeroKernelOfCancelZero {C : Type u} [Category.{v, u} C] [HasZeroMorphisms C] [HasZeroObject C] {X Y : C} (f : X Y) (hf : ∀ (Z : C) (g : Z X), CategoryStruct.comp g f = 0g = 0) :

If g ≫ f = 0 implies g = 0 for all g, then 0 : 0 ⟶ X is a kernel of f.

Equations
def CategoryTheory.Limits.IsKernel.ofCompIso {C : Type u} [Category.{v, u} C] [HasZeroMorphisms C] {X Y : C} (f : X Y) {Z : C} (l : X Z) (i : Z Y) (h : CategoryStruct.comp l i.hom = f) {s : KernelFork f} (hs : IsLimit s) :

If i is an isomorphism such that l ≫ i.hom = f, any kernel of f is a kernel of l.

Equations
  • One or more equations did not get rendered due to their size.
def CategoryTheory.Limits.kernel.ofCompIso {C : Type u} [Category.{v, u} C] [HasZeroMorphisms C] {X Y : C} (f : X Y) [HasKernel f] {Z : C} (l : X Z) (i : Z Y) (h : CategoryStruct.comp l i.hom = f) :

If i is an isomorphism such that l ≫ i.hom = f, the kernel of f is a kernel of l.

Equations
def CategoryTheory.Limits.IsKernel.isoKernel {C : Type u} [Category.{v, u} C] [HasZeroMorphisms C] {X Y : C} (f : X Y) {Z : C} (l : Z X) {s : KernelFork f} (hs : IsLimit s) (i : Z s.pt) (h : CategoryStruct.comp i.hom (Fork.ι s) = l) :

If s is any limit kernel cone over f and if i is an isomorphism such that i.hom ≫ s.ι = l, then l is a kernel of f.

Equations
def CategoryTheory.Limits.kernel.isoKernel {C : Type u} [Category.{v, u} C] [HasZeroMorphisms C] {X Y : C} (f : X Y) [HasKernel f] {Z : C} (l : Z X) (i : Z kernel f) (h : CategoryStruct.comp i.hom (ι f) = l) :

If i is an isomorphism such that i.hom ≫ kernel.ι f = l, then l is a kernel of f.

Equations

The kernel morphism of a zero morphism is an isomorphism

@[reducible, inline]
abbrev CategoryTheory.Limits.CokernelCofork {C : Type u} [Category.{v, u} C] [HasZeroMorphisms C] {X Y : C} (f : X Y) :
Type (max u v)

A cokernel cofork is just a cofork where the second morphism is a zero morphism.

Equations
@[reducible, inline]
abbrev CategoryTheory.Limits.CokernelCofork.ofπ {C : Type u} [Category.{v, u} C] [HasZeroMorphisms C] {X Y : C} {f : X Y} {Z : C} (π : Y Z) (w : CategoryStruct.comp f π = 0) :

A morphism π satisfying f ≫ π = 0 determines a cokernel cofork on f.

Equations
@[simp]
theorem CategoryTheory.Limits.CokernelCofork.π_ofπ {C : Type u} [Category.{v, u} C] [HasZeroMorphisms C] {X Y P : C} (f : X Y) (π : Y P) (w : CategoryStruct.comp f π = 0) :
Cofork.π (ofπ π w) = π
def CategoryTheory.Limits.isoOfπ {C : Type u} [Category.{v, u} C] [HasZeroMorphisms C] {X Y : C} {f : X Y} (s : Cofork f 0) :

Every cokernel cofork s is isomorphic (actually, equal) to cofork.ofπ (cofork.π s) _.

Equations
def CategoryTheory.Limits.ofπCongr {C : Type u} [Category.{v, u} C] [HasZeroMorphisms C] {X Y : C} {f : X Y} {P : C} {π π' : Y P} {w : CategoryStruct.comp f π = 0} (h : π = π') :

If π = π', then CokernelCofork.of_π π _ and CokernelCofork.of_π π' _ are isomorphic.

Equations
def CategoryTheory.Limits.CokernelCofork.IsColimit.desc' {C : Type u} [Category.{v, u} C] [HasZeroMorphisms C] {X Y : C} {f : X Y} {s : CokernelCofork f} (hs : IsColimit s) {W : C} (k : Y W) (h : CategoryStruct.comp f k = 0) :

If s is a colimit cokernel cofork, then every k : Y ⟶ W satisfying f ≫ k = 0 induces l : s.X ⟶ W such that cofork.π s ≫ l = k.

Equations
def CategoryTheory.Limits.isColimitAux {C : Type u} [Category.{v, u} C] [HasZeroMorphisms C] {X Y : C} {f : X Y} (t : CokernelCofork f) (desc : (s : CokernelCofork f) → t.pt s.pt) (fac : ∀ (s : CokernelCofork f), CategoryStruct.comp (Cofork.π t) (desc s) = Cofork.π s) (uniq : ∀ (s : CokernelCofork f) (m : t.pt s.pt), CategoryStruct.comp (Cofork.π t) m = Cofork.π sm = desc s) :

This is a slightly more convenient method to verify that a cokernel cofork is a colimit cocone. It only asks for a proof of facts that carry any mathematical content

Equations
def CategoryTheory.Limits.CokernelCofork.IsColimit.ofπ {C : Type u} [Category.{v, u} C] [HasZeroMorphisms C] {X Y : C} {f : X Y} {Z : C} (g : Y Z) (eq : CategoryStruct.comp f g = 0) (desc : {Z' : C} → (g' : Y Z') → CategoryStruct.comp f g' = 0 → (Z Z')) (fac : ∀ {Z' : C} (g' : Y Z') (eq' : CategoryStruct.comp f g' = 0), CategoryStruct.comp g (desc g' eq') = g') (uniq : ∀ {Z' : C} (g' : Y Z') (eq' : CategoryStruct.comp f g' = 0) (m : Z Z'), CategoryStruct.comp g m = g'm = desc g' eq') :

This is a more convenient formulation to show that a CokernelCofork constructed using CokernelCofork.ofπ is a limit cone.

Equations
  • One or more equations did not get rendered due to their size.
def CategoryTheory.Limits.CokernelCofork.IsColimit.ofπ' {C : Type u} [Category.{v, u} C] [HasZeroMorphisms C] {X Y Q : C} {f : X Y} (p : Y Q) (w : CategoryStruct.comp f p = 0) (h : {A : C} → (k : Y A) → CategoryStruct.comp f k = 0{ l : Q A // CategoryStruct.comp p l = k }) [hp : Epi p] :

This is a more convenient formulation to show that a CokernelCofork of the form CokernelCofork.ofπ p _ is a colimit cocone when we know that p is an epimorphism.

Equations
  • One or more equations did not get rendered due to their size.
def CategoryTheory.Limits.isCokernelEpiComp {C : Type u} [Category.{v, u} C] [HasZeroMorphisms C] {X Y : C} {f : X Y} {c : CokernelCofork f} (i : IsColimit c) {W : C} (g : W X) [hg : Epi g] {h : W Y} (hh : h = CategoryStruct.comp g f) :

Every cokernel of f induces a cokernel of g ≫ f if g is epi.

Equations
  • One or more equations did not get rendered due to their size.
@[simp]
theorem CategoryTheory.Limits.isCokernelEpiComp_desc {C : Type u} [Category.{v, u} C] [HasZeroMorphisms C] {X Y : C} {f : X Y} {c : CokernelCofork f} (i : IsColimit c) {W : C} (g : W X) [hg : Epi g] {h : W Y} (hh : h = CategoryStruct.comp g f) (s : CokernelCofork h) :
def CategoryTheory.Limits.isCokernelOfComp {C : Type u} [Category.{v, u} C] [HasZeroMorphisms C] {X Y : C} {f : X Y} {W : C} (g : W X) (h : W Y) {c : CokernelCofork h} (i : IsColimit c) (hf : CategoryStruct.comp f (Cofork.π c) = 0) (hfg : CategoryStruct.comp g f = h) :

Every cokernel of g ≫ f is also a cokernel of f, as long as f ≫ c.π vanishes.

Equations
  • One or more equations did not get rendered due to their size.

Y identifies to the cokernel of a zero map X ⟶ Y.

Equations
  • One or more equations did not get rendered due to their size.

Any zero object identifies to the cokernel of a given epimorphisms.

Equations
def CategoryTheory.Limits.CokernelCofork.isColimitOfIsColimitOfIff {C : Type u} [Category.{v, u} C] [HasZeroMorphisms C] {X Y : C} {f : X Y} {c : CokernelCofork f} (hc : IsColimit c) {X' Y' : C} (f' : X' Y') (e : Y' Y) (iff : ∀ ⦃W : C⦄ (φ : Y W), CategoryStruct.comp f φ = 0 CategoryStruct.comp f' (CategoryStruct.comp e.hom φ) = 0) :

If c is a colimit cokernel cofork for f : X ⟶ Y, e : Y ≅ Y' and f' : X' ⟶ Y is a morphism, then there is a colimit cokernel cofork for f' with the same point as c if for any morphism φ : Y ⟶ W, there is an equivalence f ≫ φ = 0 ↔ f' ≫ e.hom ≫ φ = 0.

Equations
  • One or more equations did not get rendered due to their size.
def CategoryTheory.Limits.CokernelCofork.isColimitOfIsColimitOfIff' {C : Type u} [Category.{v, u} C] [HasZeroMorphisms C] {X Y : C} {f : X Y} {c : CokernelCofork f} (hc : IsColimit c) {X' : C} (f' : X' Y) (iff : ∀ ⦃W : C⦄ (φ : Y W), CategoryStruct.comp f φ = 0 CategoryStruct.comp f' φ = 0) :

If c is a colimit cokernel cofork for f : X ⟶ Y, and f' : X' ⟶ Y is another morphism, then there is a colimit cokernel cofork for f'with the same point ascif for any morphismφ : Y ⟶ W, there is an equivalence f ≫ φ = 0 ↔ f' ≫ φ = 0`.

Equations
  • One or more equations did not get rendered due to their size.
def CategoryTheory.Limits.CokernelCofork.mapOfIsColimit {C : Type u} [Category.{v, u} C] [HasZeroMorphisms C] {X Y : C} {f : X Y} {X' Y' : C} {f' : X' Y'} {cc : CokernelCofork f} (hf : IsColimit cc) (cc' : CokernelCofork f') (φ : Arrow.mk f Arrow.mk f') :
cc.pt cc'.pt

The morphism between points of cokernel coforks induced by a morphism in the category of arrows.

Equations
  • One or more equations did not get rendered due to their size.
@[simp]
theorem CategoryTheory.Limits.CokernelCofork.π_mapOfIsColimit {C : Type u} [Category.{v, u} C] [HasZeroMorphisms C] {X Y : C} {f : X Y} {X' Y' : C} {f' : X' Y'} {cc : CokernelCofork f} (hf : IsColimit cc) (cc' : CokernelCofork f') (φ : Arrow.mk f Arrow.mk f') :
@[simp]
theorem CategoryTheory.Limits.CokernelCofork.π_mapOfIsColimit_assoc {C : Type u} [Category.{v, u} C] [HasZeroMorphisms C] {X Y : C} {f : X Y} {X' Y' : C} {f' : X' Y'} {cc : CokernelCofork f} (hf : IsColimit cc) (cc' : CokernelCofork f') (φ : Arrow.mk f Arrow.mk f') {Z : C} (h : cc'.pt Z) :
def CategoryTheory.Limits.CokernelCofork.mapIsoOfIsColimit {C : Type u} [Category.{v, u} C] [HasZeroMorphisms C] {X Y : C} {f : X Y} {X' Y' : C} {f' : X' Y'} {cc : CokernelCofork f} {cc' : CokernelCofork f'} (hf : IsColimit cc) (hf' : IsColimit cc') (φ : Arrow.mk f Arrow.mk f') :
cc.pt cc'.pt

The isomorphism between points of limit cokernel coforks induced by an isomorphism in the category of arrows.

Equations
  • One or more equations did not get rendered due to their size.
@[simp]
theorem CategoryTheory.Limits.CokernelCofork.mapIsoOfIsColimit_hom {C : Type u} [Category.{v, u} C] [HasZeroMorphisms C] {X Y : C} {f : X Y} {X' Y' : C} {f' : X' Y'} {cc : CokernelCofork f} {cc' : CokernelCofork f'} (hf : IsColimit cc) (hf' : IsColimit cc') (φ : Arrow.mk f Arrow.mk f') :
(mapIsoOfIsColimit hf hf' φ).hom = mapOfIsColimit hf cc' φ.hom
@[simp]
theorem CategoryTheory.Limits.CokernelCofork.mapIsoOfIsColimit_inv {C : Type u} [Category.{v, u} C] [HasZeroMorphisms C] {X Y : C} {f : X Y} {X' Y' : C} {f' : X' Y'} {cc : CokernelCofork f} {cc' : CokernelCofork f'} (hf : IsColimit cc) (hf' : IsColimit cc') (φ : Arrow.mk f Arrow.mk f') :
(mapIsoOfIsColimit hf hf' φ).inv = mapOfIsColimit hf' cc φ.inv
@[reducible, inline]
abbrev CategoryTheory.Limits.cokernel {C : Type u} [Category.{v, u} C] [HasZeroMorphisms C] {X Y : C} (f : X Y) [HasCokernel f] :
C

The cokernel of a morphism, expressed as the coequalizer with the 0 morphism.

Equations

The cokernel built from cokernel.π f is colimiting.

Equations
  • One or more equations did not get rendered due to their size.
@[reducible, inline]
abbrev CategoryTheory.Limits.cokernel.desc {C : Type u} [Category.{v, u} C] [HasZeroMorphisms C] {X Y : C} (f : X Y) [HasCokernel f] {W : C} (k : Y W) (h : CategoryStruct.comp f k = 0) :

Given any morphism k : Y ⟶ W such that f ≫ k = 0, k factors through cokernel.π f via cokernel.desc : cokernel f ⟶ W.

Equations
Instances For
@[simp]
theorem CategoryTheory.Limits.cokernel.π_desc {C : Type u} [Category.{v, u} C] [HasZeroMorphisms C] {X Y : C} (f : X Y) [HasCokernel f] {W : C} (k : Y W) (h : CategoryStruct.comp f k = 0) :
@[simp]
theorem CategoryTheory.Limits.cokernel.π_desc_assoc {C : Type u} [Category.{v, u} C] [HasZeroMorphisms C] {X Y : C} (f : X Y) [HasCokernel f] {W : C} (k : Y W) (h : CategoryStruct.comp f k = 0) {Z : C} (h✝ : W Z) :
@[simp]
theorem CategoryTheory.Limits.cokernel.desc_zero {C : Type u} [Category.{v, u} C] [HasZeroMorphisms C] {X Y : C} (f : X Y) [HasCokernel f] {W : C} {h : CategoryStruct.comp f 0 = 0} :
desc f 0 h = 0
instance CategoryTheory.Limits.cokernel.desc_epi {C : Type u} [Category.{v, u} C] [HasZeroMorphisms C] {X Y : C} (f : X Y) [HasCokernel f] {W : C} (k : Y W) (h : CategoryStruct.comp f k = 0) [Epi k] :
Epi (desc f k h)
def CategoryTheory.Limits.cokernel.desc' {C : Type u} [Category.{v, u} C] [HasZeroMorphisms C] {X Y : C} (f : X Y) [HasCokernel f] {W : C} (k : Y W) (h : CategoryStruct.comp f k = 0) :

Any morphism k : Y ⟶ W satisfying f ≫ k = 0 induces l : cokernel f ⟶ W such that cokernel.π f ≫ l = k.

Equations
@[reducible, inline]
abbrev CategoryTheory.Limits.cokernel.map {C : Type u} [Category.{v, u} C] [HasZeroMorphisms C] {X Y : C} (f : X Y) [HasCokernel f] {X' Y' : C} (f' : X' Y') [HasCokernel f'] (p : X X') (q : Y Y') (w : CategoryStruct.comp f q = CategoryStruct.comp p f') :

A commuting square induces a morphism of cokernels.

Equations
theorem CategoryTheory.Limits.cokernel.map_desc {C : Type u} [Category.{v, u} C] [HasZeroMorphisms C] {X Y Z X' Y' Z' : C} (f : X Y) [HasCokernel f] (g : Y Z) (w : CategoryStruct.comp f g = 0) (f' : X' Y') [HasCokernel f'] (g' : Y' Z') (w' : CategoryStruct.comp f' g' = 0) (p : X X') (q : Y Y') (r : Z Z') (h₁ : CategoryStruct.comp f q = CategoryStruct.comp p f') (h₂ : CategoryStruct.comp g r = CategoryStruct.comp q g') :
CategoryStruct.comp (map f f' p q h₁) (desc f' g' w') = CategoryStruct.comp (desc f g w) r

Given a commutative diagram X --f--> Y --g--> Z | | | | | | v v v X' -f'-> Y' -g'-> Z' with horizontal arrows composing to zero, then we obtain a commutative square cokernel f ---> Z | | | cokernel.map | | | v v cokernel f' --> Z'

def CategoryTheory.Limits.cokernel.mapIso {C : Type u} [Category.{v, u} C] [HasZeroMorphisms C] {X Y : C} (f : X Y) [HasCokernel f] {X' Y' : C} (f' : X' Y') [HasCokernel f'] (p : X X') (q : Y Y') (w : CategoryStruct.comp f q.hom = CategoryStruct.comp p.hom f') :

A commuting square of isomorphisms induces an isomorphism of cokernels.

Equations
  • One or more equations did not get rendered due to their size.
@[simp]
theorem CategoryTheory.Limits.cokernel.mapIso_inv {C : Type u} [Category.{v, u} C] [HasZeroMorphisms C] {X Y : C} (f : X Y) [HasCokernel f] {X' Y' : C} (f' : X' Y') [HasCokernel f'] (p : X X') (q : Y Y') (w : CategoryStruct.comp f q.hom = CategoryStruct.comp p.hom f') :
(mapIso f f' p q w).inv = map f' f p.inv q.inv
@[simp]
theorem CategoryTheory.Limits.cokernel.mapIso_hom {C : Type u} [Category.{v, u} C] [HasZeroMorphisms C] {X Y : C} (f : X Y) [HasCokernel f] {X' Y' : C} (f' : X' Y') [HasCokernel f'] (p : X X') (q : Y Y') (w : CategoryStruct.comp f q.hom = CategoryStruct.comp p.hom f') :
(mapIso f f' p q w).hom = map f f' p.hom q.hom w

The cokernel of the zero morphism is an isomorphism

If two morphisms are known to be equal, then their cokernels are isomorphic.

Equations
@[simp]
theorem CategoryTheory.Limits.cokernelIsoOfEq_hom_comp_desc_assoc {C : Type u} [Category.{v, u} C] [HasZeroMorphisms C] {X Y Z : C} {f g : X Y} [HasCokernel f] [HasCokernel g] (h : f = g) (e : Y Z) (he : CategoryStruct.comp g e = 0) {Z✝ : C} (h✝ : Z Z✝) :
@[simp]
theorem CategoryTheory.Limits.cokernelIsoOfEq_inv_comp_desc_assoc {C : Type u} [Category.{v, u} C] [HasZeroMorphisms C] {X Y Z : C} {f g : X Y} [HasCokernel f] [HasCokernel g] (h : f = g) (e : Y Z) (he : CategoryStruct.comp f e = 0) {Z✝ : C} (h✝ : Z Z✝) :
@[simp]
theorem CategoryTheory.Limits.cokernelIsoOfEq_trans {C : Type u} [Category.{v, u} C] [HasZeroMorphisms C] {X Y : C} {f g h : X Y} [HasCokernel f] [HasCokernel g] [HasCokernel h] (w₁ : f = g) (w₂ : g = h) :

When g is an isomorphism, the cokernel of f ≫ g is isomorphic to the cokernel of f.

Equations
  • One or more equations did not get rendered due to their size.

When f is an epimorphism, the cokernel of f ≫ g is isomorphic to the cokernel of g.

Equations
  • One or more equations did not get rendered due to their size.

Equal maps have isomorphic cokernels.

Equations
  • One or more equations did not get rendered due to their size.
@[simp]
theorem CategoryTheory.Limits.cokernel.congr_inv {C : Type u} [Category.{v, u} C] [HasZeroMorphisms C] {X Y : C} (f g : X Y) [HasCokernel f] [HasCokernel g] (h : f = g) :
(congr f g h).inv = desc g (π f)
@[simp]
theorem CategoryTheory.Limits.cokernel.congr_hom {C : Type u} [Category.{v, u} C] [HasZeroMorphisms C] {X Y : C} (f g : X Y) [HasCokernel f] [HasCokernel g] (h : f = g) :
(congr f g h).hom = desc f (π g)

The morphism to the zero object determines a cocone on a cokernel diagram

Equations

The morphism to the zero object is a cokernel of an epimorphism

Equations
  • One or more equations did not get rendered due to their size.

The cokernel of an epimorphism is isomorphic to the zero object

Equations
  • One or more equations did not get rendered due to their size.

The cokernel morphism of an epimorphism is a zero morphism

The cokernel of the image inclusion of a morphism f is isomorphic to the cokernel of f.

(This result requires that the factorisation through the image is an epimorphism. This holds in any category with equalizers.)

Equations
  • One or more equations did not get rendered due to their size.

The kernel of the morphism X ⟶ image f is just the kernel of f.

Equations
  • One or more equations did not get rendered due to their size.

The cokernel of a zero morphism is an isomorphism

The kernel of the cokernel of an epimorphism is an isomorphism

The cokernel of the kernel of a monomorphism is an isomorphism

def CategoryTheory.Limits.zeroCokernelOfZeroCancel {C : Type u} [Category.{v, u} C] [HasZeroMorphisms C] [HasZeroObject C] {X Y : C} (f : X Y) (hf : ∀ (Z : C) (g : Y Z), CategoryStruct.comp f g = 0g = 0) :

If f ≫ g = 0 implies g = 0 for all g, then 0 : Y ⟶ 0 is a cokernel of f.

Equations
  • One or more equations did not get rendered due to their size.
def CategoryTheory.Limits.IsCokernel.ofIsoComp {C : Type u} [Category.{v, u} C] [HasZeroMorphisms C] {X Y : C} (f : X Y) {Z : C} (l : Z Y) (i : X Z) (h : CategoryStruct.comp i.hom l = f) {s : CokernelCofork f} (hs : IsColimit s) :

If i is an isomorphism such that i.hom ≫ l = f, then any cokernel of f is a cokernel of l.

Equations
  • One or more equations did not get rendered due to their size.
def CategoryTheory.Limits.cokernel.ofIsoComp {C : Type u} [Category.{v, u} C] [HasZeroMorphisms C] {X Y : C} (f : X Y) [HasCokernel f] {Z : C} (l : Z Y) (i : X Z) (h : CategoryStruct.comp i.hom l = f) :

If i is an isomorphism such that i.hom ≫ l = f, then the cokernel of f is a cokernel of l.

Equations
def CategoryTheory.Limits.IsCokernel.cokernelIso {C : Type u} [Category.{v, u} C] [HasZeroMorphisms C] {X Y : C} (f : X Y) {Z : C} (l : Y Z) {s : CokernelCofork f} (hs : IsColimit s) (i : s.pt Z) (h : CategoryStruct.comp (Cofork.π s) i.hom = l) :

If s is any colimit cokernel cocone over f and i is an isomorphism such that s.π ≫ i.hom = l, then l is a cokernel of f.

Equations

The comparison morphism for the kernel of f. This is an isomorphism iff G preserves the kernel of f; see CategoryTheory/Limits/Preserves/Shapes/Kernels.lean

Equations
@[simp]
@[simp]
theorem CategoryTheory.Limits.map_lift_kernelComparison_assoc {C : Type u} [Category.{v, u} C] [HasZeroMorphisms C] {X Y : C} (f : X Y) {D : Type u₂} [Category.{v₂, u₂} D] [HasZeroMorphisms D] (G : Functor C D) [G.PreservesZeroMorphisms] [HasKernel f] [HasKernel (G.map f)] {Z : C} {h : Z X} (w : CategoryStruct.comp h f = 0) {Z✝ : D} (h✝ : kernel (G.map f) Z✝) :
theorem CategoryTheory.Limits.kernelComparison_comp_kernel_map {C : Type u} [Category.{v, u} C] [HasZeroMorphisms C] {X Y : C} (f : X Y) {D : Type u₂} [Category.{v₂, u₂} D] [HasZeroMorphisms D] (G : Functor C D) [G.PreservesZeroMorphisms] {X' Y' : C} [HasKernel f] [HasKernel (G.map f)] (g : X' Y') [HasKernel g] [HasKernel (G.map g)] (p : X X') (q : Y Y') (hpq : CategoryStruct.comp f q = CategoryStruct.comp p g) :
CategoryStruct.comp (kernelComparison f G) (kernel.map (G.map f) (G.map g) (G.map p) (G.map q) ) = CategoryStruct.comp (G.map (kernel.map f g p q hpq)) (kernelComparison g G)
theorem CategoryTheory.Limits.kernelComparison_comp_kernel_map_assoc {C : Type u} [Category.{v, u} C] [HasZeroMorphisms C] {X Y : C} (f : X Y) {D : Type u₂} [Category.{v₂, u₂} D] [HasZeroMorphisms D] (G : Functor C D) [G.PreservesZeroMorphisms] {X' Y' : C} [HasKernel f] [HasKernel (G.map f)] (g : X' Y') [HasKernel g] [HasKernel (G.map g)] (p : X X') (q : Y Y') (hpq : CategoryStruct.comp f q = CategoryStruct.comp p g) {Z : D} (h : kernel (G.map g) Z) :
@[simp]
theorem CategoryTheory.Limits.cokernelComparison_map_desc_assoc {C : Type u} [Category.{v, u} C] [HasZeroMorphisms C] {X Y : C} (f : X Y) {D : Type u₂} [Category.{v₂, u₂} D] [HasZeroMorphisms D] (G : Functor C D) [G.PreservesZeroMorphisms] [HasCokernel f] [HasCokernel (G.map f)] {Z : C} {h : Y Z} (w : CategoryStruct.comp f h = 0) {Z✝ : D} (h✝ : G.obj Z Z✝) :
theorem CategoryTheory.Limits.cokernel_map_comp_cokernelComparison {C : Type u} [Category.{v, u} C] [HasZeroMorphisms C] {X Y : C} (f : X Y) {D : Type u₂} [Category.{v₂, u₂} D] [HasZeroMorphisms D] (G : Functor C D) [G.PreservesZeroMorphisms] {X' Y' : C} [HasCokernel f] [HasCokernel (G.map f)] (g : X' Y') [HasCokernel g] [HasCokernel (G.map g)] (p : X X') (q : Y Y') (hpq : CategoryStruct.comp f q = CategoryStruct.comp p g) :

HasKernels represents the existence of kernels for every morphism.

Instances

HasCokernels represents the existence of cokernels for every morphism.

Instances