Retracts #
Defines retracts of objects and morphisms.
Retracts are preserved when passing to the opposite category.
Instances For
If X is a retract of Y, then F.obj X is a retract of F.obj Y.
Instances For
Any object is a retract of itself.
Equations
- CategoryTheory.Retract.refl X = { i := CategoryTheory.CategoryStruct.id X, r := CategoryTheory.CategoryStruct.id X, retract := ⋯ }
Instances For
A retract of a retract is a retract.
Equations
- h.trans h' = { i := CategoryTheory.CategoryStruct.comp h.i h'.i, r := CategoryTheory.CategoryStruct.comp h'.r h.r, retract := ⋯ }
Instances For
If e : X ≅ Y, then X is a retract of Y.
Instances For
X -------> Z -------> X
| | |
f g f
| | |
v v v
Y -------> W -------> Y
A morphism f : X ⟶ Y is a retract of g : Z ⟶ W if there are morphisms i : f ⟶ g
and r : g ⟶ f in the arrow category such that i ≫ r = 𝟙 f.
Equations
Instances For
The top of a retract diagram of morphisms determines a retract of objects.
Equations
Instances For
The bottom of a retract diagram of morphisms determines a retract of objects.
Equations
Instances For
If a morphism f is a retract of g,
then F.map f is a retract of F.map g for any functor F.
Equations
- h.map F = CategoryTheory.Retract.map h F.mapArrow
Instances For
If a morphism f is a retract of g, then f.op is a retract of g.op.
Equations
Instances For
If a morphism f in the opposite category is a retract of g,
then f.unop is a retract of g.unop.
Equations
Instances For
If X is a retract of Y, then for any natural transformation τ,
the natural transformation τ.app X is a retract of τ.app Y.
Equations
- CategoryTheory.NatTrans.retractArrowApp τ h = { i := CategoryTheory.Arrow.homMk (F.map h.i) (G.map h.i) ⋯, r := CategoryTheory.Arrow.homMk (F.map h.r) (G.map h.r) ⋯, retract := ⋯ }