Documentation

Mathlib.Combinatorics.Quiver.Symmetric

Symmetric quivers and arrow reversal #

This file contains constructions related to symmetric quivers:

def Quiver.Symmetrify (V : Type u_1) :
Type u_1

A type synonym for the symmetrized quiver (with an arrow both ways for each original arrow). NB: this does not work for Prop-valued quivers. It requires [Quiver.{v+1} V].

Equations
Instances For
Equations
class Quiver.HasReverse (V : Type u_2) [Quiver V] :
Type (max u_2 v)

A quiver HasReverse if we can reverse an arrow p from a to b to get an arrow p.reverse from b to a.

  • reverse' {a b : V} : (a b) → (b a)

    the map which sends an arrow to its reverse

Instances
def Quiver.reverse {V : Type u_4} [Quiver V] [HasReverse V] {a b : V} :
(a b) → (b a)

Reverse the direction of an arrow.

Equations
class Quiver.HasInvolutiveReverse (V : Type u_2) [Quiver V] extends Quiver.HasReverse V :
Type (max u_2 v)

A quiver HasInvolutiveReverse if reversing twice is the identity.

Instances
@[simp]
theorem Quiver.reverse_reverse {V : Type u_2} [Quiver V] [h : HasInvolutiveReverse V] {a b : V} (f : a b) :
@[simp]
theorem Quiver.reverse_inj {V : Type u_2} [Quiver V] [h : HasInvolutiveReverse V] {a b : V} (f g : a b) :
theorem Quiver.eq_reverse_iff {V : Type u_2} [Quiver V] [h : HasInvolutiveReverse V] {a b : V} (f : a b) (g : b a) :
class Prefunctor.MapReverse {U : Type u_1} {V : Type u_2} [Quiver U] [Quiver V] [Quiver.HasReverse U] [Quiver.HasReverse V] (φ : U ⥤q V) :

A prefunctor preserving reversal of arrows

Instances
@[simp]
theorem Prefunctor.map_reverse {U : Type u_1} {V : Type u_2} [Quiver U] [Quiver V] [Quiver.HasReverse U] [Quiver.HasReverse V] (φ : U ⥤q V) [φ.MapReverse] {u v : U} (e : u v) :
instance Prefunctor.mapReverseComp {U : Type u_1} {V : Type u_2} {W : Type u_3} [Quiver U] [Quiver V] [Quiver W] [Quiver.HasReverse U] [Quiver.HasReverse V] [Quiver.HasReverse W] (φ : U ⥤q V) (ψ : V ⥤q W) [φ.MapReverse] [ψ.MapReverse] :
Equations
@[simp]
theorem Quiver.symmetrify_reverse {V : Type u_2} [Quiver V] {a b : Symmetrify V} (e : a b) :
@[reducible, inline]
abbrev Quiver.Hom.toPos {V : Type u_2} [Quiver V] {X Y : V} (f : X Y) :
X Y

Shorthand for the "forward" arrow corresponding to f in symmetrify V

Equations
@[reducible, inline]
abbrev Quiver.Hom.toNeg {V : Type u_2} [Quiver V] {X Y : V} (f : X Y) :
Y X

Shorthand for the "backward" arrow corresponding to f in symmetrify V

Equations
def Quiver.Path.reverse {V : Type u_2} [Quiver V] [HasReverse V] {a b : V} :
Path a bPath b a

Reverse the direction of a path.

Equations
@[simp]
theorem Quiver.Path.reverse_toPath {V : Type u_2} [Quiver V] [HasReverse V] {a b : V} (f : a b) :
@[simp]
theorem Quiver.Path.reverse_comp {V : Type u_2} [Quiver V] [HasReverse V] {a b c : V} (p : Path a b) (q : Path b c) :
@[simp]
theorem Quiver.Path.reverse_reverse {V : Type u_2} [Quiver V] [h : HasInvolutiveReverse V] {a b : V} (p : Path a b) :

The inclusion of a quiver in its symmetrification

Equations
def Quiver.Symmetrify.lift {V : Type u_2} [Quiver V] {V' : Type u_4} [Quiver V'] [HasReverse V'] (φ : V ⥤q V') :

Given a quiver V' with reversible arrows, a prefunctor to V' can be lifted to one from Symmetrify V to V'

Equations
theorem Quiver.Symmetrify.lift_spec {V : Type u_2} [Quiver V] {V' : Type u_4} [Quiver V'] [HasReverse V'] (φ : V ⥤q V') :
of ⋙q lift φ = φ
theorem Quiver.Symmetrify.lift_reverse {V : Type u_2} [Quiver V] {V' : Type u_4} [Quiver V'] [h : HasInvolutiveReverse V'] (φ : V ⥤q V') {X Y : Symmetrify V} (f : X Y) :
(lift φ).map (reverse f) = reverse ((lift φ).map f)
theorem Quiver.Symmetrify.lift_unique {V : Type u_2} [Quiver V] {V' : Type u_4} [Quiver V'] [HasReverse V'] (φ : V ⥤q V') (Φ : Symmetrify V ⥤q V') ( : of ⋙q Φ = φ) (hΦinv : ∀ {X Y : Symmetrify V} (f : X Y), Φ.map (reverse f) = reverse (Φ.map f)) :
Φ = lift φ

lift φ is the only prefunctor extending φ and preserving reverses.

def Prefunctor.symmetrify {U : Type u_1} {V : Type u_2} [Quiver U] [Quiver V] (φ : U ⥤q V) :

A prefunctor canonically defines a prefunctor of the symmetrifications.

Equations
Instances For
@[simp]
theorem Prefunctor.symmetrify_obj {U : Type u_1} {V : Type u_2} [Quiver U] [Quiver V] (φ : U ⥤q V) (a✝ : U) :
φ.symmetrify.obj a✝ = φ.obj a✝
@[simp]
theorem Prefunctor.symmetrify_map {U : Type u_1} {V : Type u_2} [Quiver U] [Quiver V] (φ : U ⥤q V) {X✝ Y✝ : Quiver.Symmetrify U} (a✝ : (X✝ Y✝) (Y✝ X✝)) :
φ.symmetrify.map a✝ = Sum.map φ.map φ.map a✝
instance Prefunctor.symmetrify_mapReverse {U : Type u_1} {V : Type u_2} [Quiver U] [Quiver V] (φ : U ⥤q V) :
instance Quiver.Push.instHasReverse {V : Type u_2} [Quiver V] {V' : Type u_4} (σ : VV') [HasReverse V] :
Equations
  • One or more equations did not get rendered due to their size.
theorem Quiver.Push.of_reverse {V : Type u_2} [Quiver V] {V' : Type u_4} (σ : VV') [HasInvolutiveReverse V] (X Y : V) (f : X Y) :
reverse ((of σ).map f) = (of σ).map (reverse f)
instance Quiver.Push.ofMapReverse {V : Type u_2} [Quiver V] {V' : Type u_4} (σ : VV') [h : HasInvolutiveReverse V] :

A quiver is preconnected iff there exists a path between any pair of vertices. Note that if V doesn't HasReverse, then the definition is stronger than simply having a preconnected underlying SimpleGraph, since a path in one direction doesn't induce one in the other.

Equations