Casts of rational numbers into linear ordered fields. #
Coercion from ℚ
as an order embedding.
Equations
- Rat.castOrderEmbedding = OrderEmbedding.ofStrictMono Rat.cast ⋯
Instances For
@[simp]
@[simp]
@[simp]
Alias of the reverse direction of Rat.cast_le
.
Alias of the reverse direction of Rat.cast_lt
.
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
Coercion from ℚ
as an order embedding.
Equations
- NNRat.castOrderEmbedding = OrderEmbedding.ofStrictMono NNRat.cast ⋯
Instances For
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
theorem
NNRat.cast_le_ofNat
{K : Type u_5}
[LinearOrderedSemifield K]
{p : ℚ≥0}
{n : ℕ}
[n.AtLeastTwo]
:
↑p ≤ OfNat.ofNat n ↔ p ≤ OfNat.ofNat n
@[simp]
theorem
NNRat.ofNat_le_cast
{K : Type u_5}
[LinearOrderedSemifield K]
{p : ℚ≥0}
{n : ℕ}
[n.AtLeastTwo]
:
OfNat.ofNat n ≤ ↑p ↔ OfNat.ofNat n ≤ p
@[simp]
theorem
NNRat.cast_lt_ofNat
{K : Type u_5}
[LinearOrderedSemifield K]
{p : ℚ≥0}
{n : ℕ}
[n.AtLeastTwo]
:
↑p < OfNat.ofNat n ↔ p < OfNat.ofNat n
@[simp]
theorem
NNRat.ofNat_lt_cast
{K : Type u_5}
[LinearOrderedSemifield K]
{p : ℚ≥0}
{n : ℕ}
[n.AtLeastTwo]
:
OfNat.ofNat n < ↑p ↔ OfNat.ofNat n < p
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
Extension for Rat.cast.
Instances For
Extension for NNRat.cast.