Coercing sets to types. #
This file defines Set.Elem s
as the type of all elements of the set s
.
More advanced theorems about these definitions are located in other files in Mathlib/Data/Set
.
Main definitions #
Set.Elem
: coercion of a set to a type; it is reducibly equal to{x // x ∈ s}
;
@[reducible]
Given the set s
, Elem s
is the Type
of element of s
.
It is currently an abbreviation so that instance coming from Subtype
are available.
If you're interested in making it a def
, as it probably should be,
you'll then need to create additional instances (and possibly prove lemmas about them).
See e.g. Mathlib.Data.Set.Order
.
Instances For
- Finite.Set.finite_diff
- Finite.Set.finite_image
- Finite.Set.finite_image2
- Finite.Set.finite_insert
- Finite.Set.finite_inter_of_left
- Finite.Set.finite_inter_of_right
- Finite.Set.finite_prod
- Finite.Set.finite_range
- Finite.Set.finite_replacement
- Finite.Set.finite_sep
- Finite.Set.finite_union
- Finset.instNonemptyElemToSetInsert
- FinsetCoe.fintype
- IsAtomic.Set.Iic.isAtomic
- IsCoatomic.Set.Ici.isCoatomic
- IsModularLattice.complementedLattice_Ici
- IsModularLattice.complementedLattice_Iic
- IsModularLattice.isModularLattice_Ici
- IsModularLattice.isModularLattice_Iic
- Set.Icc.completeLattice
- Set.Icc.instBoundedOrderElem
- Set.Icc.instOrderBotElem
- Set.Icc.instOrderTopElem
- Set.Icc.lattice
- Set.Icc.semilatticeInf
- Set.Icc.semilatticeSup
- Set.Ici.boundedOrder
- Set.Ici.distribLattice
- Set.Ici.lattice
- Set.Ici.orderBot
- Set.Ici.orderTop
- Set.Ici.semilatticeInf
- Set.Ici.semilatticeSup
- Set.Ico.semilatticeInf
- Set.Iic.instBoundedOrderElemOfOrderBot
- Set.Iic.instCompleteLattice
- Set.Iic.instLatticeElem
- Set.Iic.orderBot
- Set.Iic.orderTop
- Set.Iic.semilatticeInf
- Set.Iic.semilatticeSup
- Set.Iio.semilatticeInf
- Set.Ioc.semilatticeSup
- Set.Ioi.semilatticeSup
- Set.OrdConnected.predOrder
- Set.OrdConnected.succOrder
- Set.fintypeDiff
- Set.fintypeDiffLeft
- Set.fintypeEmpty
- Set.fintypeImage
- Set.fintypeImage2
- Set.fintypeInsert
- Set.fintypeInsert'
- Set.fintypeInter
- Set.fintypeInterOfLeft
- Set.fintypeInterOfRight
- Set.fintypeLENat
- Set.fintypeLTNat
- Set.fintypeMap
- Set.fintypeMemFinset
- Set.fintypeOffDiag
- Set.fintypeProd
- Set.fintypeRange
- Set.fintypeSep
- Set.fintypeSingleton
- Set.fintypeTop
- Set.fintypeUnion
- Set.fintypeUniv
- Set.instDenselyOrdered
- Set.instIccUnique
- Set.instIsEmptyElemEmptyCollection
- Set.instNoMaxOrderElemIci
- Set.instNoMaxOrderElemIoi
- Set.instNoMinOrderElemIic
- Set.instNoMinOrderElemIio
- Set.instNonemptyElemImage
- Set.instNonemptyElemInsert
- Set.instNonemptyRange
- Set.instNonemptyTop
- Set.nonempty_Ici_subtype
- Set.nonempty_Iic_subtype
- Set.nonempty_Iio_subtype
- Set.nonempty_Ioi_subtype
- Set.subsingleton_coe_of_subsingleton
- Set.uniqueSingleton
- Set.univ.nonempty
- instCoeTCElem
- instCompleteLinearOrderElemIccOfFactLe
- instIsStronglyAtomicElemOfOrdConnected
- instIsStronglyCoatomicElemOfOrdConnected
- instNoMaxOrderElemIco
- instNoMaxOrderElemIio
- instNoMaxOrderElemIoo
- instNoMinOrderElemIoc
- instNoMinOrderElemIoi
- instNoMinOrderElemIoo
- ordConnectedSubsetConditionallyCompleteLinearOrder
Coercion from a set to the corresponding subtype.
Equations
- Set.instCoeSortType = { coe := Set.Elem }