Documentation

Mathlib.Order.Category.FinPartOrd

The category of finite partial orders #

This defines FinPartOrd, the category of finite partial orders.

Note: FinPartOrd is not a subcategory of BddOrd because finite orders are not necessarily bounded.

TODO #

FinPartOrd is equivalent to a small category.

@[reducible, inline]
abbrev FinPartOrd.of (α : Type u_1) [PartialOrder α] [Fintype α] :

Construct a bundled FinPartOrd from PartialOrder + Fintype.

Equations
Equations
  • One or more equations did not get rendered due to their size.
@[reducible, inline]
abbrev FinPartOrd.ofHom {X Y : Type u} [PartialOrder X] [Fintype X] [PartialOrder Y] [Fintype Y] (f : X →o Y) :
of X of Y

Typecheck a OrderHom as a morphism in FinPartOrd.

Equations
theorem FinPartOrd.hom_ext {X Y : FinPartOrd} {f g : X Y} (hf : PartOrd.Hom.hom f = PartOrd.Hom.hom g) :
f = g
@[simp]
theorem FinPartOrd.hom_ofHom {X Y : Type u} [PartialOrder X] [Fintype X] [PartialOrder Y] [Fintype Y] (f : X →o Y) :
@[simp]
theorem FinPartOrd.ofHom_hom {X Y : FinPartOrd} (f : X Y) :
def FinPartOrd.Iso.mk {α β : FinPartOrd} (e : α.toPartOrd ≃o β.toPartOrd) :
α β

Constructs an isomorphism of finite partial orders from an order isomorphism between them.

Equations
@[simp]
theorem FinPartOrd.Iso.mk_inv {α β : FinPartOrd} (e : α.toPartOrd ≃o β.toPartOrd) :
(mk e).inv = ofHom e.symm
@[simp]
theorem FinPartOrd.Iso.mk_hom {α β : FinPartOrd} (e : α.toPartOrd ≃o β.toPartOrd) :
(mk e).hom = ofHom e

OrderDual as a functor.

Equations
  • One or more equations did not get rendered due to their size.
@[simp]
theorem FinPartOrd.dual_map {X✝ Y✝ : FinPartOrd} (f : X✝ Y✝) :

The equivalence between FinPartOrd and itself induced by OrderDual both ways.

Equations
  • One or more equations did not get rendered due to their size.