Documentation

Mathlib.Order.Max

Minimal/maximal and bottom/top elements #

This file defines predicates for elements to be minimal/maximal or bottom/top and typeclasses saying that there are no such elements.

Predicates #

See also isBot_iff_isMin and isTop_iff_isMax for the equivalences in a (co)directed order.

Typeclasses #

class NoBotOrder (α : Type u_3) [LE α] :

Order without bottom elements.

  • exists_not_ge (a : α) : (b : α), ¬a b

    For each term a, there is some b which is either incomparable or strictly smaller.

Instances
class NoTopOrder (α : Type u_3) [LE α] :

Order without top elements.

  • exists_not_le (a : α) : (b : α), ¬b a

    For each term a, there is some b which is either incomparable or strictly larger.

Instances
instance nonempty_lt {α : Type u_1} [LT α] [NoMinOrder α] (a : α) :
Nonempty { x : α // x < a }
instance nonempty_gt {α : Type u_1} [LT α] [NoMaxOrder α] (a : α) :
Nonempty { x : α // a < x }
instance IsEmpty.toNoMaxOrder {α : Type u_1} [LT α] [IsEmpty α] :
instance IsEmpty.toNoMinOrder {α : Type u_1} [LT α] [IsEmpty α] :
@[instance 100]
@[instance 100]
instance noMaxOrder_of_left {α : Type u_1} {β : Type u_2} [Preorder α] [Preorder β] [NoMaxOrder α] :
NoMaxOrder (α × β)
instance noMaxOrder_of_right {α : Type u_1} {β : Type u_2} [Preorder α] [Preorder β] [NoMaxOrder β] :
NoMaxOrder (α × β)
instance noMinOrder_of_left {α : Type u_1} {β : Type u_2} [Preorder α] [Preorder β] [NoMinOrder α] :
NoMinOrder (α × β)
instance noMinOrder_of_right {α : Type u_1} {β : Type u_2} [Preorder α] [Preorder β] [NoMinOrder β] :
NoMinOrder (α × β)
instance instNoMaxOrderForallOfNonempty {ι : Type u} {π : ιType u_3} [Nonempty ι] [(i : ι) → Preorder (π i)] [∀ (i : ι), NoMaxOrder (π i)] :
NoMaxOrder ((i : ι) → π i)
instance instNoMinOrderForallOfNonempty {ι : Type u} {π : ιType u_3} [Nonempty ι] [(i : ι) → Preorder (π i)] [∀ (i : ι), NoMinOrder (π i)] :
NoMinOrder ((i : ι) → π i)
theorem NoMinOrder.not_acc {α : Type u_1} [LT α] [NoMinOrder α] (a : α) :
¬Acc (fun (x1 x2 : α) => x1 < x2) a
theorem NoMaxOrder.not_acc {α : Type u_1} [LT α] [NoMaxOrder α] (a : α) :
¬Acc (fun (x1 x2 : α) => x1 > x2) a
def IsBot {α : Type u_1} [LE α] (a : α) :

a : α is a bottom element of α if it is less than or equal to any other element of α. This predicate is roughly an unbundled version of OrderBot, except that a preorder may have several bottom elements. When α is linear, this is useful to make a case disjunction on NoMinOrder α within a proof.

Equations
def IsTop {α : Type u_1} [LE α] (a : α) :

a : α is a top element of α if it is greater than or equal to any other element of α. This predicate is roughly an unbundled version of OrderBot, except that a preorder may have several top elements. When α is linear, this is useful to make a case disjunction on NoMaxOrder α within a proof.

Equations
def IsMin {α : Type u_1} [LE α] (a : α) :

a is a minimal element of α if no element is strictly less than it. We spell it without < to avoid having to convert between and <. Instead, isMin_iff_forall_not_lt does the conversion.

Equations
def IsMax {α : Type u_1} [LE α] (a : α) :

a is a maximal element of α if no element is strictly greater than it. We spell it without < to avoid having to convert between and <. Instead, isMax_iff_forall_not_lt does the conversion.

Equations
@[simp]
theorem not_isBot {α : Type u_1} [LE α] [NoBotOrder α] (a : α) :
@[simp]
theorem not_isTop {α : Type u_1} [LE α] [NoTopOrder α] (a : α) :
theorem IsBot.isMin {α : Type u_1} [LE α] {a : α} (h : IsBot a) :
theorem IsTop.isMax {α : Type u_1} [LE α] {a : α} (h : IsTop a) :
theorem IsTop.isMax_iff {α : Type u_3} [PartialOrder α] {i j : α} (h : IsTop i) :
IsMax j j = i
theorem IsBot.isMin_iff {α : Type u_3} [PartialOrder α] {i j : α} (h : IsBot i) :
IsMin j j = i
@[simp]
theorem isBot_toDual_iff {α : Type u_1} [LE α] {a : α} :
@[simp]
theorem isTop_toDual_iff {α : Type u_1} [LE α] {a : α} :
@[simp]
theorem isMin_toDual_iff {α : Type u_1} [LE α] {a : α} :
@[simp]
theorem isMax_toDual_iff {α : Type u_1} [LE α] {a : α} :
@[simp]
theorem isBot_ofDual_iff {α : Type u_1} [LE α] {a : αᵒᵈ} :
@[simp]
theorem isTop_ofDual_iff {α : Type u_1} [LE α] {a : αᵒᵈ} :
@[simp]
theorem isMin_ofDual_iff {α : Type u_1} [LE α] {a : αᵒᵈ} :
@[simp]
theorem isMax_ofDual_iff {α : Type u_1} [LE α] {a : αᵒᵈ} :
theorem IsTop.toDual {α : Type u_1} [LE α] {a : α} :

Alias of the reverse direction of isBot_toDual_iff.

theorem IsBot.toDual {α : Type u_1} [LE α] {a : α} :

Alias of the reverse direction of isTop_toDual_iff.

theorem IsMax.toDual {α : Type u_1} [LE α] {a : α} :

Alias of the reverse direction of isMin_toDual_iff.

theorem IsMin.toDual {α : Type u_1} [LE α] {a : α} :

Alias of the reverse direction of isMax_toDual_iff.

theorem IsTop.ofDual {α : Type u_1} [LE α] {a : αᵒᵈ} :

Alias of the reverse direction of isBot_ofDual_iff.

theorem IsBot.ofDual {α : Type u_1} [LE α] {a : αᵒᵈ} :

Alias of the reverse direction of isTop_ofDual_iff.

theorem IsMax.ofDual {α : Type u_1} [LE α] {a : αᵒᵈ} :

Alias of the reverse direction of isMin_ofDual_iff.

theorem IsMin.ofDual {α : Type u_1} [LE α] {a : αᵒᵈ} :

Alias of the reverse direction of isMax_ofDual_iff.

theorem IsBot.mono {α : Type u_1} [Preorder α] {a b : α} (ha : IsBot a) (h : b a) :
theorem IsTop.mono {α : Type u_1} [Preorder α] {a b : α} (ha : IsTop a) (h : a b) :
theorem IsMin.mono {α : Type u_1} [Preorder α] {a b : α} (ha : IsMin a) (h : b a) :
theorem IsMax.mono {α : Type u_1} [Preorder α] {a b : α} (ha : IsMax a) (h : a b) :
theorem IsMin.not_lt {α : Type u_1} [Preorder α] {a b : α} (h : IsMin a) :
¬b < a
theorem IsMax.not_lt {α : Type u_1} [Preorder α] {a b : α} (h : IsMax a) :
¬a < b
@[simp]
theorem not_isMin_of_lt {α : Type u_1} [Preorder α] {a b : α} (h : b < a) :
@[simp]
theorem not_isMax_of_lt {α : Type u_1} [Preorder α] {a b : α} (h : a < b) :
theorem LT.lt.not_isMin {α : Type u_1} [Preorder α] {a b : α} (h : b < a) :

Alias of not_isMin_of_lt.

theorem LT.lt.not_isMax {α : Type u_1} [Preorder α] {a b : α} (h : a < b) :

Alias of not_isMax_of_lt.

theorem isMin_iff_forall_not_lt {α : Type u_1} [Preorder α] {a : α} :
IsMin a ∀ (b : α), ¬b < a
theorem isMax_iff_forall_not_lt {α : Type u_1} [Preorder α] {a : α} :
IsMax a ∀ (b : α), ¬a < b
@[simp]
theorem not_isMin_iff {α : Type u_1} [Preorder α] {a : α} :
¬IsMin a (b : α), b < a
@[simp]
theorem not_isMax_iff {α : Type u_1} [Preorder α] {a : α} :
¬IsMax a (b : α), a < b
@[simp]
theorem not_isMin {α : Type u_1} [Preorder α] [NoMinOrder α] (a : α) :
@[simp]
theorem not_isMax {α : Type u_1} [Preorder α] [NoMaxOrder α] (a : α) :
theorem Subsingleton.isBot {α : Type u_1} [Preorder α] [Subsingleton α] (a : α) :
theorem Subsingleton.isTop {α : Type u_1} [Preorder α] [Subsingleton α] (a : α) :
theorem Subsingleton.isMin {α : Type u_1} [Preorder α] [Subsingleton α] (a : α) :
theorem Subsingleton.isMax {α : Type u_1} [Preorder α] [Subsingleton α] (a : α) :
theorem IsMin.eq_of_le {α : Type u_1} [PartialOrder α] {a b : α} (ha : IsMin a) (h : b a) :
b = a
theorem IsMin.eq_of_ge {α : Type u_1} [PartialOrder α] {a b : α} (ha : IsMin a) (h : b a) :
a = b
theorem IsMax.eq_of_le {α : Type u_1} [PartialOrder α] {a b : α} (ha : IsMax a) (h : a b) :
a = b
theorem IsMax.eq_of_ge {α : Type u_1} [PartialOrder α] {a b : α} (ha : IsMax a) (h : a b) :
b = a
theorem IsBot.lt_of_ne {α : Type u_1} [PartialOrder α] {a b : α} (ha : IsBot a) (h : a b) :
a < b
theorem IsTop.lt_of_ne {α : Type u_1} [PartialOrder α] {a b : α} (ha : IsTop a) (h : b a) :
b < a
theorem IsBot.not_isMax {α : Type u_1} [PartialOrder α] {a : α} [Nontrivial α] (ha : IsBot a) :
theorem IsTop.not_isMin {α : Type u_1} [PartialOrder α] {a : α} [Nontrivial α] (ha : IsTop a) :
theorem IsBot.not_isTop {α : Type u_1} [PartialOrder α] {a : α} [Nontrivial α] (ha : IsBot a) :
theorem IsTop.not_isBot {α : Type u_1} [PartialOrder α] {a : α} [Nontrivial α] (ha : IsTop a) :
theorem IsBot.prodMk {α : Type u_1} {β : Type u_2} [Preorder α] [Preorder β] {a : α} {b : β} (ha : IsBot a) (hb : IsBot b) :
@[deprecated IsBot.prodMk (since := "2025-02-22")]
theorem IsBot.prod_mk {α : Type u_1} {β : Type u_2} [Preorder α] [Preorder β] {a : α} {b : β} (ha : IsBot a) (hb : IsBot b) :

Alias of IsBot.prodMk.

theorem IsTop.prodMk {α : Type u_1} {β : Type u_2} [Preorder α] [Preorder β] {a : α} {b : β} (ha : IsTop a) (hb : IsTop b) :
@[deprecated IsTop.prodMk (since := "2025-02-22")]
theorem IsTop.prod_mk {α : Type u_1} {β : Type u_2} [Preorder α] [Preorder β] {a : α} {b : β} (ha : IsTop a) (hb : IsTop b) :

Alias of IsTop.prodMk.

theorem IsMin.prodMk {α : Type u_1} {β : Type u_2} [Preorder α] [Preorder β] {a : α} {b : β} (ha : IsMin a) (hb : IsMin b) :
@[deprecated IsMin.prodMk (since := "2025-02-22")]
theorem IsMin.prod_mk {α : Type u_1} {β : Type u_2} [Preorder α] [Preorder β] {a : α} {b : β} (ha : IsMin a) (hb : IsMin b) :

Alias of IsMin.prodMk.

theorem IsMax.prodMk {α : Type u_1} {β : Type u_2} [Preorder α] [Preorder β] {a : α} {b : β} (ha : IsMax a) (hb : IsMax b) :
@[deprecated IsMax.prodMk (since := "2025-02-22")]
theorem IsMax.prod_mk {α : Type u_1} {β : Type u_2} [Preorder α] [Preorder β] {a : α} {b : β} (ha : IsMax a) (hb : IsMax b) :

Alias of IsMax.prodMk.

theorem IsBot.fst {α : Type u_1} {β : Type u_2} [Preorder α] [Preorder β] {x : α × β} (hx : IsBot x) :
theorem IsBot.snd {α : Type u_1} {β : Type u_2} [Preorder α] [Preorder β] {x : α × β} (hx : IsBot x) :
theorem IsTop.fst {α : Type u_1} {β : Type u_2} [Preorder α] [Preorder β] {x : α × β} (hx : IsTop x) :
theorem IsTop.snd {α : Type u_1} {β : Type u_2} [Preorder α] [Preorder β] {x : α × β} (hx : IsTop x) :
theorem IsMin.fst {α : Type u_1} {β : Type u_2} [Preorder α] [Preorder β] {x : α × β} (hx : IsMin x) :
theorem IsMin.snd {α : Type u_1} {β : Type u_2} [Preorder α] [Preorder β] {x : α × β} (hx : IsMin x) :
theorem IsMax.fst {α : Type u_1} {β : Type u_2} [Preorder α] [Preorder β] {x : α × β} (hx : IsMax x) :
theorem IsMax.snd {α : Type u_1} {β : Type u_2} [Preorder α] [Preorder β] {x : α × β} (hx : IsMax x) :
theorem Prod.isBot_iff {α : Type u_1} {β : Type u_2} [Preorder α] [Preorder β] {x : α × β} :
theorem Prod.isTop_iff {α : Type u_1} {β : Type u_2} [Preorder α] [Preorder β] {x : α × β} :
theorem Prod.isMin_iff {α : Type u_1} {β : Type u_2} [Preorder α] [Preorder β] {x : α × β} :
theorem Prod.isMax_iff {α : Type u_1} {β : Type u_2} [Preorder α] [Preorder β] {x : α × β} :