Documentation

Mathlib.Order.Notation

Notation classes for lattice operations #

In this file we introduce typeclasses and definitions for lattice operations.

Main definitions #

Notations #

class HasCompl (α : Type u_1) :
Type u_1

Set / lattice complement

  • compl : αα

    Set / lattice complement

Instances

    Set / lattice complement

    Equations
    Instances For

      Sup and Inf #

      @[deprecated Max]
      class Sup (α : Type u_1) :
      Type u_1

      Typeclass for the (\lub) notation

      • sup : ααα

        Least upper bound (\lub notation)

      Instances
        theorem Sup.ext {α : Type u_1} {x : Sup α} {y : Sup α} (sup : Sup.sup = Sup.sup) :
        x = y
        @[deprecated Min]
        class Inf (α : Type u_1) :
        Type u_1

        Typeclass for the (\glb) notation

        • inf : ααα

          Greatest lower bound (\glb notation)

        Instances
          theorem Inf.ext {α : Type u_1} {x : Inf α} {y : Inf α} (inf : Inf.inf = Inf.inf) :
          x = y
          theorem Min.ext {α : Type u} {x : Min α} {y : Min α} (min : Min.min = Min.min) :
          x = y
          theorem Max.ext {α : Type u} {x : Max α} {y : Max α} (max : Max.max = Max.max) :
          x = y

          The maximum operation: max x y.

          Equations
          Instances For

            The minimum operation: min x y.

            Equations
            Instances For
              class HImp (α : Type u_1) :
              Type u_1

              Syntax typeclass for Heyting implication .

              • himp : ααα

                Heyting implication

              Instances
                class HNot (α : Type u_1) :
                Type u_1

                Syntax typeclass for Heyting negation .

                The difference between HasCompl and HNot is that the former belongs to Heyting algebras, while the latter belongs to co-Heyting algebras. They are both pseudo-complements, but compl underestimates while HNot overestimates. In boolean algebras, they are equal. See hnot_eq_compl.

                • hnot : αα

                  Heyting negation

                Instances

                  Heyting implication

                  Equations
                  Instances For

                    Heyting negation

                    Equations
                    Instances For
                      class Top (α : Type u_1) :
                      Type u_1

                      Typeclass for the (\top) notation

                      • top : α

                        The top (, \top) element

                      Instances
                        theorem Top.ext {α : Type u_1} {x : Top α} {y : Top α} (top : = ) :
                        x = y
                        class Bot (α : Type u_1) :
                        Type u_1

                        Typeclass for the (\bot) notation

                        • bot : α

                          The bot (, \bot) element

                        Instances
                          theorem Bot.ext {α : Type u_1} {x : Bot α} {y : Bot α} (bot : = ) :
                          x = y

                          The top (, \top) element

                          Equations
                          Instances For

                            The bot (, \bot) element

                            Equations
                            Instances For
                              @[instance 100]
                              instance top_nonempty (α : Type u_1) [Top α] :
                              Equations
                              • =
                              @[instance 100]
                              instance bot_nonempty (α : Type u_1) [Bot α] :
                              Equations
                              • =