Documentation

Mathlib.Order.RelClasses

Unbundled relation classes #

In this file we prove some properties of Is* classes defined in Mathlib.Order.Defs. The main difference between these classes and the usual order classes (Preorder etc) is that usual classes extend LE and/or LT while these classes take a relation as an explicit argument.

theorem IsRefl.swap {α : Type u} (r : ααProp) [IsRefl α r] :
theorem IsIrrefl.swap {α : Type u} (r : ααProp) [IsIrrefl α r] :
theorem IsTrans.swap {α : Type u} (r : ααProp) [IsTrans α r] :
theorem IsAntisymm.swap {α : Type u} (r : ααProp) [IsAntisymm α r] :
theorem IsAsymm.swap {α : Type u} (r : ααProp) [IsAsymm α r] :
theorem IsTotal.swap {α : Type u} (r : ααProp) [IsTotal α r] :
theorem IsTrichotomous.swap {α : Type u} (r : ααProp) [IsTrichotomous α r] :
theorem IsPreorder.swap {α : Type u} (r : ααProp) [IsPreorder α r] :
theorem IsStrictOrder.swap {α : Type u} (r : ααProp) [IsStrictOrder α r] :
theorem IsPartialOrder.swap {α : Type u} (r : ααProp) [IsPartialOrder α r] :
theorem eq_empty_relation {α : Type u} (r : ααProp) [IsIrrefl α r] [Subsingleton α] :
@[reducible, inline]
abbrev partialOrderOfSO {α : Type u} (r : ααProp) [IsStrictOrder α r] :

Construct a partial order from an isStrictOrder relation.

See note [reducible non-instances].

Equations
@[reducible, inline]
abbrev linearOrderOfSTO {α : Type u} (r : ααProp) [IsStrictTotalOrder α r] [DecidableRel r] :

Construct a linear order from an IsStrictTotalOrder relation.

See note [reducible non-instances].

Equations

Order connection #

class IsOrderConnected (α : Type u) (lt : ααProp) :

A connected order is one satisfying the condition a < c → a < b ∨ b < c. This is recognizable as an intuitionistic substitute for a ≤ b ∨ b ≤ a on the constructive reals, and is also known as negative transitivity, since the contrapositive asserts transitivity of the relation ¬ a < b.

  • conn (a b c : α) : lt a clt a b lt b c

    A connected order is one satisfying the condition a < c → a < b ∨ b < c.

Instances
theorem IsOrderConnected.neg_trans {α : Type u} {r : ααProp} [IsOrderConnected α r] {a b c : α} (h₁ : ¬r a b) (h₂ : ¬r b c) :
¬r a c
theorem isStrictWeakOrder_of_isOrderConnected {α : Type u} {r : ααProp} [IsAsymm α r] [IsOrderConnected α r] :
@[instance 100]

Inverse Image #

theorem InvImage.isTrichotomous {α : Type u} {β : Type v} {r : ααProp} [IsTrichotomous α r] {f : βα} (h : Function.Injective f) :
instance InvImage.isAsymm {α : Type u} {β : Type v} {r : ααProp} [IsAsymm α r] (f : βα) :
IsAsymm β (InvImage r f)

Well-order #

theorem isWellFounded_iff (α : Type u) (r : ααProp) :
@[irreducible]
theorem WellFoundedRelation.asymmetric {α : Sort u_1} [WellFoundedRelation α] {a b : α} :
rel a b¬rel b a
@[irreducible]
theorem WellFoundedRelation.asymmetric₃ {α : Sort u_1} [WellFoundedRelation α] {a b c : α} :
rel a brel b c¬rel c a
theorem WellFounded.prod_lex {α : Type u} {β : Type v} {ra : ααProp} {rb : ββProp} (ha : WellFounded ra) (hb : WellFounded rb) :
theorem WellFounded.psigma_lex {α : Sort u_1} {β : αSort u_2} {r : ααProp} {s : (a : α) → β aβ aProp} (ha : WellFounded r) (hb : ∀ (x : α), WellFounded (s x)) :

The lexicographical order of well-founded relations is well-founded.

theorem WellFounded.psigma_revLex {α : Sort u_1} {β : Sort u_2} {r : ααProp} {s : ββProp} (ha : WellFounded r) (hb : WellFounded s) :
theorem WellFounded.psigma_skipLeft (α : Type u) {β : Type v} {s : ββProp} (hb : WellFounded s) :
theorem IsWellFounded.induction {α : Type u} (r : ααProp) [IsWellFounded α r] {C : αProp} (a : α) (ind : ∀ (x : α), (∀ (y : α), r y xC y)C x) :
C a

Induction on a well-founded relation.

theorem IsWellFounded.apply {α : Type u} (r : ααProp) [IsWellFounded α r] (a : α) :
Acc r a

All values are accessible under the well-founded relation.

def IsWellFounded.fix {α : Type u} (r : ααProp) [IsWellFounded α r] {C : αSort u_1} :
((x : α) → ((y : α) → r y xC y)C x)(x : α) → C x

Creates data, given a way to generate a value from all that compare as less under a well-founded relation. See also IsWellFounded.fix_eq.

Equations
theorem IsWellFounded.fix_eq {α : Type u} (r : ααProp) [IsWellFounded α r] {C : αSort u_1} (F : (x : α) → ((y : α) → r y xC y)C x) (x : α) :
fix r F x = F x fun (y : α) (x : r y x) => fix r F y

The value from IsWellFounded.fix is built from the previous ones as specified.

Derive a WellFoundedRelation instance from an isWellFounded instance.

Equations
theorem WellFounded.asymmetric {α : Sort u_1} {r : ααProp} (h : WellFounded r) (a b : α) :
r a b¬r b a
theorem WellFounded.asymmetric₃ {α : Sort u_1} {r : ααProp} (h : WellFounded r) (a b c : α) :
r a br b c¬r c a
@[instance 100]
instance instIsAsymmOfIsWellFounded {α : Type u} (r : ααProp) [IsWellFounded α r] :
IsAsymm α r
@[instance 100]
instance instIsIrreflOfIsWellFounded {α : Type u} (r : ααProp) [IsWellFounded α r] :
instance instIsWellFoundedTransGen {α : Type u} (r : ααProp) [i : IsWellFounded α r] :
@[reducible, inline]
abbrev WellFoundedLT (α : Type u_1) [LT α] :

A class for a well founded relation <.

Equations
@[reducible, inline]
abbrev WellFoundedGT (α : Type u_1) [LT α] :

A class for a well founded relation >.

Equations
theorem wellFounded_lt {α : Type u} [LT α] [WellFoundedLT α] :
WellFounded fun (x1 x2 : α) => x1 < x2
theorem wellFounded_gt {α : Type u} [LT α] [WellFoundedGT α] :
WellFounded fun (x1 x2 : α) => x1 > x2
@[instance 100]
@[instance 100]
@[instance 100]
instance instIsStrictTotalOrderOfIsWellOrder {α : Type u_1} (r : ααProp) [IsWellOrder α r] :
@[instance 100]
instance instIsTrichotomousOfIsWellOrder {α : Type u_1} (r : ααProp) [IsWellOrder α r] :
@[instance 100]
instance instIsTransOfIsWellOrder {α : Type u_1} (r : ααProp) [IsWellOrder α r] :
IsTrans α r
@[instance 100]
instance instIsIrreflOfIsWellOrder {α : Type u_1} (r : ααProp) [IsWellOrder α r] :
@[instance 100]
instance instIsAsymmOfIsWellOrder {α : Type u_1} (r : ααProp) [IsWellOrder α r] :
IsAsymm α r
theorem WellFoundedLT.induction {α : Type u} [LT α] [WellFoundedLT α] {C : αProp} (a : α) (ind : ∀ (x : α), (∀ (y : α), y < xC y)C x) :
C a

Inducts on a well-founded < relation.

theorem WellFoundedLT.apply {α : Type u} [LT α] [WellFoundedLT α] (a : α) :
Acc (fun (x1 x2 : α) => x1 < x2) a

All values are accessible under the well-founded <.

def WellFoundedLT.fix {α : Type u} [LT α] [WellFoundedLT α] {C : αSort u_1} :
((x : α) → ((y : α) → y < xC y)C x)(x : α) → C x

Creates data, given a way to generate a value from all that compare as lesser. See also WellFoundedLT.fix_eq.

Equations
theorem WellFoundedLT.fix_eq {α : Type u} [LT α] [WellFoundedLT α] {C : αSort u_1} (F : (x : α) → ((y : α) → y < xC y)C x) (x : α) :
fix F x = F x fun (y : α) (x : y < x) => fix F y

The value from WellFoundedLT.fix is built from the previous ones as specified.

theorem WellFoundedGT.induction {α : Type u} [LT α] [WellFoundedGT α] {C : αProp} (a : α) (ind : ∀ (x : α), (∀ (y : α), x < yC y)C x) :
C a

Inducts on a well-founded > relation.

theorem WellFoundedGT.apply {α : Type u} [LT α] [WellFoundedGT α] (a : α) :
Acc (fun (x1 x2 : α) => x1 > x2) a

All values are accessible under the well-founded >.

def WellFoundedGT.fix {α : Type u} [LT α] [WellFoundedGT α] {C : αSort u_1} :
((x : α) → ((y : α) → x < yC y)C x)(x : α) → C x

Creates data, given a way to generate a value from all that compare as greater. See also WellFoundedGT.fix_eq.

Equations
theorem WellFoundedGT.fix_eq {α : Type u} [LT α] [WellFoundedGT α] {C : αSort u_1} (F : (x : α) → ((y : α) → x < yC y)C x) (x : α) :
fix F x = F x fun (y : α) (x : x < y) => fix F y

The value from WellFoundedGT.fix is built from the successive ones as specified.

noncomputable def IsWellOrder.linearOrder {α : Type u} (r : ααProp) [IsWellOrder α r] :

Construct a decidable linear order from a well-founded linear order.

Equations
def IsWellOrder.toHasWellFounded {α : Type u} [LT α] [hwo : IsWellOrder α fun (x1 x2 : α) => x1 < x2] :

Derive a WellFoundedRelation instance from an IsWellOrder instance.

Equations
theorem Subsingleton.isWellOrder {α : Type u} [Subsingleton α] (r : ααProp) [hr : IsIrrefl α r] :
@[instance 100]
instance instIsWellOrderOfIsEmpty {α : Type u} [IsEmpty α] (r : ααProp) :
instance Prod.Lex.instIsWellFounded {α : Type u} {β : Type v} {r : ααProp} {s : ββProp} [IsWellFounded α r] [IsWellFounded β s] :
IsWellFounded (α × β) (Prod.Lex r s)
instance instIsWellOrderProdLex {α : Type u} {β : Type v} {r : ααProp} {s : ββProp} [IsWellOrder α r] [IsWellOrder β s] :
IsWellOrder (α × β) (Prod.Lex r s)
instance instIsWellFoundedInvImage {α : Type u} {β : Type v} (r : ααProp) [IsWellFounded α r] (f : βα) :
instance instIsWellFoundedInvImageNatLt {α : Type u} (f : α) :
IsWellFounded α (InvImage (fun (x1 x2 : ) => x1 < x2) f)
theorem Subrelation.isWellFounded {α : Type u} (r : ααProp) [IsWellFounded α r] {s : ααProp} (h : Subrelation s r) :
theorem Prod.wellFoundedLT' {α : Type u} {β : Type v} [PartialOrder α] [WellFoundedLT α] [Preorder β] [WellFoundedLT β] :

See Prod.wellFoundedLT for a version that only requires Preorder α.

theorem Prod.wellFoundedGT' {α : Type u} {β : Type v} [PartialOrder α] [WellFoundedGT α] [Preorder β] [WellFoundedGT β] :

See Prod.wellFoundedGT for a version that only requires Preorder α.

def Set.Unbounded {α : Type u} (r : ααProp) (s : Set α) :

An unbounded or cofinal set.

Equations
def Set.Bounded {α : Type u} (r : ααProp) (s : Set α) :

A bounded or final set. Not to be confused with Bornology.IsBounded.

Equations
@[simp]
theorem Set.not_bounded_iff {α : Type u} {r : ααProp} (s : Set α) :
@[simp]
theorem Set.not_unbounded_iff {α : Type u} {r : ααProp} (s : Set α) :
theorem Set.unbounded_of_isEmpty {α : Type u} [IsEmpty α] {r : ααProp} (s : Set α) :
instance Order.Preimage.instIsRefl {α : Type u} {β : Type v} {r : ααProp} [IsRefl α r] {f : βα} :
IsRefl β (f ⁻¹'o r)
instance Order.Preimage.instIsIrrefl {α : Type u} {β : Type v} {r : ααProp} [IsIrrefl α r] {f : βα} :
IsIrrefl β (f ⁻¹'o r)
instance Order.Preimage.instIsSymm {α : Type u} {β : Type v} {r : ααProp} [IsSymm α r] {f : βα} :
IsSymm β (f ⁻¹'o r)
instance Order.Preimage.instIsAsymm {α : Type u} {β : Type v} {r : ααProp} [IsAsymm α r] {f : βα} :
IsAsymm β (f ⁻¹'o r)
instance Order.Preimage.instIsTrans {α : Type u} {β : Type v} {r : ααProp} [IsTrans α r] {f : βα} :
IsTrans β (f ⁻¹'o r)
instance Order.Preimage.instIsPreorder {α : Type u} {β : Type v} {r : ααProp} [IsPreorder α r] {f : βα} :
instance Order.Preimage.instIsStrictOrder {α : Type u} {β : Type v} {r : ααProp} [IsStrictOrder α r] {f : βα} :
instance Order.Preimage.instIsStrictWeakOrder {α : Type u} {β : Type v} {r : ααProp} [IsStrictWeakOrder α r] {f : βα} :
instance Order.Preimage.instIsEquiv {α : Type u} {β : Type v} {r : ααProp} [IsEquiv α r] {f : βα} :
IsEquiv β (f ⁻¹'o r)
instance Order.Preimage.instIsTotal {α : Type u} {β : Type v} {r : ααProp} [IsTotal α r] {f : βα} :
IsTotal β (f ⁻¹'o r)
theorem Order.Preimage.isAntisymm {α : Type u} {β : Type v} {r : ααProp} [IsAntisymm α r] {f : βα} (hf : Function.Injective f) :

Strict-non strict relations #

class IsNonstrictStrictOrder (α : Type u_1) (r : semiOutParam (ααProp)) (s : ααProp) :

An unbundled relation class stating that r is the nonstrict relation corresponding to the strict relation s. Compare Preorder.lt_iff_le_not_le. This is mostly meant to provide dot notation on (⊆) and (⊂).

  • right_iff_left_not_left (a b : α) : s a b r a b ¬r b a

    The relation r is the nonstrict relation corresponding to the strict relation s.

Instances
theorem right_iff_left_not_left {α : Type u} {r s : ααProp} [IsNonstrictStrictOrder α r s] {a b : α} :
s a b r a b ¬r b a
theorem right_iff_left_not_left_of {α : Type u} (r s : ααProp) [IsNonstrictStrictOrder α r s] {a b : α} :
s a b r a b ¬r b a

A version of right_iff_left_not_left with explicit r and s.

instance instIsIrreflOfIsNonstrictStrictOrder {α : Type u} {r s : ααProp} [IsNonstrictStrictOrder α r s] :

and #

theorem subset_of_eq_of_subset {α : Type u} [HasSubset α] {a b c : α} (hab : a = b) (hbc : b c) :
a c
theorem subset_of_subset_of_eq {α : Type u} [HasSubset α] {a b c : α} (hab : a b) (hbc : b = c) :
a c
@[simp]
theorem subset_refl {α : Type u} [HasSubset α] [IsRefl α fun (x1 x2 : α) => x1 x2] (a : α) :
a a
theorem subset_rfl {α : Type u} [HasSubset α] {a : α} [IsRefl α fun (x1 x2 : α) => x1 x2] :
a a
theorem subset_of_eq {α : Type u} [HasSubset α] {a b : α} [IsRefl α fun (x1 x2 : α) => x1 x2] :
a = ba b
theorem superset_of_eq {α : Type u} [HasSubset α] {a b : α} [IsRefl α fun (x1 x2 : α) => x1 x2] :
a = bb a
theorem ne_of_not_subset {α : Type u} [HasSubset α] {a b : α} [IsRefl α fun (x1 x2 : α) => x1 x2] :
¬a ba b
theorem ne_of_not_superset {α : Type u} [HasSubset α] {a b : α} [IsRefl α fun (x1 x2 : α) => x1 x2] :
¬a bb a
theorem subset_trans {α : Type u} [HasSubset α] [IsTrans α fun (x1 x2 : α) => x1 x2] {a b c : α} :
a bb ca c
theorem subset_antisymm {α : Type u} [HasSubset α] {a b : α} [IsAntisymm α fun (x1 x2 : α) => x1 x2] :
a bb aa = b
theorem superset_antisymm {α : Type u} [HasSubset α] {a b : α} [IsAntisymm α fun (x1 x2 : α) => x1 x2] :
a bb ab = a
theorem Eq.trans_subset {α : Type u} [HasSubset α] {a b c : α} (hab : a = b) (hbc : b c) :
a c

Alias of subset_of_eq_of_subset.

theorem HasSubset.subset.trans_eq {α : Type u} [HasSubset α] {a b c : α} (hab : a b) (hbc : b = c) :
a c

Alias of subset_of_subset_of_eq.

theorem Eq.subset' {α : Type u} [HasSubset α] {a b : α} [IsRefl α fun (x1 x2 : α) => x1 x2] :
a = ba b

Alias of subset_of_eq.

theorem Eq.superset {α : Type u} [HasSubset α] {a b : α} [IsRefl α fun (x1 x2 : α) => x1 x2] :
a = bb a

Alias of superset_of_eq.

theorem HasSubset.Subset.trans {α : Type u} [HasSubset α] [IsTrans α fun (x1 x2 : α) => x1 x2] {a b c : α} :
a bb ca c

Alias of subset_trans.

theorem HasSubset.Subset.antisymm {α : Type u} [HasSubset α] {a b : α} [IsAntisymm α fun (x1 x2 : α) => x1 x2] :
a bb aa = b

Alias of subset_antisymm.

theorem HasSubset.Subset.antisymm' {α : Type u} [HasSubset α] {a b : α} [IsAntisymm α fun (x1 x2 : α) => x1 x2] :
a bb ab = a

Alias of superset_antisymm.

theorem subset_antisymm_iff {α : Type u} [HasSubset α] {a b : α} [IsRefl α fun (x1 x2 : α) => x1 x2] [IsAntisymm α fun (x1 x2 : α) => x1 x2] :
a = b a b b a
theorem superset_antisymm_iff {α : Type u} [HasSubset α] {a b : α} [IsRefl α fun (x1 x2 : α) => x1 x2] [IsAntisymm α fun (x1 x2 : α) => x1 x2] :
a = b b a a b
theorem ssubset_of_eq_of_ssubset {α : Type u} [HasSSubset α] {a b c : α} (hab : a = b) (hbc : b c) :
a c
theorem ssubset_of_ssubset_of_eq {α : Type u} [HasSSubset α] {a b c : α} (hab : a b) (hbc : b = c) :
a c
theorem ssubset_irrefl {α : Type u} [HasSSubset α] [IsIrrefl α fun (x1 x2 : α) => x1 x2] (a : α) :
¬a a
theorem ssubset_irrfl {α : Type u} [HasSSubset α] [IsIrrefl α fun (x1 x2 : α) => x1 x2] {a : α} :
¬a a
theorem ne_of_ssubset {α : Type u} [HasSSubset α] [IsIrrefl α fun (x1 x2 : α) => x1 x2] {a b : α} :
a ba b
theorem ne_of_ssuperset {α : Type u} [HasSSubset α] [IsIrrefl α fun (x1 x2 : α) => x1 x2] {a b : α} :
a bb a
theorem ssubset_trans {α : Type u} [HasSSubset α] [IsTrans α fun (x1 x2 : α) => x1 x2] {a b c : α} :
a bb ca c
theorem ssubset_asymm {α : Type u} [HasSSubset α] [IsAsymm α fun (x1 x2 : α) => x1 x2] {a b : α} :
a b¬b a
theorem Eq.trans_ssubset {α : Type u} [HasSSubset α] {a b c : α} (hab : a = b) (hbc : b c) :
a c

Alias of ssubset_of_eq_of_ssubset.

theorem HasSSubset.SSubset.trans_eq {α : Type u} [HasSSubset α] {a b c : α} (hab : a b) (hbc : b = c) :
a c

Alias of ssubset_of_ssubset_of_eq.

theorem HasSSubset.SSubset.false {α : Type u} [HasSSubset α] [IsIrrefl α fun (x1 x2 : α) => x1 x2] {a : α} :
¬a a

Alias of ssubset_irrfl.

theorem HasSSubset.SSubset.ne {α : Type u} [HasSSubset α] [IsIrrefl α fun (x1 x2 : α) => x1 x2] {a b : α} :
a ba b

Alias of ne_of_ssubset.

theorem HasSSubset.SSubset.ne' {α : Type u} [HasSSubset α] [IsIrrefl α fun (x1 x2 : α) => x1 x2] {a b : α} :
a bb a

Alias of ne_of_ssuperset.

theorem HasSSubset.SSubset.trans {α : Type u} [HasSSubset α] [IsTrans α fun (x1 x2 : α) => x1 x2] {a b c : α} :
a bb ca c

Alias of ssubset_trans.

theorem HasSSubset.SSubset.asymm {α : Type u} [HasSSubset α] [IsAsymm α fun (x1 x2 : α) => x1 x2] {a b : α} :
a b¬b a

Alias of ssubset_asymm.

theorem ssubset_iff_subset_not_subset {α : Type u} [HasSubset α] [HasSSubset α] [IsNonstrictStrictOrder α (fun (x1 x2 : α) => x1 x2) fun (x1 x2 : α) => x1 x2] {a b : α} :
a b a b ¬b a
theorem subset_of_ssubset {α : Type u} [HasSubset α] [HasSSubset α] [IsNonstrictStrictOrder α (fun (x1 x2 : α) => x1 x2) fun (x1 x2 : α) => x1 x2] {a b : α} (h : a b) :
a b
theorem not_subset_of_ssubset {α : Type u} [HasSubset α] [HasSSubset α] [IsNonstrictStrictOrder α (fun (x1 x2 : α) => x1 x2) fun (x1 x2 : α) => x1 x2] {a b : α} (h : a b) :
¬b a
theorem not_ssubset_of_subset {α : Type u} [HasSubset α] [HasSSubset α] [IsNonstrictStrictOrder α (fun (x1 x2 : α) => x1 x2) fun (x1 x2 : α) => x1 x2] {a b : α} (h : a b) :
¬b a
theorem ssubset_of_subset_not_subset {α : Type u} [HasSubset α] [HasSSubset α] [IsNonstrictStrictOrder α (fun (x1 x2 : α) => x1 x2) fun (x1 x2 : α) => x1 x2] {a b : α} (h₁ : a b) (h₂ : ¬b a) :
a b
theorem HasSSubset.SSubset.subset {α : Type u} [HasSubset α] [HasSSubset α] [IsNonstrictStrictOrder α (fun (x1 x2 : α) => x1 x2) fun (x1 x2 : α) => x1 x2] {a b : α} (h : a b) :
a b

Alias of subset_of_ssubset.

theorem HasSSubset.SSubset.not_subset {α : Type u} [HasSubset α] [HasSSubset α] [IsNonstrictStrictOrder α (fun (x1 x2 : α) => x1 x2) fun (x1 x2 : α) => x1 x2] {a b : α} (h : a b) :
¬b a

Alias of not_subset_of_ssubset.

theorem HasSubset.Subset.not_ssubset {α : Type u} [HasSubset α] [HasSSubset α] [IsNonstrictStrictOrder α (fun (x1 x2 : α) => x1 x2) fun (x1 x2 : α) => x1 x2] {a b : α} (h : a b) :
¬b a

Alias of not_ssubset_of_subset.

theorem HasSubset.Subset.ssubset_of_not_subset {α : Type u} [HasSubset α] [HasSSubset α] [IsNonstrictStrictOrder α (fun (x1 x2 : α) => x1 x2) fun (x1 x2 : α) => x1 x2] {a b : α} (h₁ : a b) (h₂ : ¬b a) :
a b

Alias of ssubset_of_subset_not_subset.

theorem ssubset_of_subset_of_ssubset {α : Type u} [HasSubset α] [HasSSubset α] [IsNonstrictStrictOrder α (fun (x1 x2 : α) => x1 x2) fun (x1 x2 : α) => x1 x2] {a b c : α} [IsTrans α fun (x1 x2 : α) => x1 x2] (h₁ : a b) (h₂ : b c) :
a c
theorem ssubset_of_ssubset_of_subset {α : Type u} [HasSubset α] [HasSSubset α] [IsNonstrictStrictOrder α (fun (x1 x2 : α) => x1 x2) fun (x1 x2 : α) => x1 x2] {a b c : α} [IsTrans α fun (x1 x2 : α) => x1 x2] (h₁ : a b) (h₂ : b c) :
a c
theorem ssubset_of_subset_of_ne {α : Type u} [HasSubset α] [HasSSubset α] [IsNonstrictStrictOrder α (fun (x1 x2 : α) => x1 x2) fun (x1 x2 : α) => x1 x2] {a b : α} [IsAntisymm α fun (x1 x2 : α) => x1 x2] (h₁ : a b) (h₂ : a b) :
a b
theorem ssubset_of_ne_of_subset {α : Type u} [HasSubset α] [HasSSubset α] [IsNonstrictStrictOrder α (fun (x1 x2 : α) => x1 x2) fun (x1 x2 : α) => x1 x2] {a b : α} [IsAntisymm α fun (x1 x2 : α) => x1 x2] (h₁ : a b) (h₂ : a b) :
a b
theorem eq_or_ssubset_of_subset {α : Type u} [HasSubset α] [HasSSubset α] [IsNonstrictStrictOrder α (fun (x1 x2 : α) => x1 x2) fun (x1 x2 : α) => x1 x2] {a b : α} [IsAntisymm α fun (x1 x2 : α) => x1 x2] (h : a b) :
a = b a b
theorem ssubset_or_eq_of_subset {α : Type u} [HasSubset α] [HasSSubset α] [IsNonstrictStrictOrder α (fun (x1 x2 : α) => x1 x2) fun (x1 x2 : α) => x1 x2] {a b : α} [IsAntisymm α fun (x1 x2 : α) => x1 x2] (h : a b) :
a b a = b
theorem eq_of_subset_of_not_ssubset {α : Type u} [HasSubset α] [HasSSubset α] [IsNonstrictStrictOrder α (fun (x1 x2 : α) => x1 x2) fun (x1 x2 : α) => x1 x2] {a b : α} [IsAntisymm α fun (x1 x2 : α) => x1 x2] (hab : a b) (hba : ¬a b) :
a = b
theorem eq_of_superset_of_not_ssuperset {α : Type u} [HasSubset α] [HasSSubset α] [IsNonstrictStrictOrder α (fun (x1 x2 : α) => x1 x2) fun (x1 x2 : α) => x1 x2] {a b : α} [IsAntisymm α fun (x1 x2 : α) => x1 x2] (hab : a b) (hba : ¬a b) :
b = a
theorem HasSubset.Subset.trans_ssubset {α : Type u} [HasSubset α] [HasSSubset α] [IsNonstrictStrictOrder α (fun (x1 x2 : α) => x1 x2) fun (x1 x2 : α) => x1 x2] {a b c : α} [IsTrans α fun (x1 x2 : α) => x1 x2] (h₁ : a b) (h₂ : b c) :
a c

Alias of ssubset_of_subset_of_ssubset.

theorem HasSSubset.SSubset.trans_subset {α : Type u} [HasSubset α] [HasSSubset α] [IsNonstrictStrictOrder α (fun (x1 x2 : α) => x1 x2) fun (x1 x2 : α) => x1 x2] {a b c : α} [IsTrans α fun (x1 x2 : α) => x1 x2] (h₁ : a b) (h₂ : b c) :
a c

Alias of ssubset_of_ssubset_of_subset.

theorem HasSubset.Subset.ssubset_of_ne {α : Type u} [HasSubset α] [HasSSubset α] [IsNonstrictStrictOrder α (fun (x1 x2 : α) => x1 x2) fun (x1 x2 : α) => x1 x2] {a b : α} [IsAntisymm α fun (x1 x2 : α) => x1 x2] (h₁ : a b) (h₂ : a b) :
a b

Alias of ssubset_of_subset_of_ne.

theorem Ne.ssubset_of_subset {α : Type u} [HasSubset α] [HasSSubset α] [IsNonstrictStrictOrder α (fun (x1 x2 : α) => x1 x2) fun (x1 x2 : α) => x1 x2] {a b : α} [IsAntisymm α fun (x1 x2 : α) => x1 x2] (h₁ : a b) (h₂ : a b) :
a b

Alias of ssubset_of_ne_of_subset.

theorem HasSubset.Subset.eq_or_ssubset {α : Type u} [HasSubset α] [HasSSubset α] [IsNonstrictStrictOrder α (fun (x1 x2 : α) => x1 x2) fun (x1 x2 : α) => x1 x2] {a b : α} [IsAntisymm α fun (x1 x2 : α) => x1 x2] (h : a b) :
a = b a b

Alias of eq_or_ssubset_of_subset.

theorem HasSubset.Subset.ssubset_or_eq {α : Type u} [HasSubset α] [HasSSubset α] [IsNonstrictStrictOrder α (fun (x1 x2 : α) => x1 x2) fun (x1 x2 : α) => x1 x2] {a b : α} [IsAntisymm α fun (x1 x2 : α) => x1 x2] (h : a b) :
a b a = b

Alias of ssubset_or_eq_of_subset.

theorem HasSubset.Subset.eq_of_not_ssubset {α : Type u} [HasSubset α] [HasSSubset α] [IsNonstrictStrictOrder α (fun (x1 x2 : α) => x1 x2) fun (x1 x2 : α) => x1 x2] {a b : α} [IsAntisymm α fun (x1 x2 : α) => x1 x2] (hab : a b) (hba : ¬a b) :
a = b

Alias of eq_of_subset_of_not_ssubset.

theorem HasSubset.Subset.eq_of_not_ssuperset {α : Type u} [HasSubset α] [HasSSubset α] [IsNonstrictStrictOrder α (fun (x1 x2 : α) => x1 x2) fun (x1 x2 : α) => x1 x2] {a b : α} [IsAntisymm α fun (x1 x2 : α) => x1 x2] (hab : a b) (hba : ¬a b) :
b = a

Alias of eq_of_superset_of_not_ssuperset.

theorem ssubset_iff_subset_ne {α : Type u} [HasSubset α] [HasSSubset α] [IsNonstrictStrictOrder α (fun (x1 x2 : α) => x1 x2) fun (x1 x2 : α) => x1 x2] {a b : α} [IsAntisymm α fun (x1 x2 : α) => x1 x2] :
a b a b a b
theorem subset_iff_ssubset_or_eq {α : Type u} [HasSubset α] [HasSSubset α] [IsNonstrictStrictOrder α (fun (x1 x2 : α) => x1 x2) fun (x1 x2 : α) => x1 x2] {a b : α} [IsRefl α fun (x1 x2 : α) => x1 x2] [IsAntisymm α fun (x1 x2 : α) => x1 x2] :
a b a b a = b

Conversion of bundled order typeclasses to unbundled relation typeclasses #

instance instIsReflLe {α : Type u} [Preorder α] :
IsRefl α fun (x1 x2 : α) => x1 x2
instance instIsReflGe {α : Type u} [Preorder α] :
IsRefl α fun (x1 x2 : α) => x1 x2
instance instIsTransLe {α : Type u} [Preorder α] :
IsTrans α fun (x1 x2 : α) => x1 x2
instance instIsTransGe {α : Type u} [Preorder α] :
IsTrans α fun (x1 x2 : α) => x1 x2
instance instIsPreorderLe {α : Type u} [Preorder α] :
IsPreorder α fun (x1 x2 : α) => x1 x2
instance instIsPreorderGe {α : Type u} [Preorder α] :
IsPreorder α fun (x1 x2 : α) => x1 x2
instance instIsIrreflLt {α : Type u} [Preorder α] :
IsIrrefl α fun (x1 x2 : α) => x1 < x2
instance instIsIrreflGt {α : Type u} [Preorder α] :
IsIrrefl α fun (x1 x2 : α) => x1 > x2
instance instIsTransLt {α : Type u} [Preorder α] :
IsTrans α fun (x1 x2 : α) => x1 < x2
instance instIsTransGt {α : Type u} [Preorder α] :
IsTrans α fun (x1 x2 : α) => x1 > x2
instance instIsAsymmLt {α : Type u} [Preorder α] :
IsAsymm α fun (x1 x2 : α) => x1 < x2
instance instIsAsymmGt {α : Type u} [Preorder α] :
IsAsymm α fun (x1 x2 : α) => x1 > x2
instance instIsAntisymmLt {α : Type u} [Preorder α] :
IsAntisymm α fun (x1 x2 : α) => x1 < x2
instance instIsAntisymmGt {α : Type u} [Preorder α] :
IsAntisymm α fun (x1 x2 : α) => x1 > x2
instance instIsStrictOrderLt {α : Type u} [Preorder α] :
IsStrictOrder α fun (x1 x2 : α) => x1 < x2
instance instIsStrictOrderGt {α : Type u} [Preorder α] :
IsStrictOrder α fun (x1 x2 : α) => x1 > x2
instance instIsNonstrictStrictOrderLeLt {α : Type u} [Preorder α] :
IsNonstrictStrictOrder α (fun (x1 x2 : α) => x1 x2) fun (x1 x2 : α) => x1 < x2
instance instIsAntisymmLe {α : Type u} [PartialOrder α] :
IsAntisymm α fun (x1 x2 : α) => x1 x2
instance instIsAntisymmGe {α : Type u} [PartialOrder α] :
IsAntisymm α fun (x1 x2 : α) => x1 x2
instance instIsPartialOrderLe {α : Type u} [PartialOrder α] :
IsPartialOrder α fun (x1 x2 : α) => x1 x2
instance instIsPartialOrderGe {α : Type u} [PartialOrder α] :
IsPartialOrder α fun (x1 x2 : α) => x1 x2
instance LE.isTotal {α : Type u} [LinearOrder α] :
IsTotal α fun (x1 x2 : α) => x1 x2
instance instIsTotalGe {α : Type u} [LinearOrder α] :
IsTotal α fun (x1 x2 : α) => x1 x2
instance instIsLinearOrderLe {α : Type u} [LinearOrder α] :
IsLinearOrder α fun (x1 x2 : α) => x1 x2
instance instIsLinearOrderGe {α : Type u} [LinearOrder α] :
IsLinearOrder α fun (x1 x2 : α) => x1 x2
instance instIsTrichotomousLt {α : Type u} [LinearOrder α] :
IsTrichotomous α fun (x1 x2 : α) => x1 < x2
instance instIsTrichotomousGt {α : Type u} [LinearOrder α] :
IsTrichotomous α fun (x1 x2 : α) => x1 > x2
instance instIsTrichotomousLe {α : Type u} [LinearOrder α] :
IsTrichotomous α fun (x1 x2 : α) => x1 x2
instance instIsTrichotomousGe {α : Type u} [LinearOrder α] :
IsTrichotomous α fun (x1 x2 : α) => x1 x2
instance instIsStrictTotalOrderLt {α : Type u} [LinearOrder α] :
IsStrictTotalOrder α fun (x1 x2 : α) => x1 < x2
instance instIsOrderConnectedLt {α : Type u} [LinearOrder α] :
IsOrderConnected α fun (x1 x2 : α) => x1 < x2
instance OrderDual.isTotal_le {α : Type u} [LE α] [h : IsTotal α fun (x1 x2 : α) => x1 x2] :
IsTotal αᵒᵈ fun (x1 x2 : αᵒᵈ) => x1 x2
@[instance 100]
instance isWellOrder_lt {α : Type u} [LinearOrder α] [WellFoundedLT α] :
IsWellOrder α fun (x1 x2 : α) => x1 < x2
@[instance 100]
instance isWellOrder_gt {α : Type u} [LinearOrder α] [WellFoundedGT α] :
IsWellOrder α fun (x1 x2 : α) => x1 > x2