Simplicial categories #
A simplicial category is a category C
that is enriched over the
category of simplicial sets in such a way that morphisms in
C
identify to the 0
-simplices of the enriched hom.
TODO #
- construct a simplicial category structure on simplicial objects, so that it applies in particular to simplicial sets
- obtain the adjunction property
(K ⊗ X ⟶ Y) ≃ (K ⟶ sHom X Y)
whenK
,X
, andY
are simplicial sets - develop the notion of "simplicial tensor"
K ⊗ₛ X : C
withK : SSet
andX : C
an object in a simplicial categoryC
- define the notion of path between
0
-simplices of simplicial sets - deduce the notion of homotopy between morphisms in a simplicial category
- obtain that homotopies in simplicial categories can be interpreted as given
by morphisms
Δ[1] ⊗ X ⟶ Y
.
References #
- [Daniel G. Quillen, Homotopical algebra, II §1][quillen-1967]
@[reducible, inline]
noncomputable abbrev
CategoryTheory.SimplicialCategory.sHomWhiskerRight
{C : Type u}
[Category.{v, u} C]
[SimplicialCategory C]
{K K' : C}
(f : K ⟶ K')
(L : C)
:
The morphism sHom K' L ⟶ sHom K L
induced by a morphism K ⟶ K'
.
Equations
Instances For
@[simp]
theorem
CategoryTheory.SimplicialCategory.sHomWhiskerRight_id
{C : Type u}
[Category.{v, u} C]
[SimplicialCategory C]
(K L : C)
:
sHomWhiskerRight (CategoryStruct.id K) L = CategoryStruct.id (sHom K L)
@[simp]
theorem
CategoryTheory.SimplicialCategory.sHomWhiskerRight_comp
{C : Type u}
[Category.{v, u} C]
[SimplicialCategory C]
{K K' K'' : C}
(f : K ⟶ K')
(f' : K' ⟶ K'')
(L : C)
:
sHomWhiskerRight (CategoryStruct.comp f f') L = CategoryStruct.comp (sHomWhiskerRight f' L) (sHomWhiskerRight f L)
theorem
CategoryTheory.SimplicialCategory.sHomWhiskerRight_comp_assoc
{C : Type u}
[Category.{v, u} C]
[SimplicialCategory C]
{K K' K'' : C}
(f : K ⟶ K')
(f' : K' ⟶ K'')
(L : C)
{Z : SSet}
(h : sHom K L ⟶ Z)
:
CategoryStruct.comp (sHomWhiskerRight (CategoryStruct.comp f f') L) h = CategoryStruct.comp (sHomWhiskerRight f' L) (CategoryStruct.comp (sHomWhiskerRight f L) h)
@[reducible, inline]
noncomputable abbrev
CategoryTheory.SimplicialCategory.sHomWhiskerLeft
{C : Type u}
[Category.{v, u} C]
[SimplicialCategory C]
(K : C)
{L L' : C}
(g : L ⟶ L')
:
The morphism sHom K L ⟶ sHom K L'
induced by a morphism L ⟶ L'
.
Equations
Instances For
@[simp]
theorem
CategoryTheory.SimplicialCategory.sHomWhiskerLeft_id
{C : Type u}
[Category.{v, u} C]
[SimplicialCategory C]
(K L : C)
:
sHomWhiskerLeft K (CategoryStruct.id L) = CategoryStruct.id (sHom K L)
@[simp]
theorem
CategoryTheory.SimplicialCategory.sHomWhiskerLeft_comp
{C : Type u}
[Category.{v, u} C]
[SimplicialCategory C]
(K : C)
{L L' L'' : C}
(g : L ⟶ L')
(g' : L' ⟶ L'')
:
sHomWhiskerLeft K (CategoryStruct.comp g g') = CategoryStruct.comp (sHomWhiskerLeft K g) (sHomWhiskerLeft K g')
theorem
CategoryTheory.SimplicialCategory.sHomWhiskerLeft_comp_assoc
{C : Type u}
[Category.{v, u} C]
[SimplicialCategory C]
(K : C)
{L L' L'' : C}
(g : L ⟶ L')
(g' : L' ⟶ L'')
{Z : SSet}
(h : sHom K L'' ⟶ Z)
:
CategoryStruct.comp (sHomWhiskerLeft K (CategoryStruct.comp g g')) h = CategoryStruct.comp (sHomWhiskerLeft K g) (CategoryStruct.comp (sHomWhiskerLeft K g') h)
theorem
CategoryTheory.SimplicialCategory.sHom_whisker_exchange
{C : Type u}
[Category.{v, u} C]
[SimplicialCategory C]
{K K' L L' : C}
(f : K ⟶ K')
(g : L ⟶ L')
:
CategoryStruct.comp (sHomWhiskerLeft K' g) (sHomWhiskerRight f L') = CategoryStruct.comp (sHomWhiskerRight f L) (sHomWhiskerLeft K g)
theorem
CategoryTheory.SimplicialCategory.sHom_whisker_exchange_assoc
{C : Type u}
[Category.{v, u} C]
[SimplicialCategory C]
{K K' L L' : C}
(f : K ⟶ K')
(g : L ⟶ L')
{Z : SSet}
(h : sHom K L' ⟶ Z)
:
CategoryStruct.comp (sHomWhiskerLeft K' g) (CategoryStruct.comp (sHomWhiskerRight f L') h) = CategoryStruct.comp (sHomWhiskerRight f L) (CategoryStruct.comp (sHomWhiskerLeft K g) h)
Equations
- One or more equations did not get rendered due to their size.
Equations
- One or more equations did not get rendered due to their size.