Documentation

Mathlib.AlgebraicTopology.SimplicialSet.Basic

Simplicial sets #

A simplicial set is just a simplicial object in Type, i.e. a Type-valued presheaf on the simplex category.

(One might be tempted to call these "simplicial types" when working in type-theoretic foundations, but this would be unnecessarily confusing given the existing notion of a simplicial type in homotopy type theory.)

theorem SSet.hom_ext {X Y : SSet} {f g : X Y} (w : ∀ (n : SimplexCategoryᵒᵖ), f.app n = g.app n) :
f = g
def SSet.const {X Y : SSet} (y : Y.obj (Opposite.op (SimplexCategory.mk 0))) :
X Y

The constant map of simplicial sets X ⟶ Y induced by a simplex y : Y _[0].

Equations
@[simp]
theorem SSet.const_app {X Y : SSet} (y : Y.obj (Opposite.op (SimplexCategory.mk 0))) (n : SimplexCategoryᵒᵖ) (x✝ : X.obj n) :
(const y).app n x✝ = Y.map ((Opposite.unop n).const (SimplexCategory.mk 0) 0).op y

The ulift functor SSet.{u} ⥤ SSet.{max u v} on simplicial sets.

Equations

The ulift functor SSet.Truncated.{u} ⥤ SSet.Truncated.{max u v} on truncated simplicial sets.

Equations
theorem SSet.Truncated.hom_ext {n : } {X Y : Truncated n} {f g : X Y} (w : ∀ (n_1 : (SimplexCategory.Truncated n)ᵒᵖ), f.app n_1 = g.app n_1) :
f = g
@[reducible, inline]

The truncation functor on simplicial sets.

Equations
@[reducible, inline]

The n-skeleton as an endofunctor on SSet.

Equations
@[reducible, inline]

The n-coskeleton as an endofunctor on SSet.

Equations
noncomputable def SSet.skAdj (n : ) :

The adjunction between the n-skeleton and n-truncation.

Equations
noncomputable def SSet.coskAdj (n : ) :

The adjunction between n-truncation and the n-coskeleton.

Equations

Since Truncated.inclusion is fully faithful, so is right Kan extension along it.

Equations

Since Truncated.inclusion is fully faithful, so is left Kan extension along it.

Equations
@[reducible, inline]
abbrev SSet.Augmented :
Type (u + 1)

The category of augmented simplicial sets, as a particular case of augmented simplicial objects.

Equations