Documentation

Mathlib.CategoryTheory.Adjunction.Basic

Adjunctions between functors #

F ⊣ G represents the data of an adjunction between two functors F : C ⥤ D and G : D ⥤ C. F is the left adjoint and G is the right adjoint.

We provide various useful constructors:

There are also typeclasses IsLeftAdjoint / IsRightAdjoint, which asserts the existence of a adjoint functor. Given [F.IsLeftAdjoint], a chosen right adjoint can be obtained as F.rightAdjoint.

Adjunction.comp composes adjunctions.

toEquivalence upgrades an adjunction to an equivalence, given witnesses that the unit and counit are pointwise isomorphisms. Conversely Equivalence.toAdjunction recovers the underlying adjunction from an equivalence.

Overview of the directory CategoryTheory.Adjunction #

structure CategoryTheory.Adjunction {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] (F : Functor C D) (G : Functor D C) :
Type (max (max (max u₁ u₂) v₁) v₂)

F ⊣ G represents the data of an adjunction between two functors F : C ⥤ D and G : D ⥤ C. F is the left adjoint and G is the right adjoint.

We use the unit-counit definition of an adjunction. There is a constructor Adjunction.mk' which constructs an adjunction from the data of a hom set equivalence, a unit, and a counit, together with proofs of the equalities homEquiv_unit and homEquiv_counit relating them to each other.

There is also a constructor Adjunction.mkOfHomEquiv which constructs an adjunction from a natural hom set equivalence.

To construct adjoints to a given functor, there are constructors leftAdjointOfEquiv and adjunctionOfEquivLeft (as well as their duals).

Stacks Tag 0037

Instances For

The notation F ⊣ G stands for Adjunction F G representing that F is left adjoint to G

Equations

A chosen left adjoint to a functor that is a right adjoint.

Equations
Instances For

A chosen right adjoint to a functor that is a left adjoint.

Equations
Instances For
noncomputable def CategoryTheory.Adjunction.ofIsLeftAdjoint {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] (left : Functor C D) [left.IsLeftAdjoint] :
left left.rightAdjoint

The adjunction associated to a functor known to be a left adjoint.

Equations
noncomputable def CategoryTheory.Adjunction.ofIsRightAdjoint {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] (right : Functor C D) [right.IsRightAdjoint] :
right.leftAdjoint right

The adjunction associated to a functor known to be a right adjoint.

Equations
@[simp]
theorem CategoryTheory.Adjunction.left_triangle_components_assoc {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {F : Functor C D} {G : Functor D C} (self : F G) (X : C) {Z : D} (h : F.obj X Z) :
@[simp]
theorem CategoryTheory.Adjunction.right_triangle_components_assoc {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {F : Functor C D} {G : Functor D C} (self : F G) (Y : D) {Z : C} (h : G.obj Y Z) :
def CategoryTheory.Adjunction.homEquiv {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {F : Functor C D} {G : Functor D C} (adj : F G) (X : C) (Y : D) :
(F.obj X Y) (X G.obj Y)

The hom set equivalence associated to an adjunction.

Equations
  • One or more equations did not get rendered due to their size.
theorem CategoryTheory.Adjunction.homEquiv_symm_apply {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {F : Functor C D} {G : Functor D C} (adj : F G) (X : C) (Y : D) (g : X G.obj Y) :
(adj.homEquiv X Y).symm g = CategoryStruct.comp (F.map g) (adj.counit.app Y)
theorem CategoryTheory.Adjunction.homEquiv_apply {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {F : Functor C D} {G : Functor D C} (adj : F G) (X : C) (Y : D) (f : F.obj X Y) :
(adj.homEquiv X Y) f = CategoryStruct.comp (adj.unit.app X) (G.map f)
theorem CategoryTheory.Adjunction.homEquiv_unit {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {F : Functor C D} {G : Functor D C} (adj : F G) (X : C) (Y : D) (f : F.obj X Y) :
(adj.homEquiv X Y) f = CategoryStruct.comp (adj.unit.app X) (G.map f)

Alias of CategoryTheory.Adjunction.homEquiv_apply.

theorem CategoryTheory.Adjunction.homEquiv_counit {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {F : Functor C D} {G : Functor D C} (adj : F G) (X : C) (Y : D) (g : X G.obj Y) :
(adj.homEquiv X Y).symm g = CategoryStruct.comp (F.map g) (adj.counit.app Y)

Alias of CategoryTheory.Adjunction.homEquiv_symm_apply.

theorem CategoryTheory.Adjunction.ext {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {F : Functor C D} {G : Functor D C} {adj adj' : F G} (h : adj.unit = adj'.unit) :
adj = adj'
theorem CategoryTheory.Adjunction.homEquiv_id {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {F : Functor C D} {G : Functor D C} (adj : F G) (X : C) :
(adj.homEquiv X (F.obj X)) (CategoryStruct.id (F.obj X)) = adj.unit.app X
theorem CategoryTheory.Adjunction.homEquiv_symm_id {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {F : Functor C D} {G : Functor D C} (adj : F G) (X : D) :
(adj.homEquiv (G.obj X) X).symm (CategoryStruct.id (G.obj X)) = adj.counit.app X
theorem CategoryTheory.Adjunction.homEquiv_naturality_left_symm {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {F : Functor C D} {G : Functor D C} (adj : F G) {X' X : C} {Y : D} (f : X' X) (g : X G.obj Y) :
(adj.homEquiv X' Y).symm (CategoryStruct.comp f g) = CategoryStruct.comp (F.map f) ((adj.homEquiv X Y).symm g)
theorem CategoryTheory.Adjunction.homEquiv_naturality_left {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {F : Functor C D} {G : Functor D C} (adj : F G) {X' X : C} {Y : D} (f : X' X) (g : F.obj X Y) :
(adj.homEquiv X' Y) (CategoryStruct.comp (F.map f) g) = CategoryStruct.comp f ((adj.homEquiv X Y) g)
theorem CategoryTheory.Adjunction.homEquiv_naturality_right {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {F : Functor C D} {G : Functor D C} (adj : F G) {X : C} {Y Y' : D} (f : F.obj X Y) (g : Y Y') :
(adj.homEquiv X Y') (CategoryStruct.comp f g) = CategoryStruct.comp ((adj.homEquiv X Y) f) (G.map g)
theorem CategoryTheory.Adjunction.homEquiv_naturality_right_symm {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {F : Functor C D} {G : Functor D C} (adj : F G) {X : C} {Y Y' : D} (f : X G.obj Y) (g : Y Y') :
(adj.homEquiv X Y').symm (CategoryStruct.comp f (G.map g)) = CategoryStruct.comp ((adj.homEquiv X Y).symm f) g
theorem CategoryTheory.Adjunction.homEquiv_naturality_left_square {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {F : Functor C D} {G : Functor D C} (adj : F G) {X' X : C} {Y Y' : D} (f : X' X) (g : F.obj X Y') (h : F.obj X' Y) (k : Y Y') (w : CategoryStruct.comp (F.map f) g = CategoryStruct.comp h k) :
CategoryStruct.comp f ((adj.homEquiv X Y') g) = CategoryStruct.comp ((adj.homEquiv X' Y) h) (G.map k)
theorem CategoryTheory.Adjunction.homEquiv_naturality_left_square_assoc {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {F : Functor C D} {G : Functor D C} (adj : F G) {X' X : C} {Y Y' : D} (f : X' X) (g : F.obj X Y') (h : F.obj X' Y) (k : Y Y') (w : CategoryStruct.comp (F.map f) g = CategoryStruct.comp h k) {Z : C} (h✝ : G.obj Y' Z) :
theorem CategoryTheory.Adjunction.homEquiv_naturality_right_square {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {F : Functor C D} {G : Functor D C} (adj : F G) {X' X : C} {Y Y' : D} (f : X' X) (g : X G.obj Y') (h : X' G.obj Y) (k : Y Y') (w : CategoryStruct.comp f g = CategoryStruct.comp h (G.map k)) :
CategoryStruct.comp (F.map f) ((adj.homEquiv X Y').symm g) = CategoryStruct.comp ((adj.homEquiv X' Y).symm h) k
theorem CategoryTheory.Adjunction.homEquiv_naturality_right_square_assoc {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {F : Functor C D} {G : Functor D C} (adj : F G) {X' X : C} {Y Y' : D} (f : X' X) (g : X G.obj Y') (h : X' G.obj Y) (k : Y Y') (w : CategoryStruct.comp f g = CategoryStruct.comp h (G.map k)) {Z : D} (h✝ : Y' Z) :
theorem CategoryTheory.Adjunction.homEquiv_naturality_left_square_iff {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {F : Functor C D} {G : Functor D C} (adj : F G) {X' X : C} {Y Y' : D} (f : X' X) (g : F.obj X Y') (h : F.obj X' Y) (k : Y Y') :
theorem CategoryTheory.Adjunction.homEquiv_naturality_right_square_iff {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {F : Functor C D} {G : Functor D C} (adj : F G) {X' X : C} {Y Y' : D} (f : X' X) (g : X G.obj Y') (h : X' G.obj Y) (k : Y Y') :
@[simp]
theorem CategoryTheory.Adjunction.counit_naturality {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {F : Functor C D} {G : Functor D C} (adj : F G) {X Y : D} (f : X Y) :
@[simp]
theorem CategoryTheory.Adjunction.counit_naturality_assoc {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {F : Functor C D} {G : Functor D C} (adj : F G) {X Y : D} (f : X Y) {Z : D} (h : Y Z) :
@[simp]
theorem CategoryTheory.Adjunction.unit_naturality {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {F : Functor C D} {G : Functor D C} (adj : F G) {X Y : C} (f : X Y) :
@[simp]
theorem CategoryTheory.Adjunction.unit_naturality_assoc {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {F : Functor C D} {G : Functor D C} (adj : F G) {X Y : C} (f : X Y) {Z : C} (h : G.obj (F.obj Y) Z) :
theorem CategoryTheory.Adjunction.unit_comp_map_eq_iff {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {F : Functor C D} {G : Functor D C} (adj : F G) {A : C} {B : D} (f : F.obj A B) (g : A G.obj B) :
theorem CategoryTheory.Adjunction.eq_unit_comp_map_iff {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {F : Functor C D} {G : Functor D C} (adj : F G) {A : C} {B : D} (f : F.obj A B) (g : A G.obj B) :
theorem CategoryTheory.Adjunction.homEquiv_apply_eq {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {F : Functor C D} {G : Functor D C} (adj : F G) {A : C} {B : D} (f : F.obj A B) (g : A G.obj B) :
(adj.homEquiv A B) f = g f = (adj.homEquiv A B).symm g
theorem CategoryTheory.Adjunction.eq_homEquiv_apply {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {F : Functor C D} {G : Functor D C} (adj : F G) {A : C} {B : D} (f : F.obj A B) (g : A G.obj B) :
g = (adj.homEquiv A B) f (adj.homEquiv A B).symm g = f
def CategoryTheory.Adjunction.corepresentableBy {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {F : Functor C D} {G : Functor D C} (adj : F G) (X : C) :

If adj : F ⊣ G, and X : C, then F.obj X corepresents Y ↦ (X ⟶ G.obj Y).

Equations
@[simp]
theorem CategoryTheory.Adjunction.corepresentableBy_homEquiv {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {F : Functor C D} {G : Functor D C} (adj : F G) (X : C) {Y✝ : D} :
def CategoryTheory.Adjunction.representableBy {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {F : Functor C D} {G : Functor D C} (adj : F G) (Y : D) :

If adj : F ⊣ G, and Y : D, then G.obj Y represents X ↦ (F.obj X ⟶ Y).

Equations
@[simp]
theorem CategoryTheory.Adjunction.representableBy_homEquiv {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {F : Functor C D} {G : Functor D C} (adj : F G) (Y : D) {X✝ : C} :
(adj.representableBy Y).homEquiv = (adj.homEquiv X✝ Y).symm
structure CategoryTheory.Adjunction.CoreHomEquivUnitCounit {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] (F : Functor C D) (G : Functor D C) :
Type (max (max (max u₁ u₂) v₁) v₂)

This is an auxiliary data structure useful for constructing adjunctions. See Adjunction.mk'. This structure won't typically be used anywhere else.

structure CategoryTheory.Adjunction.CoreHomEquiv {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] (F : Functor C D) (G : Functor D C) :
Type (max (max (max u₁ u₂) v₁) v₂)

This is an auxiliary data structure useful for constructing adjunctions. See Adjunction.mkOfHomEquiv. This structure won't typically be used anywhere else.

theorem CategoryTheory.Adjunction.CoreHomEquiv.homEquiv_naturality_left {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {F : Functor C D} {G : Functor D C} (adj : CoreHomEquiv F G) {X' X : C} {Y : D} (f : X' X) (g : F.obj X Y) :
(adj.homEquiv X' Y) (CategoryStruct.comp (F.map f) g) = CategoryStruct.comp f ((adj.homEquiv X Y) g)
theorem CategoryTheory.Adjunction.CoreHomEquiv.homEquiv_naturality_right_symm {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {F : Functor C D} {G : Functor D C} (adj : CoreHomEquiv F G) {X : C} {Y Y' : D} (f : X G.obj Y) (g : Y Y') :
(adj.homEquiv X Y').symm (CategoryStruct.comp f (G.map g)) = CategoryStruct.comp ((adj.homEquiv X Y).symm f) g
structure CategoryTheory.Adjunction.CoreUnitCounit {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] (F : Functor C D) (G : Functor D C) :
Type (max (max (max u₁ u₂) v₁) v₂)

This is an auxiliary data structure useful for constructing adjunctions. See Adjunction.mkOfUnitCounit. This structure won't typically be used anywhere else.

def CategoryTheory.Adjunction.mk' {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {F : Functor C D} {G : Functor D C} (adj : CoreHomEquivUnitCounit F G) :
F G

Construct an adjunction from the data of a CoreHomEquivUnitCounit, i.e. a hom set equivalence, unit and counit natural transformations together with proofs of the equalities homEquiv_unit and homEquiv_counit relating them to each other.

Equations
@[simp]
theorem CategoryTheory.Adjunction.mk'_counit {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {F : Functor C D} {G : Functor D C} (adj : CoreHomEquivUnitCounit F G) :
(mk' adj).counit = adj.counit
@[simp]
theorem CategoryTheory.Adjunction.mk'_unit {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {F : Functor C D} {G : Functor D C} (adj : CoreHomEquivUnitCounit F G) :
(mk' adj).unit = adj.unit
def CategoryTheory.Adjunction.mkOfHomEquiv {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {F : Functor C D} {G : Functor D C} (adj : CoreHomEquiv F G) :
F G

Construct an adjunction between F and G out of a natural bijection between each F.obj X ⟶ Y and X ⟶ G.obj Y.

Equations
  • One or more equations did not get rendered due to their size.
@[simp]
theorem CategoryTheory.Adjunction.mkOfHomEquiv_counit_app {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {F : Functor C D} {G : Functor D C} (adj : CoreHomEquiv F G) (Y : D) :
(mkOfHomEquiv adj).counit.app Y = (adj.homEquiv (G.obj Y) Y).symm (CategoryStruct.id (G.obj Y))
@[simp]
theorem CategoryTheory.Adjunction.mkOfHomEquiv_unit_app {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {F : Functor C D} {G : Functor D C} (adj : CoreHomEquiv F G) (X : C) :
(mkOfHomEquiv adj).unit.app X = (adj.homEquiv X (F.obj X)) (CategoryStruct.id (F.obj X))

Construct an adjunction between functors F and G given a unit and counit for the adjunction satisfying the triangle identities.

Equations

The adjunction between the identity functor on a category and itself.

Equations
  • One or more equations did not get rendered due to their size.
Instances For
def CategoryTheory.Adjunction.equivHomsetLeftOfNatIso {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {F F' : Functor C D} (iso : F F') {X : C} {Y : D} :
(F.obj X Y) (F'.obj X Y)

If F and G are naturally isomorphic functors, establish an equivalence of hom-sets.

Equations
  • One or more equations did not get rendered due to their size.
@[simp]
theorem CategoryTheory.Adjunction.equivHomsetLeftOfNatIso_symm_apply {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {F F' : Functor C D} (iso : F F') {X : C} {Y : D} (g : F'.obj X Y) :
@[simp]
theorem CategoryTheory.Adjunction.equivHomsetLeftOfNatIso_apply {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {F F' : Functor C D} (iso : F F') {X : C} {Y : D} (f : F.obj X Y) :
def CategoryTheory.Adjunction.equivHomsetRightOfNatIso {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {G G' : Functor D C} (iso : G G') {X : C} {Y : D} :
(X G.obj Y) (X G'.obj Y)

If G and H are naturally isomorphic functors, establish an equivalence of hom-sets.

Equations
  • One or more equations did not get rendered due to their size.
@[simp]
theorem CategoryTheory.Adjunction.equivHomsetRightOfNatIso_apply {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {G G' : Functor D C} (iso : G G') {X : C} {Y : D} (f : X G.obj Y) :
@[simp]
theorem CategoryTheory.Adjunction.equivHomsetRightOfNatIso_symm_apply {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {G G' : Functor D C} (iso : G G') {X : C} {Y : D} (g : X G'.obj Y) :
def CategoryTheory.Adjunction.ofNatIsoLeft {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {F G : Functor C D} {H : Functor D C} (adj : F H) (iso : F G) :
G H

Transport an adjunction along a natural isomorphism on the left.

Equations
  • One or more equations did not get rendered due to their size.
def CategoryTheory.Adjunction.ofNatIsoRight {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {F : Functor C D} {G H : Functor D C} (adj : F G) (iso : G H) :
F H

Transport an adjunction along a natural isomorphism on the right.

Equations
  • One or more equations did not get rendered due to their size.

The isomorpism which an adjunction F ⊣ G induces on G ⋙ yoneda. This states that Adjunction.homEquiv is natural in both arguments.

Equations
@[simp]
theorem CategoryTheory.Adjunction.compYonedaIso_inv_app_app {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₁, u₂} D] {F : Functor C D} {G : Functor D C} (adj : F G) (X : D) (X✝ : Cᵒᵖ) (a✝ : ((yoneda.comp ((whiskeringLeft Cᵒᵖ Dᵒᵖ (Type v₁)).obj F.op)).obj X).obj X✝) :
(adj.compYonedaIso.inv.app X).app X✝ a✝ = CategoryStruct.comp (adj.unit.app (Opposite.unop X✝)) (G.map a✝)
@[simp]
theorem CategoryTheory.Adjunction.compYonedaIso_hom_app_app {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₁, u₂} D] {F : Functor C D} {G : Functor D C} (adj : F G) (X : D) (X✝ : Cᵒᵖ) (a✝ : ((G.comp yoneda).obj X).obj X✝) :
(adj.compYonedaIso.hom.app X).app X✝ a✝ = CategoryStruct.comp (F.map a✝) (adj.counit.app X)

The isomorpism which an adjunction F ⊣ G induces on F.op ⋙ coyoneda. This states that Adjunction.homEquiv is natural in both arguments.

Equations
@[simp]
theorem CategoryTheory.Adjunction.compCoyonedaIso_inv_app_app {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₁, u₂} D] {F : Functor C D} {G : Functor D C} (adj : F G) (X : Cᵒᵖ) (X✝ : D) (a✝ : ((coyoneda.comp ((whiskeringLeft D C (Type v₁)).obj G)).obj X).obj X✝) :
(adj.compCoyonedaIso.inv.app X).app X✝ a✝ = CategoryStruct.comp (F.map a✝) (adj.counit.app X✝)
@[simp]
theorem CategoryTheory.Adjunction.compCoyonedaIso_hom_app_app {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₁, u₂} D] {F : Functor C D} {G : Functor D C} (adj : F G) (X : Cᵒᵖ) (X✝ : D) (a✝ : ((F.op.comp coyoneda).obj X).obj X✝) :
(adj.compCoyonedaIso.hom.app X).app X✝ a✝ = CategoryStruct.comp (adj.unit.app (Opposite.unop X)) (G.map a✝)
def CategoryTheory.Adjunction.comp {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {F : Functor C D} {G : Functor D C} {E : Type u₃} [ : Category.{v₃, u₃} E] {H : Functor D E} {I : Functor E D} (adj₁ : F G) (adj₂ : H I) :
F.comp H I.comp G

Composition of adjunctions.

Stacks Tag 0DV0

Equations
  • One or more equations did not get rendered due to their size.
Instances For
theorem CategoryTheory.Adjunction.comp_unit {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {F : Functor C D} {G : Functor D C} {E : Type u₃} [ : Category.{v₃, u₃} E] {H : Functor D E} {I : Functor E D} (adj₁ : F G) (adj₂ : H I) :
theorem CategoryTheory.Adjunction.comp_counit {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {F : Functor C D} {G : Functor D C} {E : Type u₃} [ : Category.{v₃, u₃} E] {H : Functor D E} {I : Functor E D} (adj₁ : F G) (adj₂ : H I) :
@[simp]
theorem CategoryTheory.Adjunction.comp_unit_app {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {F : Functor C D} {G : Functor D C} {E : Type u₃} [ : Category.{v₃, u₃} E] {H : Functor D E} {I : Functor E D} (adj₁ : F G) (adj₂ : H I) (X : C) :
(adj₁.comp adj₂).unit.app X = CategoryStruct.comp (adj₁.unit.app X) (G.map (adj₂.unit.app (F.obj X)))
theorem CategoryTheory.Adjunction.comp_unit_app_assoc {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {F : Functor C D} {G : Functor D C} {E : Type u₃} [ : Category.{v₃, u₃} E] {H : Functor D E} {I : Functor E D} (adj₁ : F G) (adj₂ : H I) (X : C) {Z : C} (h : G.obj (I.obj (H.obj (F.obj X))) Z) :
CategoryStruct.comp ((adj₁.comp adj₂).unit.app X) h = CategoryStruct.comp (adj₁.unit.app X) (CategoryStruct.comp (G.map (adj₂.unit.app (F.obj X))) h)
@[simp]
theorem CategoryTheory.Adjunction.comp_counit_app {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {F : Functor C D} {G : Functor D C} {E : Type u₃} [ : Category.{v₃, u₃} E] {H : Functor D E} {I : Functor E D} (adj₁ : F G) (adj₂ : H I) (X : E) :
(adj₁.comp adj₂).counit.app X = CategoryStruct.comp (H.map (adj₁.counit.app (I.obj X))) (adj₂.counit.app X)
theorem CategoryTheory.Adjunction.comp_counit_app_assoc {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {F : Functor C D} {G : Functor D C} {E : Type u₃} [ : Category.{v₃, u₃} E] {H : Functor D E} {I : Functor E D} (adj₁ : F G) (adj₂ : H I) (X : E) {Z : E} (h : X Z) :
CategoryStruct.comp ((adj₁.comp adj₂).counit.app X) h = CategoryStruct.comp (H.map (adj₁.counit.app (I.obj X))) (CategoryStruct.comp (adj₂.counit.app X) h)
theorem CategoryTheory.Adjunction.comp_homEquiv {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {F : Functor C D} {G : Functor D C} {E : Type u₃} [ : Category.{v₃, u₃} E] {H : Functor D E} {I : Functor E D} (adj₁ : F G) (adj₂ : H I) :
(adj₁.comp adj₂).homEquiv = fun (x : C) (x_1 : E) => (adj₂.homEquiv (F.obj x) x_1).trans (adj₁.homEquiv x (I.obj x_1))
def CategoryTheory.Adjunction.leftAdjointOfEquiv {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {G : Functor D C} {F_obj : CD} (e : (X : C) → (Y : D) → (F_obj X Y) (X G.obj Y)) (he : ∀ (X : C) (Y Y' : D) (g : Y Y') (h : F_obj X Y), (e X Y') (CategoryStruct.comp h g) = CategoryStruct.comp ((e X Y) h) (G.map g)) :

Construct a left adjoint functor to G, given the functor's value on objects F_obj and a bijection e between F_obj X ⟶ Y and X ⟶ G.obj Y satisfying a naturality law he : ∀ X Y Y' g h, e X Y' (h ≫ g) = e X Y h ≫ G.map g. Dual to rightAdjointOfEquiv.

Equations
  • One or more equations did not get rendered due to their size.
@[simp]
theorem CategoryTheory.Adjunction.leftAdjointOfEquiv_map {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {G : Functor D C} {F_obj : CD} (e : (X : C) → (Y : D) → (F_obj X Y) (X G.obj Y)) (he : ∀ (X : C) (Y Y' : D) (g : Y Y') (h : F_obj X Y), (e X Y') (CategoryStruct.comp h g) = CategoryStruct.comp ((e X Y) h) (G.map g)) {X X' : C} (f : X X') :
(leftAdjointOfEquiv e he).map f = (e X (F_obj X')).symm (CategoryStruct.comp f ((e X' (F_obj X')) (CategoryStruct.id (F_obj X'))))
@[simp]
theorem CategoryTheory.Adjunction.leftAdjointOfEquiv_obj {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {G : Functor D C} {F_obj : CD} (e : (X : C) → (Y : D) → (F_obj X Y) (X G.obj Y)) (he : ∀ (X : C) (Y Y' : D) (g : Y Y') (h : F_obj X Y), (e X Y') (CategoryStruct.comp h g) = CategoryStruct.comp ((e X Y) h) (G.map g)) (a✝ : C) :
(leftAdjointOfEquiv e he).obj a✝ = F_obj a✝
def CategoryTheory.Adjunction.adjunctionOfEquivLeft {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {G : Functor D C} {F_obj : CD} (e : (X : C) → (Y : D) → (F_obj X Y) (X G.obj Y)) (he : ∀ (X : C) (Y Y' : D) (g : Y Y') (h : F_obj X Y), (e X Y') (CategoryStruct.comp h g) = CategoryStruct.comp ((e X Y) h) (G.map g)) :

Show that the functor given by leftAdjointOfEquiv is indeed left adjoint to G. Dual to adjunctionOfRightEquiv.

Equations
@[simp]
theorem CategoryTheory.Adjunction.adjunctionOfEquivLeft_counit_app {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {G : Functor D C} {F_obj : CD} (e : (X : C) → (Y : D) → (F_obj X Y) (X G.obj Y)) (he : ∀ (X : C) (Y Y' : D) (g : Y Y') (h : F_obj X Y), (e X Y') (CategoryStruct.comp h g) = CategoryStruct.comp ((e X Y) h) (G.map g)) (Y : D) :
@[simp]
theorem CategoryTheory.Adjunction.adjunctionOfEquivLeft_unit_app {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {G : Functor D C} {F_obj : CD} (e : (X : C) → (Y : D) → (F_obj X Y) (X G.obj Y)) (he : ∀ (X : C) (Y Y' : D) (g : Y Y') (h : F_obj X Y), (e X Y') (CategoryStruct.comp h g) = CategoryStruct.comp ((e X Y) h) (G.map g)) (X : C) :
(adjunctionOfEquivLeft e he).unit.app X = (e X (F_obj X)) (CategoryStruct.id (F_obj X))
def CategoryTheory.Adjunction.rightAdjointOfEquiv {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {F : Functor C D} {G_obj : DC} (e : (X : C) → (Y : D) → (F.obj X Y) (X G_obj Y)) (he : ∀ (X' X : C) (Y : D) (f : X' X) (g : F.obj X Y), (e X' Y) (CategoryStruct.comp (F.map f) g) = CategoryStruct.comp f ((e X Y) g)) :

Construct a right adjoint functor to F, given the functor's value on objects G_obj and a bijection e between F.obj X ⟶ Y and X ⟶ G_obj Y satisfying a naturality law he : ∀ X Y Y' g h, e X' Y (F.map f ≫ g) = f ≫ e X Y g. Dual to leftAdjointOfEquiv.

Equations
  • One or more equations did not get rendered due to their size.
@[simp]
theorem CategoryTheory.Adjunction.rightAdjointOfEquiv_obj {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {F : Functor C D} {G_obj : DC} (e : (X : C) → (Y : D) → (F.obj X Y) (X G_obj Y)) (he : ∀ (X' X : C) (Y : D) (f : X' X) (g : F.obj X Y), (e X' Y) (CategoryStruct.comp (F.map f) g) = CategoryStruct.comp f ((e X Y) g)) (a✝ : D) :
(rightAdjointOfEquiv e he).obj a✝ = G_obj a✝
@[simp]
theorem CategoryTheory.Adjunction.rightAdjointOfEquiv_map {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {F : Functor C D} {G_obj : DC} (e : (X : C) → (Y : D) → (F.obj X Y) (X G_obj Y)) (he : ∀ (X' X : C) (Y : D) (f : X' X) (g : F.obj X Y), (e X' Y) (CategoryStruct.comp (F.map f) g) = CategoryStruct.comp f ((e X Y) g)) {Y Y' : D} (g : Y Y') :
(rightAdjointOfEquiv e he).map g = (e (G_obj Y) Y') (CategoryStruct.comp ((e (G_obj Y) Y).symm (CategoryStruct.id (G_obj Y))) g)
def CategoryTheory.Adjunction.adjunctionOfEquivRight {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {F : Functor C D} {G_obj : DC} (e : (X : C) → (Y : D) → (F.obj X Y) (X G_obj Y)) (he : ∀ (X' X : C) (Y : D) (f : X' X) (g : F.obj X Y), (e X' Y) (CategoryStruct.comp (F.map f) g) = CategoryStruct.comp f ((e X Y) g)) :

Show that the functor given by rightAdjointOfEquiv is indeed right adjoint to F. Dual to adjunctionOfEquivRight.

Equations
@[simp]
theorem CategoryTheory.Adjunction.adjunctionOfEquivRight_unit_app {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {F : Functor C D} {G_obj : DC} (e : (X : C) → (Y : D) → (F.obj X Y) (X G_obj Y)) (he : ∀ (X' X : C) (Y : D) (f : X' X) (g : F.obj X Y), (e X' Y) (CategoryStruct.comp (F.map f) g) = CategoryStruct.comp f ((e X Y) g)) (X : C) :
@[simp]
theorem CategoryTheory.Adjunction.adjunctionOfEquivRight_counit_app {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {F : Functor C D} {G_obj : DC} (e : (X : C) → (Y : D) → (F.obj X Y) (X G_obj Y)) (he : ∀ (X' X : C) (Y : D) (f : X' X) (g : F.obj X Y), (e X' Y) (CategoryStruct.comp (F.map f) g) = CategoryStruct.comp f ((e X Y) g)) (Y : D) :
(adjunctionOfEquivRight e he).counit.app Y = (e (G_obj Y) Y).symm (CategoryStruct.id (G_obj Y))
noncomputable def CategoryTheory.Adjunction.toEquivalence {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {F : Functor C D} {G : Functor D C} (adj : F G) [∀ (X : C), IsIso (adj.unit.app X)] [∀ (Y : D), IsIso (adj.counit.app Y)] :
C D

If the unit and counit of a given adjunction are (pointwise) isomorphisms, then we can upgrade the adjunction to an equivalence.

Equations
  • One or more equations did not get rendered due to their size.
@[simp]
theorem CategoryTheory.Adjunction.toEquivalence_counitIso_hom_app {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {F : Functor C D} {G : Functor D C} (adj : F G) [∀ (X : C), IsIso (adj.unit.app X)] [∀ (Y : D), IsIso (adj.counit.app Y)] (X : D) :
@[simp]
theorem CategoryTheory.Adjunction.toEquivalence_unitIso_hom_app {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {F : Functor C D} {G : Functor D C} (adj : F G) [∀ (X : C), IsIso (adj.unit.app X)] [∀ (Y : D), IsIso (adj.counit.app Y)] (X : C) :
@[simp]
theorem CategoryTheory.Adjunction.toEquivalence_counitIso_inv_app {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {F : Functor C D} {G : Functor D C} (adj : F G) [∀ (X : C), IsIso (adj.unit.app X)] [∀ (Y : D), IsIso (adj.counit.app Y)] (X : D) :
@[simp]
theorem CategoryTheory.Adjunction.toEquivalence_functor {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {F : Functor C D} {G : Functor D C} (adj : F G) [∀ (X : C), IsIso (adj.unit.app X)] [∀ (Y : D), IsIso (adj.counit.app Y)] :
@[simp]
theorem CategoryTheory.Adjunction.toEquivalence_unitIso_inv_app {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {F : Functor C D} {G : Functor D C} (adj : F G) [∀ (X : C), IsIso (adj.unit.app X)] [∀ (Y : D), IsIso (adj.counit.app Y)] (X : C) :
@[simp]
theorem CategoryTheory.Adjunction.toEquivalence_inverse {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {F : Functor C D} {G : Functor D C} (adj : F G) [∀ (X : C), IsIso (adj.unit.app X)] [∀ (Y : D), IsIso (adj.counit.app Y)] :

If the unit and counit for the adjunction corresponding to a right adjoint functor are (pointwise) isomorphisms, then the functor is an equivalence of categories.

The adjunction given by an equivalence of categories. (To obtain the opposite adjunction, simply use e.symm.toAdjunction.

Equations
  • e.toAdjunction = { unit := e.unit, counit := e.counit, left_triangle_components := , right_triangle_components := }

If F and G are left adjoints then F ⋙ G is a left adjoint too.

If F and G are right adjoints then F ⋙ G is a right adjoint too.

Transport being a right adjoint along a natural isomorphism.

Transport being a left adjoint along a natural isomorphism.

noncomputable def CategoryTheory.Functor.adjunction {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] (E : Functor C D) [E.IsEquivalence] :
E E.inv

An equivalence E is left adjoint to its inverse.

Equations
@[instance 10]

If F is an equivalence, it's a left adjoint.

@[instance 10]

If F is an equivalence, it's a right adjoint.