Documentation

Mathlib.CategoryTheory.Adjunction.Limits

Adjunctions and limits #

A left adjoint preserves colimits (CategoryTheory.Adjunction.leftAdjoint_preservesColimits), and a right adjoint preserves limits (CategoryTheory.Adjunction.rightAdjoint_preservesLimits).

Equivalences create and reflect (co)limits. (CategoryTheory.Functor.createsLimitsOfIsEquivalence, CategoryTheory.Functor.createsColimitsOfIsEquivalence, CategoryTheory.Functor.reflectsLimits_of_isEquivalence, CategoryTheory.Functor.reflectsColimits_of_isEquivalence.)

In CategoryTheory.Adjunction.coconesIso we show that when F ⊣ G, the functor associating to each Y the cocones over K ⋙ F with cone point Y is naturally isomorphic to the functor associating to each Y the cocones over K with cone point G.obj Y.

The right adjoint of Cocones.functoriality K F : Cocone K ⥤ Cocone (K ⋙ F).

Auxiliary definition for functorialityIsLeftAdjoint.

Equations
  • One or more equations did not get rendered due to their size.

The unit for the adjunction for Cocones.functoriality K F : Cocone K ⥤ Cocone (K ⋙ F).

Auxiliary definition for functorialityIsLeftAdjoint.

Equations
@[simp]
theorem CategoryTheory.Adjunction.functorialityUnit_app_hom {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {F : Functor C D} {G : Functor D C} (adj : F G) {J : Type u} [Category.{v, u} J] (K : Functor J C) (c : Limits.Cocone K) :
((adj.functorialityUnit K).app c).hom = adj.unit.app c.pt

The counit for the adjunction for Cocones.functoriality K F : Cocone K ⥤ Cocone (K ⋙ F).

Auxiliary definition for functorialityIsLeftAdjoint.

Equations
@[simp]
theorem CategoryTheory.Adjunction.functorialityCounit_app_hom {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {F : Functor C D} {G : Functor D C} (adj : F G) {J : Type u} [Category.{v, u} J] (K : Functor J C) (c : Limits.Cocone (K.comp F)) :

The functor Cocones.functoriality K F : Cocone K ⥤ Cocone (K ⋙ F) is a left adjoint.

Equations
@[deprecated "No deprecation message was provided." (since := "2024-11-19")]
@[deprecated "No deprecation message was provided." (since := "2024-11-18")]
@[instance 100]
Equations
  • One or more equations did not get rendered due to their size.

Transport a HasColimitsOfShape instance across an equivalence.

The left adjoint of Cones.functoriality K G : Cone K ⥤ Cone (K ⋙ G).

Auxiliary definition for functorialityIsRightAdjoint.

Equations
  • One or more equations did not get rendered due to their size.

The unit for the adjunction for Cones.functoriality K G : Cone K ⥤ Cone (K ⋙ G).

Auxiliary definition for functorialityIsRightAdjoint.

Equations
@[simp]
theorem CategoryTheory.Adjunction.functorialityUnit'_app_hom {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {F : Functor C D} {G : Functor D C} (adj : F G) {J : Type u} [Category.{v, u} J] (K : Functor J D) (c : Limits.Cone (K.comp G)) :
((adj.functorialityUnit' K).app c).hom = adj.unit.app c.pt

The counit for the adjunction for Cones.functoriality K G : Cone K ⥤ Cone (K ⋙ G).

Auxiliary definition for functorialityIsRightAdjoint.

Equations
@[simp]
theorem CategoryTheory.Adjunction.functorialityCounit'_app_hom {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {F : Functor C D} {G : Functor D C} (adj : F G) {J : Type u} [Category.{v, u} J] (K : Functor J D) (c : Limits.Cone K) :

The functor Cones.functoriality K G : Cone K ⥤ Cone (K ⋙ G) is a right adjoint.

Equations
@[deprecated "No deprecation message was provided." (since := "2024-11-19")]
@[deprecated "No deprecation message was provided." (since := "2024-11-18")]
@[instance 100]
Equations
  • One or more equations did not get rendered due to their size.

Transport a HasLimitsOfShape instance across an equivalence.

def CategoryTheory.Adjunction.coconesIsoComponentHom {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {F : Functor C D} {G : Functor D C} (adj : F G) {J : Type u} [Category.{v, u} J] {K : Functor J C} (Y : D) (t : ((cocones J D).obj (Opposite.op (K.comp F))).obj Y) :
(G.comp ((cocones J C).obj (Opposite.op K))).obj Y

auxiliary construction for coconesIso

Equations
def CategoryTheory.Adjunction.coconesIsoComponentInv {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {F : Functor C D} {G : Functor D C} (adj : F G) {J : Type u} [Category.{v, u} J] {K : Functor J C} (Y : D) (t : (G.comp ((cocones J C).obj (Opposite.op K))).obj Y) :
((cocones J D).obj (Opposite.op (K.comp F))).obj Y

auxiliary construction for coconesIso

Equations
def CategoryTheory.Adjunction.conesIsoComponentHom {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {F : Functor C D} {G : Functor D C} (adj : F G) {J : Type u} [Category.{v, u} J] {K : Functor J D} (X : Cᵒᵖ) (t : (F.op.comp ((cones J D).obj K)).obj X) :
((cones J C).obj (K.comp G)).obj X

auxiliary construction for conesIso

Equations
def CategoryTheory.Adjunction.conesIsoComponentInv {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {F : Functor C D} {G : Functor D C} (adj : F G) {J : Type u} [Category.{v, u} J] {K : Functor J D} (X : Cᵒᵖ) (t : ((cones J C).obj (K.comp G)).obj X) :
(F.op.comp ((cones J D).obj K)).obj X

auxiliary construction for conesIso

Equations
def CategoryTheory.Adjunction.coconesIso {C : Type u₁} [Category.{v₀, u₁} C] {D : Type u₂} [Category.{v₀, u₂} D] {F : Functor C D} {G : Functor D C} (adj : F G) {J : Type u} [Category.{v, u} J] {K : Functor J C} :
(cocones J D).obj (Opposite.op (K.comp F)) G.comp ((cocones J C).obj (Opposite.op K))

When F ⊣ G, the functor associating to each Y the cocones over K ⋙ F with cone point Y is naturally isomorphic to the functor associating to each Y the cocones over K with cone point G.obj Y.

Equations
def CategoryTheory.Adjunction.conesIso {C : Type u₁} [Category.{v₀, u₁} C] {D : Type u₂} [Category.{v₀, u₂} D] {F : Functor C D} {G : Functor D C} (adj : F G) {J : Type u} [Category.{v, u} J] {K : Functor J D} :
F.op.comp ((cones J D).obj K) (cones J C).obj (K.comp G)

When F ⊣ G, the functor associating to each X the cones over K with cone point F.op.obj X is naturally isomorphic to the functor associating to each X the cones over K ⋙ G with cone point X.

Equations