def
SSet.Truncated.truncEquiv
{S : SSet}
(m : ℕ)
{a : SimplexCategory}
(ha : a.len ≤ m := by trunc)
:
The idea behind this trivial equivalence and trunc_map, trunc_map'
is to make explicit whether an object is in a truncated simplicial set;
this allows us to replace dsimps in proofs by rws.
Equations
Instances For
theorem
SSet.Truncated.trunc_map
{S : SSet}
{m : ℕ}
{a b : SimplexCategory}
(ha : a.len ≤ m := by trunc)
(hb : b.len ≤ m := by trunc)
{f : a ⟶ b}
{σ : S.obj (Opposite.op b)}
:
((truncation m).obj S).map (SimplexCategory.Truncated.Hom.tr f ha hb).op ((truncEquiv m hb) σ) = S.map f.op σ
theorem
SSet.Truncated.trunc_map'
{S : SSet}
{m : ℕ}
{a b : SimplexCategory}
(ha : a.len ≤ m := by trunc)
(hb : b.len ≤ m := by trunc)
{f : a ⟶ b}
{σ : ((truncation m).obj S).obj (Opposite.op { obj := b, property := hb })}
: