Documentation

InfinityCosmos.ForMathlib.AlgebraicTopology.SimplicialSet.Basic

def SSet.Truncated.truncEquiv {S : SSet} (m : ) {a : SimplexCategory} (ha : a.len m := by trunc) :
S.obj (Opposite.op a) ((truncation m).obj S).obj (Opposite.op { obj := a, property := ha })

The idea behind this trivial equivalence and trunc_map, trunc_map' is to make explicit whether an object is in a truncated simplicial set; this allows us to replace dsimps in proofs by rws.

Equations
Instances For
    theorem SSet.Truncated.trunc_map {S : SSet} {m : } {a b : SimplexCategory} (ha : a.len m := by trunc) (hb : b.len m := by trunc) {f : a b} {σ : S.obj (Opposite.op b)} :
    ((truncation m).obj S).map (SimplexCategory.Truncated.Hom.tr f ha hb).op ((truncEquiv m hb) σ) = S.map f.op σ
    theorem SSet.Truncated.trunc_map' {S : SSet} {m : } {a b : SimplexCategory} (ha : a.len m := by trunc) (hb : b.len m := by trunc) {f : a b} {σ : ((truncation m).obj S).obj (Opposite.op { obj := b, property := hb })} :