Documentation

InfinityCosmos.ForMathlib.AlgebraicTopology.SimplicialSet.CompStruct

theorem SSet.Edge.map_edge {X Y : SSet} {x₀ x₁ : X.obj (Opposite.op (SimplexCategory.mk 0))} (e : Edge x₀ x₁) (f : X Y) :

The 1-simplex of e.map f, for f a simplicial set morphism, is equal to f applied to that edge.

def SSet.Edge.ofEq {X : SSet} {x₀ x₁ y₀ y₁ : X.obj (Opposite.op (SimplexCategory.mk 0))} (e : Edge x₀ x₁) (h₀ : x₀ = y₀) (h₁ : x₁ = y₁) :
Edge y₀ y₁

Transports an edge between x₀ and x₁ along equalities xᵢ = yᵢ. I.e. constructs an edge between the yᵢ from an edge between the xᵢ.

Equations
  • e.ofEq h₀ h₁ = { edge := e.edge, src_eq := , tgt_eq := }
Instances For
    theorem SSet.Edge.CompStruct.d₂ {X : SSet} {x₀ x₁ x₂ : X.obj (Opposite.op (SimplexCategory.mk 0))} {e₀₁ : Edge x₀ x₁} {e₁₂ : Edge x₁ x₂} {e₀₂ : Edge x₀ x₂} (c : e₀₁.CompStruct e₁₂ e₀₂) :
    theorem SSet.Edge.CompStruct.d₀ {X : SSet} {x₀ x₁ x₂ : X.obj (Opposite.op (SimplexCategory.mk 0))} {e₀₁ : Edge x₀ x₁} {e₁₂ : Edge x₁ x₂} {e₀₂ : Edge x₀ x₂} (c : e₀₁.CompStruct e₁₂ e₀₂) :
    theorem SSet.Edge.CompStruct.d₁ {X : SSet} {x₀ x₁ x₂ : X.obj (Opposite.op (SimplexCategory.mk 0))} {e₀₁ : Edge x₀ x₁} {e₁₂ : Edge x₁ x₂} {e₀₂ : Edge x₀ x₂} (c : e₀₁.CompStruct e₁₂ e₀₂) :
    def SSet.Edge.CompStruct.ofEq {X : SSet} {x₀ x₁ x₂ y₀ y₁ y₂ : X.obj (Opposite.op (SimplexCategory.mk 0))} {e₀₁ : Edge x₀ x₁} {f₀₁ : Edge y₀ y₁} {e₁₂ : Edge x₁ x₂} {f₁₂ : Edge y₁ y₂} {e₀₂ : Edge x₀ x₂} {f₀₂ : Edge y₀ y₂} (c : e₀₁.CompStruct e₁₂ e₀₂) (h₀₁ : e₀₁.edge = f₀₁.edge) (h₁₂ : e₁₂.edge = f₁₂.edge) (h₀₂ : e₀₂.edge = f₀₂.edge) :
    f₀₁.CompStruct f₁₂ f₀₂

    Transports a CompStruct between edges e₀₁, e₁₂ and e₀₂ along equalities on 1-simplices eᵢⱼ.edge = fᵢⱼ.edge. I.e. constructs a CompStruct between the fᵢⱼ from a CompStruct between the eᵢⱼ.

    Equations
    • c.ofEq h₀₁ h₁₂ h₀₂ = { simplex := c.simplex, d₂ := , d₀ := , d₁ := }
    Instances For
      structure SSet.Edge.IsIso {X : SSet} {x₀ x₁ : X.obj (Opposite.op (SimplexCategory.mk 0))} (hom : Edge x₀ x₁) :
      Type u_1

      For hom an edge, IsIso hom encodes that there is a backward edge inv, and there are 2-simplices witnessing that hom and inv compose to the identity on their endpoints. This means that hom becomes an isomorphism in the homotopy category.

      Instances For

        The identity edge on a point, composed with itself, gives the identity.

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For

          The identity edge is an isomorphism.

          Equations
          Instances For
            def SSet.Edge.IsIso.isIsoInv {X : SSet} {x₀ x₁ : X.obj (Opposite.op (SimplexCategory.mk 0))} {hom : Edge x₀ x₁} (I : hom.IsIso) :

            The inverse of an isomorphism is an isomorphism.

            Equations
            Instances For
              def SSet.Edge.IsIso.map {X Y : SSet} {x₀ x₁ : X.obj (Opposite.op (SimplexCategory.mk 0))} {hom : Edge x₀ x₁} (I : hom.IsIso) (f : X Y) :
              (hom.map f).IsIso

              The image of an isomorphism under an SSet morphism is an isomorphism.

              Equations
              Instances For
                def SSet.Edge.IsIso.ofEq {X : SSet} {x₀ x₁ y₀ y₁ : X.obj (Opposite.op (SimplexCategory.mk 0))} {hom : Edge x₀ x₁} {hom' : Edge y₀ y₁} (I : hom.IsIso) (hhom : hom.edge = hom'.edge) :
                hom'.IsIso

                Transports a proof of isomorphism for hom along an equality of 1-simplices hom = hom'. I.e. shows that hom' is an isomorphism from an isomorphism proof of hom.

                Equations
                Instances For