Documentation

InfinityCosmos.ForMathlib.AlgebraicTopology.SimplicialSet.Homotopy

class SSet.Interval (I : SSet) :

An interval is a simplicial set equipped with two endpoints.

Instances

    The interval relevant to the theory of Kan complexes.

    Equations

    The interval relevant to the theory of quasi-categories.

    Equations
    • One or more equations did not get rendered due to their size.

    Once we've proven that Δ[0] is terminal, this will follow from something just PRed to mathlib.

    Equations
    • X.expPointIsoSelf = sorry
    Instances For
      noncomputable def SSet.pathSpace {I : SSet} [I.Interval] (X : SSet) :
      Equations
      Instances For
        noncomputable def SSet.pathSpace.src {I : SSet} [I.Interval] (X : SSet) :
        Equations
        Instances For
          noncomputable def SSet.pathSpace.tgt {I : SSet} [I.Interval] (X : SSet) :
          Equations
          Instances For
            structure SSet.Homotopy {I : SSet} [I.Interval] {A : SSet} {B : SSet} (f : A B) (g : A B) :

            TODO: Figure out how to allow I to be an a different universe from A and B?

            Instances For
              theorem SSet.Homotopy.source_eq {I : SSet} [I.Interval] {A : SSet} {B : SSet} {f : A B} {g : A B} (self : SSet.Homotopy f g) :
              theorem SSet.Homotopy.target_eq {I : SSet} [I.Interval] {A : SSet} {B : SSet} {f : A B} {g : A B} (self : SSet.Homotopy f g) :
              structure SSet.Equiv {I : SSet} [I.Interval] (A : SSet) (B : SSet) :

              For the correct interval, this defines a good notion of equivalences for both Kan complexes and quasi-categories.

              Instances For