An interval is a simplicial set equipped with two endpoints.
- src : SSet.standardSimplex.obj (SimplexCategory.mk 0) ⟶ I
- tgt : SSet.standardSimplex.obj (SimplexCategory.mk 0) ⟶ I
Instances
The interval relevant to the theory of Kan complexes.
Equations
- SSet.arrowInterval = { src := SSet.standardSimplex.map (SimplexCategory.δ 1), tgt := SSet.standardSimplex.map (SimplexCategory.δ 0) }
The interval relevant to the theory of quasi-categories.
Equations
- One or more equations did not get rendered due to their size.
Equations
- SSet.pointIsUnit = sorry
Instances For
Equations
- SSet.expUnitNatIso = ((CategoryTheory.conjugateIsoEquiv CategoryTheory.Adjunction.id (CategoryTheory.ihom.adjunction (𝟙_ SSet))) (CategoryTheory.MonoidalCategory.leftUnitorNatIso SSet)).symm
Instances For
Once we've proven that Δ[0]
is terminal, this will follow from something just PRed to mathlib.
Equations
- X.expPointIsoSelf = sorry
Instances For
Equations
Instances For
Equations
- SSet.pathSpace.src X = CategoryTheory.CategoryStruct.comp ((CategoryTheory.MonoidalClosed.pre SSet.Interval.src).app X) X.expPointIsoSelf.hom
Instances For
Equations
- SSet.pathSpace.tgt X = CategoryTheory.CategoryStruct.comp ((CategoryTheory.MonoidalClosed.pre SSet.Interval.tgt).app X) X.expPointIsoSelf.hom
Instances For
TODO: Figure out how to allow I
to be an a different universe from A
and B
?
- homotopy : A ⟶ CategoryTheory.SimplicialCategory.sHom I B
- source_eq : CategoryTheory.CategoryStruct.comp self.homotopy (SSet.pathSpace.src B) = f
- target_eq : CategoryTheory.CategoryStruct.comp self.homotopy (SSet.pathSpace.tgt B) = g
Instances For
For the correct interval, this defines a good notion of equivalences for both Kan complexes and quasi-categories.
- toFun : A ⟶ B
- invFun : B ⟶ A
- left_inv : SSet.Homotopy (CategoryTheory.CategoryStruct.comp self.toFun self.invFun) (CategoryTheory.CategoryStruct.id A)
- right_inv : SSet.Homotopy (CategoryTheory.CategoryStruct.comp self.invFun self.toFun) (CategoryTheory.CategoryStruct.id B)