An interval is a simplicial set equipped with two endpoints.
- src : stdSimplex.obj (SimplexCategory.mk 0) ⟶ I
- tgt : stdSimplex.obj (SimplexCategory.mk 0) ⟶ I
Instances
The interval relevant to the theory of Kan complexes.
Equations
- SSet.arrowInterval = { src := SSet.stdSimplex.δ 1, tgt := SSet.stdSimplex.δ 0 }
The interval relevant to the theory of quasi-categories.
Equations
- One or more equations did not get rendered due to their size.
Equations
- SSet.pointIsUnit = SSet.isTerminalDeltaZero.uniqueUpToIso (CategoryTheory.Limits.IsTerminal.ofUnique (𝟙_ SSet))
Instances For
Equations
- One or more equations did not get rendered due to their size.
Instances For
noncomputable def
SSet.expPointIsoSelf
(X : SSet)
:
CategoryTheory.SimplicialCategory.sHom (stdSimplex.obj (SimplexCategory.mk 0)) X ≅ X
Equations
- X.expPointIsoSelf = SSet.expPointNatIso.app X
Instances For
Equations
Instances For
Equations
- SSet.pathSpace.src X = CategoryTheory.CategoryStruct.comp ((CategoryTheory.MonoidalClosed.pre SSet.Interval.src).app X) X.expPointIsoSelf.hom
Instances For
Equations
- SSet.pathSpace.tgt X = CategoryTheory.CategoryStruct.comp ((CategoryTheory.MonoidalClosed.pre SSet.Interval.tgt).app X) X.expPointIsoSelf.hom
Instances For
TODO: Figure out how to allow I
to be an a different universe from A
and B
?
- homotopy : A ⟶ CategoryTheory.SimplicialCategory.sHom I B
- source_eq : CategoryTheory.CategoryStruct.comp self.homotopy (pathSpace.src B) = f
- target_eq : CategoryTheory.CategoryStruct.comp self.homotopy (pathSpace.tgt B) = g
Instances For
For the correct interval, this defines a good notion of equivalences for both Kan complexes and quasi-categories.
- toFun : A ⟶ B
- invFun : B ⟶ A
- left_inv : Homotopy (CategoryTheory.CategoryStruct.comp self.toFun self.invFun) (CategoryTheory.CategoryStruct.id A)
- right_inv : Homotopy (CategoryTheory.CategoryStruct.comp self.invFun self.toFun) (CategoryTheory.CategoryStruct.id B)
Instances For
- simplex : A.obj (Opposite.op (SimplexCategory.mk 2))
- δ₀_eq : CategoryTheory.SimplicialObject.δ A 0 self.simplex = CategoryTheory.SimplicialObject.σ A 0 (CategoryTheory.SimplicialObject.δ A 0 f)
- δ₁_eq : CategoryTheory.SimplicialObject.δ A 1 self.simplex = g
- δ₂_eq : CategoryTheory.SimplicialObject.δ A 2 self.simplex = f
Instances For
- simplex : A.obj (Opposite.op (SimplexCategory.mk 2))
- δ₀_eq : CategoryTheory.SimplicialObject.δ A 0 self.simplex = f
- δ₁_eq : CategoryTheory.SimplicialObject.δ A 1 self.simplex = g
- δ₂_eq : CategoryTheory.SimplicialObject.δ A 2 self.simplex = CategoryTheory.SimplicialObject.σ A 0 (CategoryTheory.SimplicialObject.δ A 1 f)
Instances For
Equations
- SSet.HomotopicL f g = Nonempty (SSet.HomotopyL f g)
Instances For
Equations
- SSet.HomotopicR f g = Nonempty (SSet.HomotopyR f g)
Instances For
Equations
- SSet.HomotopyL.refl f = { simplex := CategoryTheory.SimplicialObject.σ A 1 f, δ₀_eq := ⋯, δ₁_eq := ⋯, δ₂_eq := ⋯ }
Instances For
noncomputable def
SSet.HomotopyL.ofHomotopyLOfHomotopyL
{A : SSet}
{f g h : A.obj (Opposite.op (SimplexCategory.mk 1))}
(H₁ : HomotopyL f g)
(H₂ : HomotopyL f h)
:
HomotopyL g h
Equations
- H₁.ofHomotopyLOfHomotopyL H₂ = { simplex := CategoryTheory.SimplicialObject.δ A 1 sorry, δ₀_eq := ⋯, δ₁_eq := ⋯, δ₂_eq := ⋯ }
Instances For
theorem
SSet.HomotopyL.equiv
{A : SSet}
[A.Quasicategory]
:
Equivalence fun (f g : A.obj (Opposite.op (SimplexCategory.mk 1))) => HomotopicL f g
theorem
SSet.homotopicL_iff_homotopicR
{A : SSet}
(f g : A.obj (Opposite.op (SimplexCategory.mk 1)))
[A.Quasicategory]
[A.Quasicategory]
:
HomotopicL f g ↔ HomotopicR f g
theorem
SSet.HomotopyR.equiv
{A : SSet}
[A.Quasicategory]
:
Equivalence fun (f g : A.obj (Opposite.op (SimplexCategory.mk 1))) => HomotopicR f g