Documentation

InfinityCosmos.ForMathlib.AlgebraicTopology.SimplicialSet.Homotopy

class SSet.Interval (I : SSet) :

An interval is a simplicial set equipped with two endpoints.

Instances
    instance SSet.arrowInterval :
    (stdSimplex.obj (SimplexCategory.mk 1)).Interval

    The interval relevant to the theory of Kan complexes.

    Equations
    instance SSet.isoInterval :
    coherentIso.Interval

    The interval relevant to the theory of quasi-categories.

    Equations
    • One or more equations did not get rendered due to their size.
    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      Equations
      Instances For
        noncomputable def SSet.pathSpace {I : SSet} [I.Interval] (X : SSet) :
        Equations
        Instances For
          noncomputable def SSet.pathSpace.src {I : SSet} [I.Interval] (X : SSet) :
          Equations
          Instances For
            noncomputable def SSet.pathSpace.tgt {I : SSet} [I.Interval] (X : SSet) :
            Equations
            Instances For
              structure SSet.Homotopy {I : SSet} [I.Interval] {A B : SSet} (f g : A B) :

              TODO: Figure out how to allow I to be an a different universe from A and B?

              Instances For
                structure SSet.Equiv {I : SSet} [I.Interval] (A B : SSet) :

                For the correct interval, this defines a good notion of equivalences for both Kan complexes and quasi-categories.

                Instances For
                  structure SSet.HomotopyL {A : SSet} (f g : A.obj (Opposite.op (SimplexCategory.mk 1))) :
                  Instances For
                    structure SSet.HomotopyR {A : SSet} (f g : A.obj (Opposite.op (SimplexCategory.mk 1))) :
                    Instances For
                      def SSet.HomotopicL {A : SSet} (f g : A.obj (Opposite.op (SimplexCategory.mk 1))) :
                      Equations
                      Instances For
                        def SSet.HomotopicR {A : SSet} (f g : A.obj (Opposite.op (SimplexCategory.mk 1))) :
                        Equations
                        Instances For
                          Equations
                          Instances For
                            noncomputable def SSet.HomotopyL.ofHomotopyLOfHomotopyL {A : SSet} {f g h : A.obj (Opposite.op (SimplexCategory.mk 1))} (H₁ : HomotopyL f g) (H₂ : HomotopyL f h) :
                            Equations
                            Instances For
                              theorem SSet.HomotopyL.equiv {A : SSet} [A.Quasicategory] :
                              Equivalence fun (f g : A.obj (Opposite.op (SimplexCategory.mk 1))) => HomotopicL f g
                              theorem SSet.homotopicL_iff_homotopicR {A : SSet} (f g : A.obj (Opposite.op (SimplexCategory.mk 1))) [A.Quasicategory] [A.Quasicategory] :
                              theorem SSet.HomotopyR.equiv {A : SSet} [A.Quasicategory] :
                              Equivalence fun (f g : A.obj (Opposite.op (SimplexCategory.mk 1))) => HomotopicR f g