theorem
SSet.map_yonedaEquiv
{n m : ℕ}
{X : SSet}
(f : SimplexCategory.mk n ⟶ SimplexCategory.mk m)
(g : stdSimplex.obj (SimplexCategory.mk m) ⟶ X)
:
X.map f.op (yonedaEquiv g) = g.app (Opposite.op (SimplexCategory.mk n)) (stdSimplex.objEquiv.symm f)
A variant of CategoryTheory.map_yonedaEquiv specialized to simplicial sets.
theorem
SSet.push_yonedaEquiv
{n m k : ℕ}
{X : SSet}
{f : SimplexCategory.mk m ⟶ SimplexCategory.mk n}
{σ : X.obj (Opposite.op (SimplexCategory.mk n))}
{s : SimplexCategory.mk n ⟶ SimplexCategory.mk k}
{g : stdSimplex.obj (SimplexCategory.mk k) ⟶ X}
(h : yonedaEquiv.symm σ = CategoryTheory.CategoryStruct.comp (stdSimplex.map s) g)
:
If a simplex σ of a simplicial set X is equivalent to a composition stdSimplex.map s ≫ g
then we can pull the stdSimplex.map s out from under an application of any X.map f.op.
theorem
SSet.map_yonedaEquiv'
{n m : ℕ}
{X : SSet}
(f : SimplexCategory.mk m ⟶ SimplexCategory.mk n)
{g : stdSimplex.obj (SimplexCategory.mk n) ⟶ X}
:
A variant of map_yonedaEquiv.
theorem
SSet.push_yonedaEquiv'
{n m : ℕ}
{X : SSet}
{f : SimplexCategory.mk m ⟶ SimplexCategory.mk n}
{σ : X.obj (Opposite.op (SimplexCategory.mk m))}
{g : stdSimplex.obj (SimplexCategory.mk n) ⟶ X}
(h : yonedaEquiv.symm σ = CategoryTheory.CategoryStruct.comp (stdSimplex.map f) g)
:
A specialization of push_yonedaEquiv to the case where f is the identity.
theorem
SSet.map_comp_yonedaEquiv_symm
{n m : ℕ}
{X : SSet}
(f : SimplexCategory.mk n ⟶ SimplexCategory.mk m)
(s : X.obj (Opposite.op (SimplexCategory.mk m)))
:
CategoryTheory.CategoryStruct.comp (stdSimplex.map f) (yonedaEquiv.symm s) = yonedaEquiv.symm (X.map f.op s)
Another version of map_yonedaEquiv, but at the level of functions Δ[n] ⟶ X.