@[reducible, inline]
abbrev
CategoryTheory.Enriched.Ihom
(V : Type u)
[Category.{u₁, u} V]
[MonoidalCategory V]
[MonoidalClosed V]
(x y : V)
:
V
Equations
- CategoryTheory.Enriched.Ihom V x y = (CategoryTheory.ihom x).obj y
Instances For
@[reducible, inline]
abbrev
CategoryTheory.Enriched.Ehom
(V : Type u)
[Category.{u₁, u} V]
[MonoidalCategory V]
[MonoidalClosed V]
(C : Type v)
[EnrichedCategory V C]
(x y : C)
:
V
Equations
Instances For
def
CategoryTheory.Enriched.Ihom_Ehom_eq
(V : Type u)
[Category.{u₁, u} V]
[MonoidalCategory V]
[MonoidalClosed V]
(x y : V)
:
Equations
- ⋯ = ⋯
Instances For
structure
CategoryTheory.Enriched.Precotensor
{V : Type u}
[Category.{u₁, u} V]
[MonoidalCategory V]
[MonoidalClosed V]
{C : Type v}
[EnrichedCategory V C]
(v : V)
(x : C)
:
Type (max u₁ v)
The structure of the cotensoring of x : C
by v : V
- obj : C
Instances For
def
CategoryTheory.Enriched.Precotensor.coneNatTrans
{V : Type u}
[Category.{u₁, u} V]
[MonoidalCategory V]
[SymmetricCategory V]
[MonoidalClosed V]
{C : Type v}
[EnrichedCategory V C]
{v : V}
{x : C}
(vx : Precotensor v x)
(y : C)
:
The adjoint tranpose of precotensor_eval
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
CategoryTheory.Enriched.Precotensor.coneNatTrans_eq
{V : Type u}
[Category.{u₁, u} V]
[MonoidalCategory V]
[SymmetricCategory V]
[MonoidalClosed V]
{C : Type v}
[EnrichedCategory V C]
{v : V}
{x : C}
(vx : Precotensor v x)
(y : C)
:
MonoidalClosed.uncurry (vx.coneNatTrans y) = CategoryStruct.comp (β_ v (EnrichedCategory.Hom y vx.obj)).hom
(CategoryStruct.comp (MonoidalCategoryStruct.whiskerLeft (EnrichedCategory.Hom y vx.obj) vx.cone)
(eComp V y vx.obj x))
theorem
CategoryTheory.Enriched.Precotensor.coneNatTrans_braid_eq
{V : Type u}
[Category.{u₁, u} V]
[MonoidalCategory V]
[SymmetricCategory V]
[MonoidalClosed V]
{C : Type v}
[EnrichedCategory V C]
{v : V}
{x : C}
(vx : Precotensor v x)
(y : C)
:
CategoryStruct.comp (β_ (Ehom V C y vx.obj) v).hom (MonoidalClosed.uncurry (vx.coneNatTrans y)) = CategoryStruct.comp (MonoidalCategoryStruct.whiskerLeft (EnrichedCategory.Hom y vx.obj) vx.cone) (eComp V y vx.obj x)
structure
CategoryTheory.Enriched.Cotensor
{V : Type u}
[Category.{u₁, u} V]
[MonoidalCategory V]
[SymmetricCategory V]
[MonoidalClosed V]
{C : Type v}
[EnrichedCategory V C]
(v : V)
(x : C)
extends CategoryTheory.Enriched.Precotensor v x :
Type (max u₁ v)
A Cotensor
is a Precotensor
such that coneNatTransInv
is an inverse to coneNatTrans
.
- obj : C
- NatTransInv_NatTrans_eq (y : C) : CategoryStruct.comp (self.coneNatTransInv y) (self.coneNatTrans y) = CategoryStruct.id (Ihom V v (Ehom V C y x))
- NatTrans_NatTransInv_eq (y : C) : CategoryStruct.comp (self.coneNatTrans y) (self.coneNatTransInv y) = CategoryStruct.id (Ehom V C y self.obj)
Instances For
instance
CategoryTheory.Enriched.instIsIsoConeNatTransInv
{V : Type u}
[Category.{u₁, u} V]
[MonoidalCategory V]
[SymmetricCategory V]
[MonoidalClosed V]
{C : Type v}
[EnrichedCategory V C]
{v : V}
{x : C}
{vx : Cotensor v x}
{y : C}
:
IsIso (vx.coneNatTransInv y)
instance
CategoryTheory.Enriched.instIsIsoConeNatTrans
{V : Type u}
[Category.{u₁, u} V]
[MonoidalCategory V]
[SymmetricCategory V]
[MonoidalClosed V]
{C : Type v}
[EnrichedCategory V C]
{v : V}
{x : C}
{vx : Cotensor v x}
{y : C}
:
IsIso (vx.coneNatTrans y)
def
CategoryTheory.Enriched.Cotensor.postcompose
(V : Type u)
[Category.{u₁, u} V]
[MonoidalCategory V]
[SymmetricCategory V]
[MonoidalClosed V]
{C : Type v}
[EnrichedCategory V C]
{x y : C}
{v : V}
(vx : Cotensor v x)
(vy : Cotensor v y)
:
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
CategoryTheory.Enriched.Cotensor.postcompose_coneNatTrans_eq
(V : Type u)
[Category.{u₁, u} V]
[MonoidalCategory V]
[SymmetricCategory V]
[MonoidalClosed V]
{C : Type v}
[EnrichedCategory V C]
{x y : C}
{v : V}
(vx : Cotensor v x)
(vy : Cotensor v y)
:
CategoryStruct.comp (postcompose V vx vy) (vy.coneNatTrans vx.obj) = MonoidalClosed.curry
(CategoryStruct.comp (MonoidalCategoryStruct.whiskerRight vx.cone (EnrichedCategory.Hom x y)) (eComp V vx.obj x y))
theorem
CategoryTheory.Enriched.Cotensor.uncurry_postcompose_coneNatTrans_eq
(V : Type u)
[Category.{u₁, u} V]
[MonoidalCategory V]
[SymmetricCategory V]
[MonoidalClosed V]
{C : Type v}
[EnrichedCategory V C]
{x y : C}
{v : V}
(vx : Cotensor v x)
(vy : Cotensor v y)
:
MonoidalClosed.uncurry (CategoryStruct.comp (postcompose V vx vy) (vy.coneNatTrans vx.obj)) = CategoryStruct.comp (MonoidalCategoryStruct.whiskerRight vx.cone (EnrichedCategory.Hom x y)) (eComp V vx.obj x y)
theorem
CategoryTheory.Enriched.Cotensor.postcompose_selfEval_comp_eq
(V : Type u)
[Category.{u₁, u} V]
[MonoidalCategory V]
[SymmetricCategory V]
[MonoidalClosed V]
{C : Type v}
[EnrichedCategory V C]
{x y : C}
{v : V}
(vx : Cotensor v x)
(vy : Cotensor v y)
:
CategoryStruct.comp (MonoidalCategoryStruct.whiskerRight (postcompose V vx vy) v)
(CategoryStruct.comp (MonoidalCategoryStruct.whiskerLeft (Ehom V C vx.obj vy.obj) vy.cone)
(eComp V vx.obj vy.obj y)) = CategoryStruct.comp (β_ (EnrichedCategory.Hom x y) v).hom
(CategoryStruct.comp (MonoidalCategoryStruct.whiskerRight vx.cone (EnrichedCategory.Hom x y)) (eComp V vx.obj x y))
theorem
CategoryTheory.Enriched.Cotensor.postcompose_comp_eq
(V : Type u)
[Category.{u₁, u} V]
[MonoidalCategory V]
[SymmetricCategory V]
[MonoidalClosed V]
{C : Type v}
[EnrichedCategory V C]
{x y z : C}
{v : V}
(vx : Cotensor v x)
(vy : Cotensor v y)
(vz : Cotensor v z)
:
CategoryStruct.comp (eComp V x y z) (postcompose V vx vz) = CategoryStruct.comp (MonoidalCategoryStruct.tensorHom (postcompose V vx vy) (postcompose V vy vz))
(eComp V vx.obj vy.obj vz.obj)
theorem
CategoryTheory.Enriched.Cotensor.postcompose_id_eq
(V : Type u)
[Category.{u₁, u} V]
[MonoidalCategory V]
[SymmetricCategory V]
[MonoidalClosed V]
{C : Type v}
[EnrichedCategory V C]
{x : C}
{v : V}
(vx : Cotensor v x)
:
CategoryStruct.comp (eId V x) (postcompose V vx vx) = eId V vx.obj
def
CategoryTheory.Enriched.Cotensor.IhomPrecompose
(V : Type u)
[Category.{u₁, u} V]
[MonoidalCategory V]
[SymmetricCategory V]
[MonoidalClosed V]
{C : Type v}
[EnrichedCategory V C]
{x : C}
{w v : V}
(wx : Cotensor w x)
(vx : Cotensor v x)
:
Equations
- CategoryTheory.Enriched.Cotensor.IhomPrecompose V wx vx = CategoryTheory.CategoryStruct.comp ((CategoryTheory.ihom w).map vx.cone) (wx.coneNatTransInv vx.obj)
Instances For
def
CategoryTheory.Enriched.Cotensor.EhomPrecompose
(V : Type u)
[Category.{u₁, u} V]
[MonoidalCategory V]
[SymmetricCategory V]
[MonoidalClosed V]
{C : Type v}
[EnrichedCategory V C]
{x : C}
{w v : V}
(wx : Cotensor w x)
(vx : Cotensor v x)
:
Equations
Instances For
theorem
CategoryTheory.Enriched.Cotensor.IhomPrecompose_coneNatTrans_eq
(V : Type u)
[Category.{u₁, u} V]
[MonoidalCategory V]
[SymmetricCategory V]
[MonoidalClosed V]
{C : Type v}
[EnrichedCategory V C]
{x : C}
{w v : V}
(wx : Cotensor w x)
(vx : Cotensor v x)
:
CategoryStruct.comp (IhomPrecompose V wx vx) (wx.coneNatTrans vx.obj) = (ihom w).map vx.cone
theorem
CategoryTheory.Enriched.Cotensor.EhomPrecompose_coneNatTrans_eq
(V : Type u)
[Category.{u₁, u} V]
[MonoidalCategory V]
[SymmetricCategory V]
[MonoidalClosed V]
{C : Type v}
[EnrichedCategory V C]
{x : C}
{w v : V}
(wx : Cotensor w x)
(vx : Cotensor v x)
:
CategoryStruct.comp (EhomPrecompose V wx vx) (wx.coneNatTrans vx.obj) = (ihom w).map vx.cone
theorem
CategoryTheory.Enriched.Cotensor.IhomPrecompose_selfEval_comp_eq
(V : Type u)
[Category.{u₁, u} V]
[MonoidalCategory V]
[SymmetricCategory V]
[MonoidalClosed V]
{C : Type v}
[EnrichedCategory V C]
{x : C}
{w v : V}
(wx : Cotensor w x)
(vx : Cotensor v x)
:
CategoryStruct.comp (MonoidalCategoryStruct.whiskerRight (IhomPrecompose V wx vx) w)
(CategoryStruct.comp (MonoidalCategoryStruct.whiskerLeft (Ehom V C vx.obj wx.obj) wx.cone)
(eComp V vx.obj wx.obj x)) = CategoryStruct.comp (β_ ((ihom w).obj v) w).hom (CategoryStruct.comp ((ihom.ev w).app v) vx.cone)
theorem
CategoryTheory.Enriched.Cotensor.EhomPrecompose_selfEval_comp_eq
(V : Type u)
[Category.{u₁, u} V]
[MonoidalCategory V]
[SymmetricCategory V]
[MonoidalClosed V]
{C : Type v}
[EnrichedCategory V C]
{x : C}
{w v : V}
(wx : Cotensor w x)
(vx : Cotensor v x)
:
CategoryStruct.comp (MonoidalCategoryStruct.whiskerRight (EhomPrecompose V wx vx) w)
(CategoryStruct.comp (MonoidalCategoryStruct.whiskerLeft (Ehom V C vx.obj wx.obj) wx.cone)
(eComp V vx.obj wx.obj x)) = CategoryStruct.comp (β_ ((ihom w).obj v) w).hom (CategoryStruct.comp ((ihom.ev w).app v) vx.cone)
theorem
CategoryTheory.Enriched.Cotensor.precompose_comp_eq
(V : Type u)
[Category.{u₁, u} V]
[MonoidalCategory V]
[SymmetricCategory V]
[MonoidalClosed V]
{C : Type v}
[EnrichedCategory V C]
{x : C}
{u v w : V}
(ux : Cotensor u x)
(vx : Cotensor v x)
(wx : Cotensor w x)
:
CategoryStruct.comp (eComp V u v w) (EhomPrecompose V ux wx) = CategoryStruct.comp (MonoidalCategoryStruct.tensorHom (EhomPrecompose V ux vx) (EhomPrecompose V vx wx))
(CategoryStruct.comp (β_ (Ehom V C vx.obj ux.obj) (Ehom V C wx.obj vx.obj)).hom (eComp V wx.obj vx.obj ux.obj))
theorem
CategoryTheory.Enriched.Cotensor.precompose_id_eq
(V : Type u)
[Category.{u₁, u} V]
[MonoidalCategory V]
[SymmetricCategory V]
[MonoidalClosed V]
{C : Type v}
[EnrichedCategory V C]
{x : C}
{v : V}
(vx : Cotensor v x)
:
CategoryStruct.comp (eId V v) (EhomPrecompose V vx vx) = eId V vx.obj
theorem
CategoryTheory.Enriched.Cotensor.post_pre_eq_pre_post
(V : Type u)
[Category.{u₁, u} V]
[MonoidalCategory V]
[SymmetricCategory V]
[MonoidalClosed V]
{C : Type v}
[EnrichedCategory V C]
{x y : C}
{w v : V}
(wx : Cotensor w x)
(wy : Cotensor w y)
(vx : Cotensor v x)
(vy : Cotensor v y)
:
CategoryStruct.comp (MonoidalCategoryStruct.tensorHom (EhomPrecompose V wx vx) (postcompose V wx wy))
(eComp V vx.obj wx.obj wy.obj) = CategoryStruct.comp (MonoidalCategoryStruct.tensorHom (EhomPrecompose V wy vy) (postcompose V vx vy))
(CategoryStruct.comp (β_ (Ehom V C vy.obj wy.obj) (Ehom V C vx.obj vy.obj)).hom (eComp V vx.obj vy.obj wy.obj))
Naturality of postcomposition with precoposition
class
CategoryTheory.Enriched.Cotensor.CotensoredCategory
(V : Type u)
[Category.{u₁, u} V]
[MonoidalCategory V]
[MonoidalClosed V]
[SymmetricCategory V]
(C : Type v)
[EnrichedCategory V C]
:
Type (max (max u u₁) v)
Instances
def
CategoryTheory.Enriched.Cotensor.cotensor_bifunc
(V : Type u)
[Category.{u₁, u} V]
[MonoidalCategory V]
[SymmetricCategory V]
[MonoidalClosed V]
{C : Type v}
[EnrichedCategory V C]
[CotensoredCategory V C]
:
EnrichedFunctor V (Vᵒᵖ ⊗[V] C) C
Equations
- One or more equations did not get rendered due to their size.