Documentation

InfinityCosmos.ForMathlib.CategoryTheory.Enriched.Cotensors

@[reducible, inline]
Equations
Instances For
    @[reducible, inline]
    Equations
    Instances For
      Equations
      • =
      Instances For
        structure CategoryTheory.Enriched.Precotensor {V : Type u} [Category.{u₁, u} V] [MonoidalCategory V] [MonoidalClosed V] {C : Type v} [EnrichedCategory V C] (v : V) (x : C) :
        Type (max u₁ v)

        The structure of the cotensoring of x : C by v : V

        Instances For
          def CategoryTheory.Enriched.Precotensor.coneNatTrans {V : Type u} [Category.{u₁, u} V] [MonoidalCategory V] [SymmetricCategory V] [MonoidalClosed V] {C : Type v} [EnrichedCategory V C] {v : V} {x : C} (vx : Precotensor v x) (y : C) :
          Ehom V C y vx.obj Ihom V v (Ehom V C y x)

          The adjoint tranpose of precotensor_eval

          Equations
          • One or more equations did not get rendered due to their size.
          Instances For

            A Cotensor is a Precotensor such that coneNatTransInv is an inverse to coneNatTrans.

            Instances For
              def CategoryTheory.Enriched.Cotensor.postcompose (V : Type u) [Category.{u₁, u} V] [MonoidalCategory V] [SymmetricCategory V] [MonoidalClosed V] {C : Type v} [EnrichedCategory V C] {x y : C} {v : V} (vx : Cotensor v x) (vy : Cotensor v y) :
              Ehom V C x y Ehom V C vx.obj vy.obj
              Equations
              • One or more equations did not get rendered due to their size.
              Instances For

                Naturality of postcomposition with precoposition

                Instances
                  Equations
                  • One or more equations did not get rendered due to their size.
                  Instances For