Documentation

InfinityCosmos.ForMathlib.CategoryTheory.Enriched.Cotensors

@[reducible, inline]
Equations
Instances For
    @[reducible, inline]
    Equations
    Instances For
      Equations
      • =
      Instances For
        structure CategoryTheory.Enriched.Precotensor {V : Type u} [Category.{u₁, u} V] [MonoidalCategory V] [MonoidalClosed V] {C : Type v} [EnrichedCategory V C] (v : V) (x : C) :
        Type (max u₁ v)

        The structure of the cotensoring of x : C by v : V

        • obj : C
        • cone : v Ehom V C self.obj x
        Instances For
          def CategoryTheory.Enriched.Precotensor.coneNatTrans {V : Type u} [Category.{u₁, u} V] [MonoidalCategory V] [SymmetricCategory V] [MonoidalClosed V] {C : Type v} [EnrichedCategory V C] {v : V} {x : C} (vx : Precotensor v x) (y : C) :
          Ehom V C y vx.obj Ihom V v (Ehom V C y x)

          The adjoint tranpose of precotensor_eval

          Equations
          • One or more equations did not get rendered due to their size.
          Instances For

            A Cotensor is a Precotensor such that coneNatTransInv is an inverse to coneNatTrans.

            Instances For
              instance CategoryTheory.Enriched.instIsIsoConeNatTransInv {V : Type u} [Category.{u₁, u} V] [MonoidalCategory V] [SymmetricCategory V] [MonoidalClosed V] {C : Type v} [EnrichedCategory V C] {v : V} {x : C} {vx : Cotensor v x} {y : C} :
              IsIso (vx.coneNatTransInv y)
              instance CategoryTheory.Enriched.instIsIsoConeNatTrans {V : Type u} [Category.{u₁, u} V] [MonoidalCategory V] [SymmetricCategory V] [MonoidalClosed V] {C : Type v} [EnrichedCategory V C] {v : V} {x : C} {vx : Cotensor v x} {y : C} :
              IsIso (vx.coneNatTrans y)
              def CategoryTheory.Enriched.Cotensor.postcompose (V : Type u) [Category.{u₁, u} V] [MonoidalCategory V] [SymmetricCategory V] [MonoidalClosed V] {C : Type v} [EnrichedCategory V C] {x y : C} {v : V} (vx : Cotensor v x) (vy : Cotensor v y) :
              Ehom V C x y Ehom V C vx.obj vy.obj
              Equations
              • One or more equations did not get rendered due to their size.
              Instances For
                def CategoryTheory.Enriched.Cotensor.IhomPrecompose (V : Type u) [Category.{u₁, u} V] [MonoidalCategory V] [SymmetricCategory V] [MonoidalClosed V] {C : Type v} [EnrichedCategory V C] {x : C} {w v : V} (wx : Cotensor w x) (vx : Cotensor v x) :
                Ihom V w v Ehom V C vx.obj wx.obj
                Equations
                Instances For
                  theorem CategoryTheory.Enriched.Cotensor.IhomPrecompose_coneNatTrans_eq (V : Type u) [Category.{u₁, u} V] [MonoidalCategory V] [SymmetricCategory V] [MonoidalClosed V] {C : Type v} [EnrichedCategory V C] {x : C} {w v : V} (wx : Cotensor w x) (vx : Cotensor v x) :
                  CategoryStruct.comp (IhomPrecompose V wx vx) (wx.coneNatTrans vx.obj) = (ihom w).map vx.cone
                  theorem CategoryTheory.Enriched.Cotensor.EhomPrecompose_coneNatTrans_eq (V : Type u) [Category.{u₁, u} V] [MonoidalCategory V] [SymmetricCategory V] [MonoidalClosed V] {C : Type v} [EnrichedCategory V C] {x : C} {w v : V} (wx : Cotensor w x) (vx : Cotensor v x) :
                  CategoryStruct.comp (EhomPrecompose V wx vx) (wx.coneNatTrans vx.obj) = (ihom w).map vx.cone
                  theorem CategoryTheory.Enriched.Cotensor.precompose_comp_eq (V : Type u) [Category.{u₁, u} V] [MonoidalCategory V] [SymmetricCategory V] [MonoidalClosed V] {C : Type v} [EnrichedCategory V C] {x : C} {u v w : V} (ux : Cotensor u x) (vx : Cotensor v x) (wx : Cotensor w x) :
                  CategoryStruct.comp (eComp V u v w) (EhomPrecompose V ux wx) = CategoryStruct.comp (MonoidalCategoryStruct.tensorHom (EhomPrecompose V ux vx) (EhomPrecompose V vx wx)) (CategoryStruct.comp (β_ (Ehom V C vx.obj ux.obj) (Ehom V C wx.obj vx.obj)).hom (eComp V wx.obj vx.obj ux.obj))
                  theorem CategoryTheory.Enriched.Cotensor.post_pre_eq_pre_post (V : Type u) [Category.{u₁, u} V] [MonoidalCategory V] [SymmetricCategory V] [MonoidalClosed V] {C : Type v} [EnrichedCategory V C] {x y : C} {w v : V} (wx : Cotensor w x) (wy : Cotensor w y) (vx : Cotensor v x) (vy : Cotensor v y) :
                  CategoryStruct.comp (MonoidalCategoryStruct.tensorHom (EhomPrecompose V wx vx) (postcompose V wx wy)) (eComp V vx.obj wx.obj wy.obj) = CategoryStruct.comp (MonoidalCategoryStruct.tensorHom (EhomPrecompose V wy vy) (postcompose V vx vy)) (CategoryStruct.comp (β_ (Ehom V C vy.obj wy.obj) (Ehom V C vx.obj vy.obj)).hom (eComp V vx.obj vy.obj wy.obj))

                  Naturality of postcomposition with precoposition

                  Instances
                    Equations
                    • One or more equations did not get rendered due to their size.
                    Instances For