The monoidal product of enriched categories #
When a monoidal category V is braided, we may define the monoidal product of
V-categories C and D, which is a V-category structure on the product type C × D.
The "middle-four exchange" map (known as tensor_μ) is required to define the composition morphism.
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
CategoryTheory.enrichedTensor.comp_tensor_comp_eq_comp_mid_left_right
(V : Type u₁)
[Category.{v₁, u₁} V]
[MonoidalCategory V]
(C : Type u₂)
[EnrichedCategory V C]
{a b c d e : C}
:
CategoryStruct.comp (MonoidalCategoryStruct.tensorHom (eComp V a b c) (eComp V c d e)) (eComp V a c e) = CategoryStruct.comp
(MonoidalCategoryStruct.associator (a ⟶[V] b) (b ⟶[V] c)
(MonoidalCategoryStruct.tensorObj (c ⟶[V] d) (d ⟶[V] e))).hom
(CategoryStruct.comp
(MonoidalCategoryStruct.whiskerLeft (a ⟶[V] b)
(MonoidalCategoryStruct.associator (b ⟶[V] c) (c ⟶[V] d) (d ⟶[V] e)).inv)
(CategoryStruct.comp
(MonoidalCategoryStruct.whiskerLeft (a ⟶[V] b) (MonoidalCategoryStruct.whiskerRight (eComp V b c d) (d ⟶[V] e)))
(CategoryStruct.comp (MonoidalCategoryStruct.whiskerLeft (a ⟶[V] b) (eComp V b d e)) (eComp V a b e))))
instance
CategoryTheory.enrichedTensor.instEnrichedCategory
(V : Type u₁)
[Category.{v₁, u₁} V]
[MonoidalCategory V]
(C : Type u₂)
[EnrichedCategory V C]
(D : Type u₃)
[EnrichedCategory V D]
[BraidedCategory V]
:
EnrichedCategory V (C ⊗[V] D)
Equations
- One or more equations did not get rendered due to their size.
def
CategoryTheory.enrichedTensor.eBifuncConstr
(V : Type u₁)
[Category.{v₁, u₁} V]
[MonoidalCategory V]
(C : Type u₂)
[EnrichedCategory V C]
(D : Type u₃)
[EnrichedCategory V D]
[SymmetricCategory V]
{E : Type u₄}
[EnrichedCategory V E]
(F_obj : C → D → E)
(F_map_left : (c c' : C) → (d : D) → (c ⟶[V] c') ⟶ F_obj c d ⟶[V] F_obj c' d)
(F_map_right : (c : C) → (d d' : D) → (d ⟶[V] d') ⟶ F_obj c d ⟶[V] F_obj c d')
(F_id_left : ∀ (c : C) (d : D), CategoryStruct.comp (eId V c) (F_map_left c c d) = eId V (F_obj c d))
(F_id_right : ∀ (c : C) (d : D), CategoryStruct.comp (eId V d) (F_map_right c d d) = eId V (F_obj c d))
(F_comp_left :
∀ (c c' c'' : C) (d : D),
CategoryStruct.comp (eComp V c c' c'') (F_map_left c c'' d) = CategoryStruct.comp (MonoidalCategoryStruct.tensorHom (F_map_left c c' d) (F_map_left c' c'' d))
(eComp V (F_obj c d) (F_obj c' d) (F_obj c'' d)))
(F_comp_right :
∀ (c : C) (d d' d'' : D),
CategoryStruct.comp (eComp V d d' d'') (F_map_right c d d'') = CategoryStruct.comp (MonoidalCategoryStruct.tensorHom (F_map_right c d d') (F_map_right c d' d''))
(eComp V (F_obj c d) (F_obj c d') (F_obj c d'')))
(F_left_right_naturality :
∀ (c c' : C) (d d' : D),
CategoryStruct.comp (MonoidalCategoryStruct.tensorHom (F_map_left c c' d) (F_map_right c' d d'))
(eComp V (F_obj c d) (F_obj c' d) (F_obj c' d')) = CategoryStruct.comp (MonoidalCategoryStruct.tensorHom (F_map_left c c' d') (F_map_right c d d'))
(CategoryStruct.comp (β_ (F_obj c d' ⟶[V] F_obj c' d') (F_obj c d ⟶[V] F_obj c d')).hom
(eComp V (F_obj c d) (F_obj c d') (F_obj c' d'))))
:
EnrichedFunctor V (C ⊗[V] D) E
Equations
- One or more equations did not get rendered due to their size.