The monoidal product of enriched categories #
When a monoidal category V
is braided, we may define the monoidal product of
V
-categories C
and D
, which is a V
-category structure on the product type C × D
.
The "middle-four exchange" map (known as tensor_μ
) is required to define the composition morphism.
Equations
- One or more equations did not get rendered due to their size.
Instances For
Equations
- CategoryTheory.enrichedTensor.of_prod V p = { pr₁ := p.1, pr₂ := p.2 }
Instances For
def
CategoryTheory.enrichedTensor.to_prod
(V : Type u₁)
{C : Type u₂}
{D : Type u₃}
(q : C ⊗[V] D)
:
C × D
Equations
- CategoryTheory.enrichedTensor.to_prod V q = (q.pr₁, q.pr₂)
Instances For
theorem
CategoryTheory.enrichedTensor.comp_tensor_comp_eq_comp_mid_left_right
(V : Type u₁)
[Category.{v₁, u₁} V]
[MonoidalCategory V]
(C : Type u₂)
[EnrichedCategory V C]
{a b c d e : C}
:
CategoryStruct.comp (MonoidalCategoryStruct.tensorHom (eComp V a b c) (eComp V c d e)) (eComp V a c e) = CategoryStruct.comp
(MonoidalCategoryStruct.associator (EnrichedCategory.Hom a b) (EnrichedCategory.Hom b c)
(MonoidalCategoryStruct.tensorObj (EnrichedCategory.Hom c d) (EnrichedCategory.Hom d e))).hom
(CategoryStruct.comp
(MonoidalCategoryStruct.whiskerLeft (EnrichedCategory.Hom a b)
(MonoidalCategoryStruct.associator (EnrichedCategory.Hom b c) (EnrichedCategory.Hom c d)
(EnrichedCategory.Hom d e)).inv)
(CategoryStruct.comp
(MonoidalCategoryStruct.whiskerLeft (EnrichedCategory.Hom a b)
(MonoidalCategoryStruct.whiskerRight (eComp V b c d) (EnrichedCategory.Hom d e)))
(CategoryStruct.comp (MonoidalCategoryStruct.whiskerLeft (EnrichedCategory.Hom a b) (eComp V b d e))
(eComp V a b e))))
instance
CategoryTheory.enrichedTensor.instEnrichedCategory
(V : Type u₁)
[Category.{v₁, u₁} V]
[MonoidalCategory V]
(C : Type u₂)
[EnrichedCategory V C]
(D : Type u₃)
[EnrichedCategory V D]
[BraidedCategory V]
:
EnrichedCategory V (C ⊗[V] D)
Equations
- One or more equations did not get rendered due to their size.
def
CategoryTheory.enrichedTensor.eBifuncConstr
(V : Type u₁)
[Category.{v₁, u₁} V]
[MonoidalCategory V]
(C : Type u₂)
[EnrichedCategory V C]
(D : Type u₃)
[EnrichedCategory V D]
[SymmetricCategory V]
{E : Type u₄}
[EnrichedCategory V E]
(F_obj : C → D → E)
(F_map_left : (c c' : C) → (d : D) → EnrichedCategory.Hom c c' ⟶ EnrichedCategory.Hom (F_obj c d) (F_obj c' d))
(F_map_right : (c : C) → (d d' : D) → EnrichedCategory.Hom d d' ⟶ EnrichedCategory.Hom (F_obj c d) (F_obj c d'))
(F_id_left : ∀ (c : C) (d : D), CategoryStruct.comp (eId V c) (F_map_left c c d) = eId V (F_obj c d))
(F_id_right : ∀ (c : C) (d : D), CategoryStruct.comp (eId V d) (F_map_right c d d) = eId V (F_obj c d))
(F_comp_left :
∀ (c c' c'' : C) (d : D),
CategoryStruct.comp (eComp V c c' c'') (F_map_left c c'' d) = CategoryStruct.comp (MonoidalCategoryStruct.tensorHom (F_map_left c c' d) (F_map_left c' c'' d))
(eComp V (F_obj c d) (F_obj c' d) (F_obj c'' d)))
(F_comp_right :
∀ (c : C) (d d' d'' : D),
CategoryStruct.comp (eComp V d d' d'') (F_map_right c d d'') = CategoryStruct.comp (MonoidalCategoryStruct.tensorHom (F_map_right c d d') (F_map_right c d' d''))
(eComp V (F_obj c d) (F_obj c d') (F_obj c d'')))
(F_left_right_naturality :
∀ (c c' : C) (d d' : D),
CategoryStruct.comp (MonoidalCategoryStruct.tensorHom (F_map_left c c' d) (F_map_right c' d d'))
(eComp V (F_obj c d) (F_obj c' d) (F_obj c' d')) = CategoryStruct.comp (MonoidalCategoryStruct.tensorHom (F_map_left c c' d') (F_map_right c d d'))
(CategoryStruct.comp
(β_ (EnrichedCategory.Hom (F_obj c d') (F_obj c' d')) (EnrichedCategory.Hom (F_obj c d) (F_obj c d'))).hom
(eComp V (F_obj c d) (F_obj c d') (F_obj c' d'))))
:
EnrichedFunctor V (C ⊗[V] D) E
Equations
- One or more equations did not get rendered due to their size.