TODO: module docstring
@[reducible, inline]
abbrev
CategoryTheory.Enriched.HasConicalPullback
(V : Type u')
[Category.{v', u'} V]
[MonoidalCategory V]
{C : Type u}
[Category.{v, u} C]
[EnrichedOrdinaryCategory V C]
{X Y Z : C}
(f : X ⟶ Z)
(g : Y ⟶ Z)
:
HasPullback f g
represents a particular choice of conical limit cone for the pair
of morphisms f : X ⟶ Z
and g : Y ⟶ Z
Equations
Instances For
instance
CategoryTheory.Enriched.HasConicalPullback_hasPullback
(V : Type u')
[Category.{v', u'} V]
[MonoidalCategory V]
{C : Type u}
[Category.{v, u} C]
[EnrichedOrdinaryCategory V C]
{X Y Z : C}
(f : X ⟶ Z)
(g : Y ⟶ Z)
[HasConicalPullback V f g]
:
@[reducible, inline]
abbrev
CategoryTheory.Enriched.HasConicalPullbacks
(V : Type u')
[Category.{v', u'} V]
[MonoidalCategory V]
(C : Type u)
[Category.{v, u} C]
[EnrichedOrdinaryCategory V C]
:
HasConicalPullbacks
represents a choice of conical pullback for every pair of morphisms
Equations
Instances For
instance
CategoryTheory.Enriched.HasConicalPullbacks_hasPullbacks
(V : Type u')
[Category.{v', u'} V]
[MonoidalCategory V]
(C : Type u)
[Category.{v, u} C]
[EnrichedOrdinaryCategory V C]
[hyp : HasConicalPullbacks V C]
: