Documentation
Init
.
Data
.
Array
.
OfFn
Search
return to top
source
Imports
Init.Data.Array.Lemmas
Init.Data.List.OfFn
Imported by
Array
.
ofFn_eq_empty_iff
Array
.
mem_ofFn
Theorems about
Array.ofFn
#
source
@[simp]
theorem
Array
.
ofFn_eq_empty_iff
{n :
Nat
}
{α :
Type
u_1}
{f :
Fin
n
→
α
}
:
ofFn
f
=
#[
]
↔
n
=
0
source
@[simp]
theorem
Array
.
mem_ofFn
{α :
Type
u_1}
{n :
Nat
}
(f :
Fin
n
→
α
)
(a :
α
)
:
a
∈
ofFn
f
↔
∃
(
i
:
Fin
n
)
,
f
i
=
a