Documentation

Init.Data.Vector.OfFn

Theorems about Vector.ofFn #

@[simp]
theorem Vector.getElem_ofFn {α : Type u_1} {n : Nat} (f : Fin nα) (i : Nat) (h : i < n) :
(ofFn f)[i] = f i, h
theorem Vector.getElem?_ofFn {n : Nat} {α : Type u_1} (f : Fin nα) (i : Nat) :
(ofFn f)[i]? = if h : i < n then some (f i, h) else none
@[simp]
theorem Vector.mem_ofFn {α : Type u_1} {n : Nat} (f : Fin nα) (a : α) :
a ofFn f (i : Fin n), f i = a
theorem Vector.back_ofFn {α : Type u_1} {n : Nat} [NeZero n] (f : Fin nα) :
(ofFn f).back = f n - 1,