Documentation

Mathlib.Data.Finset.Empty

Empty and nonempty finite sets #

This file defines the empty finite set ∅ and a predicate for nonempty Finsets.

Main declarations #

Tags #

finite sets, finset

Nonempty #

def Finset.Nonempty {α : Type u_1} (s : Finset α) :

The property s.Nonempty expresses the fact that the finset s is not empty. It should be used in theorem assumptions instead of ∃ x, x ∈ s or s ≠ ∅ as it gives access to a nice API thanks to the dot notation.

Equations
Instances For
@[simp]
theorem Finset.coe_nonempty {α : Type u_1} {s : Finset α} :
theorem Finset.nonempty_coe_sort {α : Type u_1} {s : Finset α} :
Nonempty { x : α // x s } s.Nonempty
theorem Finset.Nonempty.to_set {α : Type u_1} {s : Finset α} :
s.Nonempty(↑s).Nonempty

Alias of the reverse direction of Finset.coe_nonempty.

theorem Finset.Nonempty.coe_sort {α : Type u_1} {s : Finset α} :
s.NonemptyNonempty { x : α // x s }

Alias of the reverse direction of Finset.nonempty_coe_sort.

theorem Finset.Nonempty.exists_mem {α : Type u_1} {s : Finset α} (h : s.Nonempty) :
∃ (x : α), x s
theorem Finset.Nonempty.mono {α : Type u_1} {s t : Finset α} (hst : s t) (hs : s.Nonempty) :
theorem Finset.Nonempty.forall_const {α : Type u_1} {s : Finset α} (h : s.Nonempty) {p : Prop} :
(∀ xs, p) p
theorem Finset.Nonempty.to_subtype {α : Type u_1} {s : Finset α} :
s.NonemptyNonempty { x : α // x s }
theorem Finset.Nonempty.to_type {α : Type u_1} {s : Finset α} :

empty #

def Finset.empty {α : Type u_1} :

The empty finset

Equations
instance Finset.inhabitedFinset {α : Type u_1} :
Equations
@[simp]
theorem Finset.empty_val {α : Type u_1} :
@[simp]
theorem Finset.not_mem_empty {α : Type u_1} (a : α) :
a
@[simp]
theorem Finset.mk_zero {α : Type u_1} :
{ val := 0, nodup := } =
theorem Finset.ne_empty_of_mem {α : Type u_1} {a : α} {s : Finset α} (h : a s) :
theorem Finset.Nonempty.ne_empty {α : Type u_1} {s : Finset α} (h : s.Nonempty) :
@[simp]
theorem Finset.empty_subset {α : Type u_1} (s : Finset α) :
theorem Finset.eq_empty_of_forall_not_mem {α : Type u_1} {s : Finset α} (H : ∀ (x : α), xs) :
s =
theorem Finset.eq_empty_iff_forall_not_mem {α : Type u_1} {s : Finset α} :
s = ∀ (x : α), xs
@[simp]
theorem Finset.val_eq_zero {α : Type u_1} {s : Finset α} :
s.val = 0 s =
@[simp]
theorem Finset.subset_empty {α : Type u_1} {s : Finset α} :
@[simp]
theorem Finset.not_ssubset_empty {α : Type u_1} (s : Finset α) :
theorem Finset.nonempty_of_ne_empty {α : Type u_1} {s : Finset α} (h : s ) :
@[simp]
theorem Finset.eq_empty_or_nonempty {α : Type u_1} (s : Finset α) :
@[simp]
theorem Finset.coe_empty {α : Type u_1} :
=
@[simp]
theorem Finset.coe_eq_empty {α : Type u_1} {s : Finset α} :
s = s =
@[simp]
theorem Finset.isEmpty_coe_sort {α : Type u_1} {s : Finset α} :
IsEmpty { x : α // x s } s =
instance Finset.instIsEmpty {α : Type u_1} :
IsEmpty { x : α // x }
theorem Finset.eq_empty_of_isEmpty {α : Type u_1} [IsEmpty α] (s : Finset α) :
s =

A Finset for an empty type is empty.

@[simp]
theorem Finset.bot_eq_empty {α : Type u_1} :
@[simp]
theorem Finset.empty_ssubset {α : Type u_1} {s : Finset α} :
theorem Finset.Nonempty.empty_ssubset {α : Type u_1} {s : Finset α} :
s.Nonempty s

Alias of the reverse direction of Finset.empty_ssubset.

theorem Finset.exists_mem_empty_iff {α : Type u_1} (p : αProp) :
(∃ x, p x) False
theorem Finset.forall_mem_empty_iff {α : Type u_1} (p : αProp) :
(∀ x, p x) True
def Mathlib.Meta.proveFinsetNonempty {u : Lean.Level} {α : Q(Type u)} (s : Q(Finset «$α»)) :

Attempt to prove that a finset is nonempty using the finsetNonempty aesop rule-set.

You can add lemmas to the rule-set by tagging them with either:

  • aesop safe apply (rule_sets := [finsetNonempty]) if they are always a good idea to follow or
  • aesop unsafe apply (rule_sets := [finsetNonempty]) if they risk directing the search to a blind alley.

TODO: should some of the lemmas be aesop safe simp instead?

Equations
  • One or more equations did not get rendered due to their size.