Documentation

Mathlib.Data.Finset.Option

Finite sets in Option α #

In this file we define

Then we prove some basic lemmas about these definitions.

Tags #

finset, option

def Option.toFinset {α : Type u_1} (o : Option α) :

Construct an empty or singleton finset from an Option

Equations
@[simp]
@[simp]
theorem Option.toFinset_some {α : Type u_1} {a : α} :
@[simp]
theorem Option.mem_toFinset {α : Type u_1} {a : α} {o : Option α} :
theorem Option.card_toFinset {α : Type u_1} (o : Option α) :
def Finset.insertNone {α : Type u_1} :

Given a finset on α, lift it to being a finset on Option α using Option.some and then insert Option.none.

Equations
@[simp]
theorem Finset.mem_insertNone {α : Type u_1} {s : Finset α} {o : Option α} :
o insertNone s ao, a s
theorem Finset.forall_mem_insertNone {α : Type u_1} {s : Finset α} {p : Option αProp} :
(∀ ainsertNone s, p a) p none as, p (some a)
theorem Finset.some_mem_insertNone {α : Type u_1} {s : Finset α} {a : α} :
@[simp]
theorem Finset.card_insertNone {α : Type u_1} (s : Finset α) :
def Finset.eraseNone {α : Type u_1} :

Given s : Finset (Option α), eraseNone s : Finset α is the set of x : α such that some x ∈ s.

Equations
@[simp]
theorem Finset.mem_eraseNone {α : Type u_1} {s : Finset (Option α)} {x : α} :
theorem Finset.forall_mem_eraseNone {α : Type u_1} {s : Finset (Option α)} {p : Option αProp} :
(∀ aeraseNone s, p (some a)) ∀ (a : α), some a sp (some a)
@[simp]
theorem Finset.eraseNone_image_some {α : Type u_1} [DecidableEq (Option α)] (s : Finset α) :
@[simp]
theorem Finset.coe_eraseNone {α : Type u_1} (s : Finset (Option α)) :
(eraseNone s) = some ⁻¹' s
@[simp]
theorem Finset.eraseNone_union {α : Type u_1} [DecidableEq (Option α)] [DecidableEq α] (s t : Finset (Option α)) :
@[simp]
theorem Finset.eraseNone_inter {α : Type u_1} [DecidableEq (Option α)] [DecidableEq α] (s t : Finset (Option α)) :
@[simp]
@[simp]
@[simp]
theorem Finset.eraseNone_insertNone {α : Type u_1} (s : Finset α) :