Documentation

Mathlib.Order.Category.Preord

Category of preorders #

This defines Preord, the category of preorders with monotone maps.

structure Preord :
Type (u_1 + 1)

The category of preorders.

  • carrier : Type u_1

    The underlying preordered type.

  • str : Preorder self
Instances For
@[reducible, inline]
abbrev Preord.of (X : Type u) [Preorder X] :

Construct a bundled Preord from the underlying type and typeclass.

Equations
structure Preord.Hom (X Y : Preord) :

The type of morphisms in Preord R.

theorem Preord.Hom.ext {X Y : Preord} {x y : X.Hom Y} (hom' : x.hom' = y.hom') :
x = y
Equations
  • One or more equations did not get rendered due to their size.
@[reducible, inline]
abbrev Preord.Hom.hom {X Y : Preord} (f : X.Hom Y) :
X →o Y

Turn a morphism in Preord back into a OrderHom.

Equations
@[reducible, inline]
abbrev Preord.ofHom {X Y : Type u} [Preorder X] [Preorder Y] (f : X →o Y) :
of X of Y

Typecheck a OrderHom as a morphism in Preord.

Equations
def Preord.Hom.Simps.hom (X Y : Preord) (f : X.Hom Y) :
X →o Y

Use the ConcreteCategory.hom projection for @[simps] lemmas.

Equations

The results below duplicate the ConcreteCategory simp lemmas, but we can keep them for dsimp.

theorem Preord.ext {X Y : Preord} {f g : X Y} (w : ∀ (x : X), (CategoryTheory.ConcreteCategory.hom f) x = (CategoryTheory.ConcreteCategory.hom g) x) :
f = g
theorem Preord.coe_of (X : Type u) [Preorder X] :
(of X) = X
@[simp]
theorem Preord.hom_comp {X Y Z : Preord} (f : X Y) (g : Y Z) :
theorem Preord.hom_ext {X Y : Preord} {f g : X Y} (hf : Hom.hom f = Hom.hom g) :
f = g
@[simp]
theorem Preord.hom_ofHom {X Y : Type u} [Preorder X] [Preorder Y] (f : X →o Y) :
@[simp]
theorem Preord.ofHom_hom {X Y : Preord} (f : X Y) :
@[simp]
theorem Preord.ofHom_comp {X Y Z : Type u} [Preorder X] [Preorder Y] [Preorder Z] (f : X →o Y) (g : Y →o Z) :
theorem Preord.ofHom_apply {X Y : Type u} [Preorder X] [Preorder Y] (f : X →o Y) (x : X) :
def Preord.Iso.mk {α β : Preord} (e : α ≃o β) :
α β

Constructs an equivalence between preorders from an order isomorphism between them.

Equations
@[simp]
theorem Preord.Iso.mk_inv {α β : Preord} (e : α ≃o β) :
(mk e).inv = ofHom e.symm
@[simp]
theorem Preord.Iso.mk_hom {α β : Preord} (e : α ≃o β) :
(mk e).hom = ofHom e

OrderDual as a functor.

Equations
  • One or more equations did not get rendered due to their size.
@[simp]
theorem Preord.dual_map {X✝ Y✝ : Preord} (f : X✝ Y✝) :

The equivalence between Preord and itself induced by OrderDual both ways.

Equations
  • One or more equations did not get rendered due to their size.

The embedding of Preord into Cat.

Equations
Instances For
@[simp]
theorem preordToCat_map {X✝ Y✝ : Preord} (f : X✝ Y✝) :