Documentation

Mathlib.Order.CompleteBooleanAlgebra

Frames, completely distributive lattices and complete Boolean algebras #

In this file we define and provide API for (co)frames, completely distributive lattices and complete Boolean algebras.

We distinguish two different distributivity properties:

  1. inf_iSup_eq : (a ⊓ ⨆ i, f i) = ⨆ i, a ⊓ f i (finite distributes over infinite ). This is required by Frame, CompleteDistribLattice, and CompleteBooleanAlgebra (Coframe, etc., require the dual property).
  2. iInf_iSup_eq : (⨅ i, ⨆ j, f i j) = ⨆ s, ⨅ i, f i (s i) (infinite distributes over infinite ). This stronger property is called "completely distributive", and is required by CompletelyDistribLattice and CompleteAtomicBooleanAlgebra.

Typeclasses #

A set of opens gives rise to a topological space precisely if it forms a frame. Such a frame is also completely distributive, but not all frames are. Filter is a coframe but not a completely distributive lattice.

References #

Structure containing the minimal axioms required to check that an order is a frame. Do NOT use, except for implementing Order.Frame via Order.Frame.ofMinimalAxioms.

This structure omits the himp, compl fields, which can be recovered using Order.Frame.ofMinimalAxioms.

    Instances
      theorem Order.Frame.MinimalAxioms.inf_sSup_le_iSup_inf {α : Type u} [self : Order.Frame.MinimalAxioms α] (a : α) (s : Set α) :
      a sSup s bs, a b

      Structure containing the minimal axioms required to check that an order is a coframe. Do NOT use, except for implementing Order.Coframe via Order.Coframe.ofMinimalAxioms.

      This structure omits the sdiff, hnot fields, which can be recovered using Order.Coframe.ofMinimalAxioms.

        Instances
          theorem Order.Coframe.MinimalAxioms.iInf_sup_le_sup_sInf {α : Type u} [self : Order.Coframe.MinimalAxioms α] (a : α) (s : Set α) :
          bs, a b a sInf s

          A frame, aka complete Heyting algebra, is a complete lattice whose distributes over .

            Instances
              theorem Order.Frame.inf_sSup_le_iSup_inf {α : Type u_1} [self : Order.Frame α] (a : α) (s : Set α) :
              a sSup s bs, a b

              distributes over .

              A coframe, aka complete Brouwer algebra or complete co-Heyting algebra, is a complete lattice whose distributes over .

                Instances
                  theorem Order.Coframe.iInf_sup_le_sup_sInf {α : Type u_1} [self : Order.Coframe α] (a : α) (s : Set α) :
                  bs, a b a sInf s

                  distributes over .

                  Structure containing the minimal axioms required to check that an order is a complete distributive lattice. Do NOT use, except for implementing CompleteDistribLattice via CompleteDistribLattice.ofMinimalAxioms.

                  This structure omits the himp, compl, sdiff, hnot fields, which can be recovered using CompleteDistribLattice.ofMinimalAxioms.

                    Instances For

                      A complete distributive lattice is a complete lattice whose and respectively distribute over and .

                        Instances
                          theorem CompleteDistribLattice.iInf_sup_le_sup_sInf {α : Type u_1} [self : CompleteDistribLattice α] (a : α) (s : Set α) :
                          bs, a b a sInf s

                          In a complete distributive lattice, distributes over .

                          Structure containing the minimal axioms required to check that an order is a completely distributive. Do NOT use, except for implementing CompletelyDistribLattice via CompletelyDistribLattice.ofMinimalAxioms.

                          This structure omits the himp, compl, sdiff, hnot fields, which can be recovered using CompletelyDistribLattice.ofMinimalAxioms.

                            Instances For
                              theorem CompletelyDistribLattice.MinimalAxioms.iInf_iSup_eq {α : Type u} (self : CompletelyDistribLattice.MinimalAxioms α) {ι : Type u} {κ : ιType u} (f : (a : ι) → κ aα) :
                              ⨅ (a : ι), ⨆ (b : κ a), f a b = ⨆ (g : (a : ι) → κ a), ⨅ (a : ι), f a (g a)

                              A completely distributive lattice is a complete lattice whose and distribute over each other.

                                Instances
                                  theorem CompletelyDistribLattice.iInf_iSup_eq {α : Type u} [self : CompletelyDistribLattice α] {ι : Type u} {κ : ιType u} (f : (a : ι) → κ aα) :
                                  ⨅ (a : ι), ⨆ (b : κ a), f a b = ⨆ (g : (a : ι) → κ a), ⨅ (a : ι), f a (g a)
                                  theorem le_iInf_iSup {α : Type u} {ι : Sort w} {κ : ιSort w'} [CompleteLattice α] {f : (a : ι) → κ aα} :
                                  ⨆ (g : (a : ι) → κ a), ⨅ (a : ι), f a (g a) ⨅ (a : ι), ⨆ (b : κ a), f a b
                                  theorem iSup_iInf_le {α : Type u} {ι : Sort w} {κ : ιSort w'} [CompleteLattice α] {f : (a : ι) → κ aα} :
                                  ⨆ (a : ι), ⨅ (b : κ a), f a b ⨅ (g : (a : ι) → κ a), ⨆ (a : ι), f a (g a)
                                  theorem Order.Frame.MinimalAxioms.inf_sSup_eq {α : Type u} (minAx : Order.Frame.MinimalAxioms α) {s : Set α} {a : α} :
                                  a sSup s = bs, a b
                                  theorem Order.Frame.MinimalAxioms.sSup_inf_eq {α : Type u} (minAx : Order.Frame.MinimalAxioms α) {s : Set α} {b : α} :
                                  sSup s b = as, a b
                                  theorem Order.Frame.MinimalAxioms.iSup_inf_eq {α : Type u} {ι : Sort w} (minAx : Order.Frame.MinimalAxioms α) (f : ια) (a : α) :
                                  (⨆ (i : ι), f i) a = ⨆ (i : ι), f i a
                                  theorem Order.Frame.MinimalAxioms.inf_iSup_eq {α : Type u} {ι : Sort w} (minAx : Order.Frame.MinimalAxioms α) (a : α) (f : ια) :
                                  a ⨆ (i : ι), f i = ⨆ (i : ι), a f i
                                  theorem Order.Frame.MinimalAxioms.inf_iSup₂_eq {α : Type u} {ι : Sort w} {κ : ιSort w'} (minAx : Order.Frame.MinimalAxioms α) {f : (i : ι) → κ iα} (a : α) :
                                  a ⨆ (i : ι), ⨆ (j : κ i), f i j = ⨆ (i : ι), ⨆ (j : κ i), a f i j

                                  The Order.Frame.MinimalAxioms element corresponding to a frame.

                                  Equations
                                  Instances For
                                    @[reducible, inline]

                                    Construct a frame instance using the minimal amount of work needed.

                                    This sets a ⇨ b := sSup {c | c ⊓ a ≤ b} and aᶜ := a ⇨ ⊥.

                                    Equations
                                    Instances For
                                      theorem Order.Coframe.MinimalAxioms.sup_sInf_eq {α : Type u} (minAx : Order.Coframe.MinimalAxioms α) {s : Set α} {a : α} :
                                      a sInf s = bs, a b
                                      theorem Order.Coframe.MinimalAxioms.sInf_sup_eq {α : Type u} (minAx : Order.Coframe.MinimalAxioms α) {s : Set α} {b : α} :
                                      sInf s b = as, a b
                                      theorem Order.Coframe.MinimalAxioms.iInf_sup_eq {α : Type u} {ι : Sort w} (minAx : Order.Coframe.MinimalAxioms α) (f : ια) (a : α) :
                                      (⨅ (i : ι), f i) a = ⨅ (i : ι), f i a
                                      theorem Order.Coframe.MinimalAxioms.sup_iInf_eq {α : Type u} {ι : Sort w} (minAx : Order.Coframe.MinimalAxioms α) (a : α) (f : ια) :
                                      a ⨅ (i : ι), f i = ⨅ (i : ι), a f i
                                      theorem Order.Coframe.MinimalAxioms.sup_iInf₂_eq {α : Type u} {ι : Sort w} {κ : ιSort w'} (minAx : Order.Coframe.MinimalAxioms α) {f : (i : ι) → κ iα} (a : α) :
                                      a ⨅ (i : ι), ⨅ (j : κ i), f i j = ⨅ (i : ι), ⨅ (j : κ i), a f i j

                                      The Order.Coframe.MinimalAxioms element corresponding to a frame.

                                      Equations
                                      Instances For
                                        @[reducible, inline]

                                        Construct a coframe instance using the minimal amount of work needed.

                                        This sets a \ b := sInf {c | a ≤ b ⊔ c} and ¬a := ⊤ \ a.

                                        Equations
                                        Instances For

                                          The CompleteDistribLattice.MinimalAxioms element corresponding to a complete distrib lattice.

                                          Equations
                                          • CompleteDistribLattice.MinimalAxioms.of = { toCompleteLattice := Order.Frame.toCompleteLattice, inf_sSup_le_iSup_inf := , iInf_sup_le_sup_sInf := }
                                          Instances For
                                            @[reducible, inline]

                                            Turn minimal axioms for CompleteDistribLattice into minimal axioms for Order.Frame.

                                            Equations
                                            • minAx.toFrame = minAx.toMinimalAxioms
                                            Instances For
                                              @[reducible, inline]

                                              Turn minimal axioms for CompleteDistribLattice into minimal axioms for Order.Coframe.

                                              Equations
                                              Instances For
                                                @[reducible, inline]

                                                Construct a complete distrib lattice instance using the minimal amount of work needed.

                                                This sets a ⇨ b := sSup {c | c ⊓ a ≤ b}, aᶜ := a ⇨ ⊥, a \ b := sInf {c | a ≤ b ⊔ c} and ¬a := ⊤ \ a.

                                                Equations
                                                Instances For
                                                  theorem CompletelyDistribLattice.MinimalAxioms.iInf_iSup_eq' {α : Type u} {ι : Sort w} {κ : ιSort w'} (minAx : CompletelyDistribLattice.MinimalAxioms α) (f : (a : ι) → κ aα) :
                                                  let x := minAx.toCompleteLattice; ⨅ (i : ι), ⨆ (j : κ i), f i j = ⨆ (g : (i : ι) → κ i), ⨅ (i : ι), f i (g i)
                                                  theorem CompletelyDistribLattice.MinimalAxioms.iSup_iInf_eq {α : Type u} {ι : Sort w} {κ : ιSort w'} (minAx : CompletelyDistribLattice.MinimalAxioms α) (f : (i : ι) → κ iα) :
                                                  let x := minAx.toCompleteLattice; ⨆ (i : ι), ⨅ (j : κ i), f i j = ⨅ (g : (i : ι) → κ i), ⨆ (i : ι), f i (g i)
                                                  @[reducible, inline]

                                                  Turn minimal axioms for CompletelyDistribLattice into minimal axioms for CompleteDistribLattice.

                                                  Equations
                                                  • minAx.toCompleteDistribLattice = { toCompleteLattice := minAx.toCompleteLattice, inf_sSup_le_iSup_inf := , iInf_sup_le_sup_sInf := }
                                                  Instances For

                                                    The CompletelyDistribLattice.MinimalAxioms element corresponding to a frame.

                                                    Equations
                                                    • CompletelyDistribLattice.MinimalAxioms.of = { toCompleteLattice := CompletelyDistribLattice.toCompleteLattice, iInf_iSup_eq := }
                                                    Instances For
                                                      @[reducible, inline]

                                                      Construct a completely distributive lattice instance using the minimal amount of work needed.

                                                      This sets a ⇨ b := sSup {c | c ⊓ a ≤ b}, aᶜ := a ⇨ ⊥, a \ b := sInf {c | a ≤ b ⊔ c} and ¬a := ⊤ \ a.

                                                      Equations
                                                      Instances For
                                                        theorem iInf_iSup_eq {α : Type u} {ι : Sort w} {κ : ιSort w'} [CompletelyDistribLattice α] {f : (a : ι) → κ aα} :
                                                        ⨅ (a : ι), ⨆ (b : κ a), f a b = ⨆ (g : (a : ι) → κ a), ⨅ (a : ι), f a (g a)
                                                        theorem iSup_iInf_eq {α : Type u} {ι : Sort w} {κ : ιSort w'} [CompletelyDistribLattice α] {f : (a : ι) → κ aα} :
                                                        ⨆ (a : ι), ⨅ (b : κ a), f a b = ⨅ (g : (a : ι) → κ a), ⨆ (a : ι), f a (g a)
                                                        @[instance 100]
                                                        Equations
                                                        @[instance 100]
                                                        Equations
                                                        Equations
                                                        theorem inf_sSup_eq {α : Type u} [Order.Frame α] {s : Set α} {a : α} :
                                                        a sSup s = bs, a b
                                                        theorem sSup_inf_eq {α : Type u} [Order.Frame α] {s : Set α} {b : α} :
                                                        sSup s b = as, a b
                                                        theorem iSup_inf_eq {α : Type u} {ι : Sort w} [Order.Frame α] (f : ια) (a : α) :
                                                        (⨆ (i : ι), f i) a = ⨆ (i : ι), f i a
                                                        theorem inf_iSup_eq {α : Type u} {ι : Sort w} [Order.Frame α] (a : α) (f : ια) :
                                                        a ⨆ (i : ι), f i = ⨆ (i : ι), a f i
                                                        theorem iSup₂_inf_eq {α : Type u} {ι : Sort w} {κ : ιSort w'} [Order.Frame α] {f : (i : ι) → κ iα} (a : α) :
                                                        (⨆ (i : ι), ⨆ (j : κ i), f i j) a = ⨆ (i : ι), ⨆ (j : κ i), f i j a
                                                        theorem inf_iSup₂_eq {α : Type u} {ι : Sort w} {κ : ιSort w'} [Order.Frame α] {f : (i : ι) → κ iα} (a : α) :
                                                        a ⨆ (i : ι), ⨆ (j : κ i), f i j = ⨆ (i : ι), ⨆ (j : κ i), a f i j
                                                        theorem iSup_inf_iSup {α : Type u} [Order.Frame α] {ι : Type u_1} {ι' : Type u_2} {f : ια} {g : ι'α} :
                                                        (⨆ (i : ι), f i) ⨆ (j : ι'), g j = ⨆ (i : ι × ι'), f i.1 g i.2
                                                        theorem biSup_inf_biSup {α : Type u} [Order.Frame α] {ι : Type u_1} {ι' : Type u_2} {f : ια} {g : ι'α} {s : Set ι} {t : Set ι'} :
                                                        (⨆ is, f i) jt, g j = ps ×ˢ t, f p.1 g p.2
                                                        theorem sSup_inf_sSup {α : Type u} [Order.Frame α] {s : Set α} {t : Set α} :
                                                        sSup s sSup t = ps ×ˢ t, p.1 p.2
                                                        theorem iSup_disjoint_iff {α : Type u} {ι : Sort w} [Order.Frame α] {a : α} {f : ια} :
                                                        Disjoint (⨆ (i : ι), f i) a ∀ (i : ι), Disjoint (f i) a
                                                        theorem disjoint_iSup_iff {α : Type u} {ι : Sort w} [Order.Frame α] {a : α} {f : ια} :
                                                        Disjoint a (⨆ (i : ι), f i) ∀ (i : ι), Disjoint a (f i)
                                                        theorem iSup₂_disjoint_iff {α : Type u} {ι : Sort w} {κ : ιSort w'} [Order.Frame α] {a : α} {f : (i : ι) → κ iα} :
                                                        Disjoint (⨆ (i : ι), ⨆ (j : κ i), f i j) a ∀ (i : ι) (j : κ i), Disjoint (f i j) a
                                                        theorem disjoint_iSup₂_iff {α : Type u} {ι : Sort w} {κ : ιSort w'} [Order.Frame α] {a : α} {f : (i : ι) → κ iα} :
                                                        Disjoint a (⨆ (i : ι), ⨆ (j : κ i), f i j) ∀ (i : ι) (j : κ i), Disjoint a (f i j)
                                                        theorem sSup_disjoint_iff {α : Type u} [Order.Frame α] {a : α} {s : Set α} :
                                                        Disjoint (sSup s) a bs, Disjoint b a
                                                        theorem disjoint_sSup_iff {α : Type u} [Order.Frame α] {a : α} {s : Set α} :
                                                        Disjoint a (sSup s) bs, Disjoint a b
                                                        theorem iSup_inf_of_monotone {α : Type u} [Order.Frame α] {ι : Type u_1} [Preorder ι] [IsDirected ι fun (x1 x2 : ι) => x1 x2] {f : ια} {g : ια} (hf : Monotone f) (hg : Monotone g) :
                                                        ⨆ (i : ι), f i g i = (⨆ (i : ι), f i) ⨆ (i : ι), g i
                                                        theorem iSup_inf_of_antitone {α : Type u} [Order.Frame α] {ι : Type u_1} [Preorder ι] [IsDirected ι (Function.swap fun (x1 x2 : ι) => x1 x2)] {f : ια} {g : ια} (hf : Antitone f) (hg : Antitone g) :
                                                        ⨆ (i : ι), f i g i = (⨆ (i : ι), f i) ⨆ (i : ι), g i
                                                        @[instance 100]
                                                        Equations
                                                        instance Prod.instFrame {α : Type u} {β : Type v} [Order.Frame α] [Order.Frame β] :
                                                        Order.Frame (α × β)
                                                        Equations
                                                        instance Pi.instFrame {ι : Type u_1} {π : ιType u_2} [(i : ι) → Order.Frame (π i)] :
                                                        Order.Frame ((i : ι) → π i)
                                                        Equations
                                                        Equations
                                                        theorem sup_sInf_eq {α : Type u} [Order.Coframe α] {s : Set α} {a : α} :
                                                        a sInf s = bs, a b
                                                        theorem sInf_sup_eq {α : Type u} [Order.Coframe α] {s : Set α} {b : α} :
                                                        sInf s b = as, a b
                                                        theorem iInf_sup_eq {α : Type u} {ι : Sort w} [Order.Coframe α] (f : ια) (a : α) :
                                                        (⨅ (i : ι), f i) a = ⨅ (i : ι), f i a
                                                        theorem sup_iInf_eq {α : Type u} {ι : Sort w} [Order.Coframe α] (a : α) (f : ια) :
                                                        a ⨅ (i : ι), f i = ⨅ (i : ι), a f i
                                                        theorem iInf₂_sup_eq {α : Type u} {ι : Sort w} {κ : ιSort w'} [Order.Coframe α] {f : (i : ι) → κ iα} (a : α) :
                                                        (⨅ (i : ι), ⨅ (j : κ i), f i j) a = ⨅ (i : ι), ⨅ (j : κ i), f i j a
                                                        theorem sup_iInf₂_eq {α : Type u} {ι : Sort w} {κ : ιSort w'} [Order.Coframe α] {f : (i : ι) → κ iα} (a : α) :
                                                        a ⨅ (i : ι), ⨅ (j : κ i), f i j = ⨅ (i : ι), ⨅ (j : κ i), a f i j
                                                        theorem iInf_sup_iInf {α : Type u} [Order.Coframe α] {ι : Type u_1} {ι' : Type u_2} {f : ια} {g : ι'α} :
                                                        (⨅ (i : ι), f i) ⨅ (i : ι'), g i = ⨅ (i : ι × ι'), f i.1 g i.2
                                                        theorem biInf_sup_biInf {α : Type u} [Order.Coframe α] {ι : Type u_1} {ι' : Type u_2} {f : ια} {g : ι'α} {s : Set ι} {t : Set ι'} :
                                                        (⨅ is, f i) jt, g j = ps ×ˢ t, f p.1 g p.2
                                                        theorem sInf_sup_sInf {α : Type u} [Order.Coframe α] {s : Set α} {t : Set α} :
                                                        sInf s sInf t = ps ×ˢ t, p.1 p.2
                                                        theorem iInf_sup_of_monotone {α : Type u} [Order.Coframe α] {ι : Type u_1} [Preorder ι] [IsDirected ι (Function.swap fun (x1 x2 : ι) => x1 x2)] {f : ια} {g : ια} (hf : Monotone f) (hg : Monotone g) :
                                                        ⨅ (i : ι), f i g i = (⨅ (i : ι), f i) ⨅ (i : ι), g i
                                                        theorem iInf_sup_of_antitone {α : Type u} [Order.Coframe α] {ι : Type u_1} [Preorder ι] [IsDirected ι fun (x1 x2 : ι) => x1 x2] {f : ια} {g : ια} (hf : Antitone f) (hg : Antitone g) :
                                                        ⨅ (i : ι), f i g i = (⨅ (i : ι), f i) ⨅ (i : ι), g i
                                                        @[instance 100]
                                                        Equations
                                                        instance Prod.instCoframe {α : Type u} {β : Type v} [Order.Coframe α] [Order.Coframe β] :
                                                        Equations
                                                        instance Pi.instCoframe {ι : Type u_1} {π : ιType u_2} [(i : ι) → Order.Coframe (π i)] :
                                                        Order.Coframe ((i : ι) → π i)
                                                        Equations
                                                        Equations
                                                        Equations
                                                        instance Pi.instCompleteDistribLattice {ι : Type u_1} {π : ιType u_2} [(i : ι) → CompleteDistribLattice (π i)] :
                                                        CompleteDistribLattice ((i : ι) → π i)
                                                        Equations
                                                        Equations
                                                        Equations
                                                        instance Pi.instCompletelyDistribLattice {ι : Type u_1} {π : ιType u_2} [(i : ι) → CompletelyDistribLattice (π i)] :
                                                        CompletelyDistribLattice ((i : ι) → π i)
                                                        Equations

                                                        A complete Boolean algebra is a Boolean algebra that is also a complete distributive lattice.

                                                        It is only completely distributive if it is also atomic.

                                                          Instances
                                                            theorem CompleteBooleanAlgebra.inf_sSup_le_iSup_inf {α : Type u_1} [self : CompleteBooleanAlgebra α] (a : α) (s : Set α) :
                                                            a sSup s bs, a b

                                                            distributes over .

                                                            theorem CompleteBooleanAlgebra.iInf_sup_le_sup_sInf {α : Type u_1} [self : CompleteBooleanAlgebra α] (a : α) (s : Set α) :
                                                            bs, a b a sInf s

                                                            distributes over .

                                                            @[instance 100]
                                                            Equations
                                                            Equations
                                                            instance Pi.instCompleteBooleanAlgebra {ι : Type u_1} {π : ιType u_2} [(i : ι) → CompleteBooleanAlgebra (π i)] :
                                                            CompleteBooleanAlgebra ((i : ι) → π i)
                                                            Equations
                                                            Equations
                                                            theorem compl_iInf {α : Type u} {ι : Sort w} [CompleteBooleanAlgebra α] {f : ια} :
                                                            (iInf f) = ⨆ (i : ι), (f i)
                                                            theorem compl_iSup {α : Type u} {ι : Sort w} [CompleteBooleanAlgebra α] {f : ια} :
                                                            (iSup f) = ⨅ (i : ι), (f i)
                                                            theorem compl_sInf {α : Type u} [CompleteBooleanAlgebra α] {s : Set α} :
                                                            (sInf s) = is, i
                                                            theorem compl_sSup {α : Type u} [CompleteBooleanAlgebra α] {s : Set α} :
                                                            (sSup s) = is, i
                                                            theorem compl_sInf' {α : Type u} [CompleteBooleanAlgebra α] {s : Set α} :
                                                            (sInf s) = sSup (compl '' s)
                                                            theorem compl_sSup' {α : Type u} [CompleteBooleanAlgebra α] {s : Set α} :
                                                            (sSup s) = sInf (compl '' s)
                                                            theorem iSup_symmDiff_iSup_le {α : Type u} {ι : Sort w} [CompleteBooleanAlgebra α] {f : ια} {g : ια} :
                                                            symmDiff (⨆ (i : ι), f i) (⨆ (i : ι), g i) ⨆ (i : ι), symmDiff (f i) (g i)

                                                            The symmetric difference of two iSups is at most the iSup of the symmetric differences.

                                                            theorem biSup_symmDiff_biSup_le {α : Type u} {ι : Sort w} [CompleteBooleanAlgebra α] {p : ιProp} {f : (i : ι) → p iα} {g : (i : ι) → p iα} :
                                                            symmDiff (⨆ (i : ι), ⨆ (h : p i), f i h) (⨆ (i : ι), ⨆ (h : p i), g i h) ⨆ (i : ι), ⨆ (h : p i), symmDiff (f i h) (g i h)

                                                            A biSup version of iSup_symmDiff_iSup_le.

                                                            A complete atomic Boolean algebra is a complete Boolean algebra that is also completely distributive.

                                                            We take iSup_iInf_eq as the definition here, and prove later on that this implies atomicity.

                                                              Instances
                                                                theorem CompleteAtomicBooleanAlgebra.iInf_iSup_eq {α : Type u} [self : CompleteAtomicBooleanAlgebra α] {ι : Type u} {κ : ιType u} (f : (a : ι) → κ aα) :
                                                                ⨅ (a : ι), ⨆ (b : κ a), f a b = ⨆ (g : (a : ι) → κ a), ⨅ (a : ι), f a (g a)
                                                                @[instance 100]
                                                                Equations
                                                                @[instance 100]
                                                                Equations
                                                                Equations
                                                                instance Pi.instCompleteAtomicBooleanAlgebra {ι : Type u_1} {π : ιType u_2} [(i : ι) → CompleteAtomicBooleanAlgebra (π i)] :
                                                                CompleteAtomicBooleanAlgebra ((i : ι) → π i)
                                                                Equations
                                                                Equations
                                                                @[reducible, inline]
                                                                abbrev Function.Injective.frameMinimalAxioms {α : Type u} {β : Type v} [Max α] [Min α] [SupSet α] [InfSet α] [Top α] [Bot α] (minAx : Order.Frame.MinimalAxioms β) (f : αβ) (hf : Function.Injective f) (map_sup : ∀ (a b : α), f (a b) = f a f b) (map_inf : ∀ (a b : α), f (a b) = f a f b) (map_sSup : ∀ (s : Set α), f (sSup s) = as, f a) (map_sInf : ∀ (s : Set α), f (sInf s) = as, f a) (map_top : f = ) (map_bot : f = ) :

                                                                Pullback an Order.Frame.MinimalAxioms along an injection.

                                                                Equations
                                                                Instances For
                                                                  @[reducible, inline]
                                                                  abbrev Function.Injective.coframeMinimalAxioms {α : Type u} {β : Type v} [Max α] [Min α] [SupSet α] [InfSet α] [Top α] [Bot α] (minAx : Order.Coframe.MinimalAxioms β) (f : αβ) (hf : Function.Injective f) (map_sup : ∀ (a b : α), f (a b) = f a f b) (map_inf : ∀ (a b : α), f (a b) = f a f b) (map_sSup : ∀ (s : Set α), f (sSup s) = as, f a) (map_sInf : ∀ (s : Set α), f (sInf s) = as, f a) (map_top : f = ) (map_bot : f = ) :

                                                                  Pullback an Order.Coframe.MinimalAxioms along an injection.

                                                                  Equations
                                                                  Instances For
                                                                    @[reducible, inline]
                                                                    abbrev Function.Injective.frame {α : Type u} {β : Type v} [Max α] [Min α] [SupSet α] [InfSet α] [Top α] [Bot α] [HasCompl α] [HImp α] [Order.Frame β] (f : αβ) (hf : Function.Injective f) (map_sup : ∀ (a b : α), f (a b) = f a f b) (map_inf : ∀ (a b : α), f (a b) = f a f b) (map_sSup : ∀ (s : Set α), f (sSup s) = as, f a) (map_sInf : ∀ (s : Set α), f (sInf s) = as, f a) (map_top : f = ) (map_bot : f = ) (map_compl : ∀ (a : α), f a = (f a)) (map_himp : ∀ (a b : α), f (a b) = f a f b) :

                                                                    Pullback an Order.Frame along an injection.

                                                                    Equations
                                                                    Instances For
                                                                      @[reducible, inline]
                                                                      abbrev Function.Injective.coframe {α : Type u} {β : Type v} [Max α] [Min α] [SupSet α] [InfSet α] [Top α] [Bot α] [HNot α] [SDiff α] [Order.Coframe β] (f : αβ) (hf : Function.Injective f) (map_sup : ∀ (a b : α), f (a b) = f a f b) (map_inf : ∀ (a b : α), f (a b) = f a f b) (map_sSup : ∀ (s : Set α), f (sSup s) = as, f a) (map_sInf : ∀ (s : Set α), f (sInf s) = as, f a) (map_top : f = ) (map_bot : f = ) (map_hnot : ∀ (a : α), f (a) = f a) (map_sdiff : ∀ (a b : α), f (a \ b) = f a \ f b) :

                                                                      Pullback an Order.Coframe along an injection.

                                                                      Equations
                                                                      Instances For
                                                                        @[reducible, inline]
                                                                        abbrev Function.Injective.completeDistribLatticeMinimalAxioms {α : Type u} {β : Type v} [Max α] [Min α] [SupSet α] [InfSet α] [Top α] [Bot α] (minAx : CompleteDistribLattice.MinimalAxioms β) (f : αβ) (hf : Function.Injective f) (map_sup : let x := minAx.toCompleteLattice; ∀ (a b : α), f (a b) = f a f b) (map_inf : let x := minAx.toCompleteLattice; ∀ (a b : α), f (a b) = f a f b) (map_sSup : let x := minAx.toCompleteLattice; ∀ (s : Set α), f (sSup s) = as, f a) (map_sInf : let x := minAx.toCompleteLattice; ∀ (s : Set α), f (sInf s) = as, f a) (map_top : let x := minAx.toCompleteLattice; f = ) (map_bot : let x := minAx.toCompleteLattice; f = ) :

                                                                        Pullback a CompleteDistribLattice.MinimalAxioms along an injection.

                                                                        Equations
                                                                        • One or more equations did not get rendered due to their size.
                                                                        Instances For
                                                                          @[reducible, inline]
                                                                          abbrev Function.Injective.completeDistribLattice {α : Type u} {β : Type v} [Max α] [Min α] [SupSet α] [InfSet α] [Top α] [Bot α] [HasCompl α] [HImp α] [HNot α] [SDiff α] [CompleteDistribLattice β] (f : αβ) (hf : Function.Injective f) (map_sup : ∀ (a b : α), f (a b) = f a f b) (map_inf : ∀ (a b : α), f (a b) = f a f b) (map_sSup : ∀ (s : Set α), f (sSup s) = as, f a) (map_sInf : ∀ (s : Set α), f (sInf s) = as, f a) (map_top : f = ) (map_bot : f = ) (map_compl : ∀ (a : α), f a = (f a)) (map_himp : ∀ (a b : α), f (a b) = f a f b) (map_hnot : ∀ (a : α), f (a) = f a) (map_sdiff : ∀ (a b : α), f (a \ b) = f a \ f b) :

                                                                          Pullback a CompleteDistribLattice along an injection.

                                                                          Equations
                                                                          Instances For
                                                                            @[reducible, inline]
                                                                            abbrev Function.Injective.completelyDistribLatticeMinimalAxioms {α : Type u} {β : Type v} [Max α] [Min α] [SupSet α] [InfSet α] [Top α] [Bot α] (minAx : CompletelyDistribLattice.MinimalAxioms β) (f : αβ) (hf : Function.Injective f) (map_sup : let x := minAx.toCompleteLattice; ∀ (a b : α), f (a b) = f a f b) (map_inf : let x := minAx.toCompleteLattice; ∀ (a b : α), f (a b) = f a f b) (map_sSup : let x := minAx.toCompleteLattice; ∀ (s : Set α), f (sSup s) = as, f a) (map_sInf : let x := minAx.toCompleteLattice; ∀ (s : Set α), f (sInf s) = as, f a) (map_top : let x := minAx.toCompleteLattice; f = ) (map_bot : let x := minAx.toCompleteLattice; f = ) :

                                                                            Pullback a CompletelyDistribLattice.MinimalAxioms along an injection.

                                                                            Equations
                                                                            • One or more equations did not get rendered due to their size.
                                                                            Instances For
                                                                              @[reducible, inline]
                                                                              abbrev Function.Injective.completelyDistribLattice {α : Type u} {β : Type v} [Max α] [Min α] [SupSet α] [InfSet α] [Top α] [Bot α] [HasCompl α] [HImp α] [HNot α] [SDiff α] [CompletelyDistribLattice β] (f : αβ) (hf : Function.Injective f) (map_sup : ∀ (a b : α), f (a b) = f a f b) (map_inf : ∀ (a b : α), f (a b) = f a f b) (map_sSup : ∀ (s : Set α), f (sSup s) = as, f a) (map_sInf : ∀ (s : Set α), f (sInf s) = as, f a) (map_top : f = ) (map_bot : f = ) (map_compl : ∀ (a : α), f a = (f a)) (map_himp : ∀ (a b : α), f (a b) = f a f b) (map_hnot : ∀ (a : α), f (a) = f a) (map_sdiff : ∀ (a b : α), f (a \ b) = f a \ f b) :

                                                                              Pullback a CompletelyDistribLattice along an injection.

                                                                              Equations
                                                                              Instances For
                                                                                @[reducible, inline]
                                                                                abbrev Function.Injective.completeBooleanAlgebra {α : Type u} {β : Type v} [Max α] [Min α] [SupSet α] [InfSet α] [Top α] [Bot α] [HasCompl α] [HImp α] [SDiff α] [CompleteBooleanAlgebra β] (f : αβ) (hf : Function.Injective f) (map_sup : ∀ (a b : α), f (a b) = f a f b) (map_inf : ∀ (a b : α), f (a b) = f a f b) (map_sSup : ∀ (s : Set α), f (sSup s) = as, f a) (map_sInf : ∀ (s : Set α), f (sInf s) = as, f a) (map_top : f = ) (map_bot : f = ) (map_compl : ∀ (a : α), f a = (f a)) (map_himp : ∀ (a b : α), f (a b) = f a f b) (map_sdiff : ∀ (a b : α), f (a \ b) = f a \ f b) :

                                                                                Pullback a CompleteBooleanAlgebra along an injection.

                                                                                Equations
                                                                                Instances For
                                                                                  @[reducible, inline]
                                                                                  abbrev Function.Injective.completeAtomicBooleanAlgebra {α : Type u} {β : Type v} [Max α] [Min α] [SupSet α] [InfSet α] [Top α] [Bot α] [HasCompl α] [HImp α] [HNot α] [SDiff α] [CompleteAtomicBooleanAlgebra β] (f : αβ) (hf : Function.Injective f) (map_sup : ∀ (a b : α), f (a b) = f a f b) (map_inf : ∀ (a b : α), f (a b) = f a f b) (map_sSup : ∀ (s : Set α), f (sSup s) = as, f a) (map_sInf : ∀ (s : Set α), f (sInf s) = as, f a) (map_top : f = ) (map_bot : f = ) (map_compl : ∀ (a : α), f a = (f a)) (map_himp : ∀ (a b : α), f (a b) = f a f b) (map_hnot : ∀ (a : α), f (a) = f a) (map_sdiff : ∀ (a b : α), f (a \ b) = f a \ f b) :

                                                                                  Pullback a CompleteAtomicBooleanAlgebra along an injection.

                                                                                  Equations
                                                                                  Instances For