@[reducible, inline]
abbrev
CategoryTheory.SimplicialCategory.Cotensor
{K : Type u}
[CategoryTheory.Category.{v, u} K]
[CategoryTheory.SimplicialCategory K]
(U : SSet)
(A : K)
:
Type (max v u)
A specialization of the enriched category cotensor.
Equations
Instances For
def
CategoryTheory.SimplicialCategory.cotensorPostcompose
{K : Type u}
[CategoryTheory.Category.{v, u} K]
[CategoryTheory.SimplicialCategory K]
{U : SSet}
{A B : K}
(ua : CategoryTheory.SimplicialCategory.Cotensor U A)
(ub : CategoryTheory.SimplicialCategory.Cotensor U B)
(f : A ⟶ B)
:
ua.obj ⟶ ub.obj
Equations
- One or more equations did not get rendered due to their size.
Instances For
def
CategoryTheory.SimplicialCategory.cotensorPrecompose
{K : Type u}
[CategoryTheory.Category.{v, u} K]
[CategoryTheory.SimplicialCategory K]
{U V : SSet}
{A : K}
(ua : CategoryTheory.SimplicialCategory.Cotensor U A)
(va : CategoryTheory.SimplicialCategory.Cotensor V A)
(i : U ⟶ V)
:
va.obj ⟶ ua.obj
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
CategoryTheory.SimplicialCategory.cotensorPostcompose_homEquiv
{K : Type u}
[CategoryTheory.Category.{v, u} K]
[CategoryTheory.SimplicialCategory K]
{U : SSet}
{A B : K}
(ua : CategoryTheory.SimplicialCategory.Cotensor U A)
(ub : CategoryTheory.SimplicialCategory.Cotensor U B)
(f : A ⟶ B)
:
theorem
CategoryTheory.SimplicialCategory.cotensorPrecompose_homEquiv
{K : Type u}
[CategoryTheory.Category.{v, u} K]
[CategoryTheory.SimplicialCategory K]
{U V : SSet}
{A : K}
(ua : CategoryTheory.SimplicialCategory.Cotensor U A)
(va : CategoryTheory.SimplicialCategory.Cotensor V A)
(i : U ⟶ V)
:
theorem
CategoryTheory.SimplicialCategory.cotensor_local_bifunctoriality
{K : Type u}
[CategoryTheory.Category.{v, u} K]
[CategoryTheory.SimplicialCategory K]
{U V : SSet}
{A B : K}
(ua : CategoryTheory.SimplicialCategory.Cotensor U A)
(ub : CategoryTheory.SimplicialCategory.Cotensor U B)
(va : CategoryTheory.SimplicialCategory.Cotensor V A)
(vb : CategoryTheory.SimplicialCategory.Cotensor V B)
(i : U ⟶ V)
(f : A ⟶ B)
:
CategoryTheory.CategoryStruct.comp (CategoryTheory.SimplicialCategory.cotensorPostcompose va vb f)
(CategoryTheory.SimplicialCategory.cotensorPrecompose ub vb i) = CategoryTheory.CategoryStruct.comp (CategoryTheory.SimplicialCategory.cotensorPrecompose ua va i)
(CategoryTheory.SimplicialCategory.cotensorPostcompose ua ub f)
class
CategoryTheory.SimplicialCategory.HasCotensor
{K : Type u}
[CategoryTheory.Category.{v, u} K]
[CategoryTheory.SimplicialCategory K]
(U : SSet)
(A : K)
:
HasCotensor U A
represents the mere existence of a simplicial cotensor.
- mk' :: (
- exists_cotensor : Nonempty (CategoryTheory.SimplicialCategory.Cotensor U A)
There is some cotensor.
- )
Instances
theorem
CategoryTheory.SimplicialCategory.HasCotensor.mk
{K : Type u}
[CategoryTheory.Category.{v, u} K]
[CategoryTheory.SimplicialCategory K]
{U : SSet}
{A : K}
(c : CategoryTheory.SimplicialCategory.Cotensor U A)
:
noncomputable def
CategoryTheory.SimplicialCategory.getCotensor
{K : Type u}
[CategoryTheory.Category.{v, u} K]
[CategoryTheory.SimplicialCategory K]
(U : SSet)
(A : K)
[CategoryTheory.SimplicialCategory.HasCotensor U A]
:
Use the axiom of choice to extract explicit CotensorCone A X
from HasCotensor A X
.
Equations
Instances For
def
CategoryTheory.SimplicialCategory.cotensor.obj
{K : Type u}
[CategoryTheory.Category.{v, u} K]
[CategoryTheory.SimplicialCategory K]
(U : SSet)
(A : K)
[CategoryTheory.SimplicialCategory.HasCotensor U A]
:
K
An arbitrary choice of cotensor obj.
Equations
- U ⋔ A = (CategoryTheory.SimplicialCategory.getCotensor U A).obj
Instances For
Equations
- One or more equations did not get rendered due to their size.
Instances For
def
CategoryTheory.SimplicialCategory.cotensor.cone
{K : Type u}
[CategoryTheory.Category.{v, u} K]
[CategoryTheory.SimplicialCategory K]
(U : SSet)
(A : K)
[CategoryTheory.SimplicialCategory.HasCotensor U A]
:
U ⟶ CategoryTheory.SimplicialCategory.sHom (U ⋔ A) A
The associated cotensor cone.
Equations
Instances For
def
CategoryTheory.SimplicialCategory.cotensor.is_cotensor
{K : Type u}
[CategoryTheory.Category.{v, u} K]
[CategoryTheory.SimplicialCategory K]
(U : SSet)
(A : K)
[CategoryTheory.SimplicialCategory.HasCotensor U A]
:
The universal property of this cone.
Equations
Instances For
def
CategoryTheory.SimplicialCategory.cotensor.iso
{K : Type u}
[CategoryTheory.Category.{v, u} K]
[CategoryTheory.SimplicialCategory K]
(U : SSet)
(A : K)
[CategoryTheory.SimplicialCategory.HasCotensor U A]
(X : K)
:
CategoryTheory.SimplicialCategory.sHom X (U ⋔ A) ≅ (CategoryTheory.ihom U).obj (CategoryTheory.SimplicialCategory.sHom X A)
The natural isomorphism induced by a cotensor.
Equations
- One or more equations did not get rendered due to their size.
Instances For
def
CategoryTheory.SimplicialCategory.cotensor.iso.underlying
{K : Type u}
[CategoryTheory.Category.{v, u} K]
[CategoryTheory.SimplicialCategory K]
(U : SSet)
(A : K)
[CategoryTheory.SimplicialCategory.HasCotensor U A]
(X : K)
:
(X ⟶ U ⋔ A) ≃ (U ⟶ CategoryTheory.SimplicialCategory.sHom X A)
Equations
- One or more equations did not get rendered due to their size.
Instances For
class
CategoryTheory.SimplicialCategory.HasCotensors
(K : Type u)
[CategoryTheory.Category.{v, u} K]
[CategoryTheory.SimplicialCategory K]
:
K
has simplicial cotensors when cotensors with any simplicial set exist.
- has_cotensors : ∀ (U : SSet) (A : K), CategoryTheory.SimplicialCategory.HasCotensor U A
All
U : SSet
andA : K
have a cotensor.
Instances
@[instance 100]
instance
CategoryTheory.SimplicialCategory.hasCotensorsOfHasCotensors
{K : Type u}
[CategoryTheory.Category.{v, u} K]
[CategoryTheory.SimplicialCategory K]
[CategoryTheory.SimplicialCategory.HasCotensors K]
(U : SSet)
(A : K)
:
Equations
- ⋯ = ⋯
noncomputable def
CategoryTheory.SimplicialCategory.cotensorCovMap
{K : Type u}
[CategoryTheory.Category.{v, u} K]
[CategoryTheory.SimplicialCategory K]
[CategoryTheory.SimplicialCategory.HasCotensors K]
(U : SSet)
{A B : K}
(f : A ⟶ B)
:
Equations
- One or more equations did not get rendered due to their size.
Instances For
noncomputable def
CategoryTheory.SimplicialCategory.cotensorContraMap
{K : Type u}
[CategoryTheory.Category.{v, u} K]
[CategoryTheory.SimplicialCategory K]
[CategoryTheory.SimplicialCategory.HasCotensors K]
{U V : SSet}
(i : U ⟶ V)
(A : K)
:
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
CategoryTheory.SimplicialCategory.cotensor_bifunctoriality
{K : Type u}
[CategoryTheory.Category.{v, u} K]
[CategoryTheory.SimplicialCategory K]
[CategoryTheory.SimplicialCategory.HasCotensors K]
{U V : SSet}
(i : U ⟶ V)
{A B : K}
(f : A ⟶ B)
:
def
CategoryTheory.SimplicialCategory.coneNatTrans
{K : Type u}
[CategoryTheory.Category.{v, u} K]
[CategoryTheory.SimplicialCategory K]
{A : SSet}
{AX X : K}
(Y : K)
(cone : A ⟶ CategoryTheory.SimplicialCategory.sHom AX X)
:
Equations
- One or more equations did not get rendered due to their size.
Instances For
structure
CategoryTheory.SimplicialCategory.IsCotensor
{K : Type u}
[CategoryTheory.Category.{v, u} K]
[CategoryTheory.SimplicialCategory K]
{A : SSet}
{X : K}
(AX : K)
(cone : A ⟶ CategoryTheory.SimplicialCategory.sHom AX X)
:
- uniq : ∀ (Y : K), CategoryTheory.IsIso (CategoryTheory.SimplicialCategory.coneNatTrans Y cone)
Instances For
structure
CategoryTheory.SimplicialCategory.CotensorCone
{K : Type u}
[CategoryTheory.Category.{v, u} K]
[CategoryTheory.SimplicialCategory K]
(A : SSet)
(X : K)
:
Type (max u v)
- obj : K
The object
- cone : A ⟶ CategoryTheory.SimplicialCategory.sHom self.obj X
The cone itself
- is_cotensor : CategoryTheory.SimplicialCategory.IsCotensor self.obj self.cone
The universal property of the limit cone