Documentation

InfinityCosmos.ForMathlib.AlgebraicTopology.SimplicialCategory.Cotensors

@[reducible, inline]

A specialization of the enriched category cotensor.

Equations
Instances For
    def CategoryTheory.SimplicialCategory.cotensorPostcompose {K : Type u} [Category.{v, u} K] [SimplicialCategory K] {U : SSet} {A B : K} (ua : Cotensor U A) (ub : Cotensor U B) (f : A B) :
    ua.obj ub.obj
    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      def CategoryTheory.SimplicialCategory.cotensorPrecompose {K : Type u} [Category.{v, u} K] [SimplicialCategory K] {U V : SSet} {A : K} (ua : Cotensor U A) (va : Cotensor V A) (i : U V) :
      va.obj ua.obj
      Equations
      • One or more equations did not get rendered due to their size.
      Instances For

        HasCotensor U A represents the mere existence of a simplicial cotensor.

        Instances

          Use the axiom of choice to extract explicit CotensorCone A X from HasCotensor A X.

          Equations
          Instances For

            An arbitrary choice of cotensor obj.

            Equations
            Instances For
              Equations
              • One or more equations did not get rendered due to their size.
              Instances For
                def CategoryTheory.SimplicialCategory.cotensor.iso {K : Type u} [Category.{v, u} K] [SimplicialCategory K] (U : SSet) (A : K) [HasCotensor U A] (X : K) :
                sHom X (U A) (ihom U).obj (sHom X A)

                The natural isomorphism induced by a cotensor.

                Equations
                • One or more equations did not get rendered due to their size.
                Instances For
                  Equations
                  • One or more equations did not get rendered due to their size.
                  Instances For

                    K has simplicial cotensors when cotensors with any simplicial set exist.

                    Instances
                      noncomputable def CategoryTheory.SimplicialCategory.cotensorCovMap {K : Type u} [Category.{v, u} K] [SimplicialCategory K] [HasCotensors K] (U : SSet) {A B : K} (f : A B) :
                      U A U B
                      Equations
                      • One or more equations did not get rendered due to their size.
                      Instances For
                        noncomputable def CategoryTheory.SimplicialCategory.cotensorContraMap {K : Type u} [Category.{v, u} K] [SimplicialCategory K] [HasCotensors K] {U V : SSet} (i : U V) (A : K) :
                        V A U A
                        Equations
                        • One or more equations did not get rendered due to their size.
                        Instances For
                          def CategoryTheory.SimplicialCategory.coneNatTrans {K : Type u} [Category.{v, u} K] [SimplicialCategory K] {A : SSet} {AX X : K} (Y : K) (cone : A sHom AX X) :
                          sHom Y AX (ihom A).obj (sHom Y X)
                          Equations
                          • One or more equations did not get rendered due to their size.
                          Instances For
                            structure CategoryTheory.SimplicialCategory.IsCotensor {K : Type u} [Category.{v, u} K] [SimplicialCategory K] {A : SSet} {X : K} (AX : K) (cone : A sHom AX X) :
                            Instances For
                              • obj : K

                                The object

                              • cone : A sHom self.obj X

                                The cone itself

                              • is_cotensor : IsCotensor self.obj self.cone

                                The universal property of the limit cone

                              Instances For