Documentation

InfinityCosmos.ForMathlib.AlgebraicTopology.SimplicialCategory.Cotensors

@[reducible, inline]

A specialization of the enriched category cotensor.

Equations
def CategoryTheory.SimplicialCategory.cotensorPostcompose {K : Type u} [Category.{v, u} K] [SimplicialCategory K] {U : SSet} {A B : K} (ua : Cotensor U A) (ub : Cotensor U B) (f : A B) :
ua.obj ub.obj
Equations
  • One or more equations did not get rendered due to their size.
def CategoryTheory.SimplicialCategory.cotensorPrecompose {K : Type u} [Category.{v, u} K] [SimplicialCategory K] {U V : SSet} {A : K} (ua : Cotensor U A) (va : Cotensor V A) (i : U V) :
va.obj ua.obj
Equations
  • One or more equations did not get rendered due to their size.

HasCotensor U A represents the mere existence of a simplicial cotensor.

Instances

Use the axiom of choice to extract explicit CotensorCone A X from HasCotensor A X.

Equations

An arbitrary choice of cotensor obj.

Equations
Equations
  • One or more equations did not get rendered due to their size.

The natural isomorphism induced by a cotensor.

Equations
  • One or more equations did not get rendered due to their size.
Equations
  • One or more equations did not get rendered due to their size.

K has simplicial cotensors when cotensors with any simplicial set exist.

Instances
    noncomputable def CategoryTheory.SimplicialCategory.cotensorCovMap {K : Type u} [Category.{v, u} K] [SimplicialCategory K] [HasCotensors K] (U : SSet) {A B : K} (f : A B) :
    U A U B
    Equations
    • One or more equations did not get rendered due to their size.
    noncomputable def CategoryTheory.SimplicialCategory.cotensorContraMap {K : Type u} [Category.{v, u} K] [SimplicialCategory K] [HasCotensors K] {U V : SSet} (i : U V) (A : K) :
    V A U A
    Equations
    • One or more equations did not get rendered due to their size.
    def CategoryTheory.SimplicialCategory.coneNatTrans {K : Type u} [Category.{v, u} K] [SimplicialCategory K] {A : SSet} {AX X : K} (Y : K) (cone : A sHom AX X) :
    sHom Y AX (ihom A).obj (sHom Y X)
    Equations
    • One or more equations did not get rendered due to their size.
    structure CategoryTheory.SimplicialCategory.IsCotensor {K : Type u} [Category.{v, u} K] [SimplicialCategory K] {A : SSet} {X : K} (AX : K) (cone : A sHom AX X) :
    • obj : K

      The object

    • cone : A sHom self.obj X

      The cone itself

    • is_cotensor : IsCotensor self.obj self.cone

      The universal property of the limit cone