Documentation

InfinityCosmos.ForMathlib.AlgebraicTopology.Quasicategory.TwoTruncated

structure SSet.Truncated.Edge {X : Truncated 2} (x₀ x₁ : X.obj (Opposite.op { obj := SimplexCategory.mk 0, property := })) :
Type u_1

Edge x₀ x₁ is a wrapper around a 1-simplex in a 2-truncated simplicial set with source x₀ and target x₁.

Instances For
    @[reducible, inline]
    abbrev SSet.Truncated.edgeMap {S : SSet} {y₀ y₁ : ((truncation 2).obj S).obj (Opposite.op { obj := SimplexCategory.mk 0, property := })} (e : Edge y₀ y₁) :
    Equations
    Instances For
      structure SSet.Truncated.CompStruct {X : Truncated 2} {x₀ x₁ x₂ : X.obj (Opposite.op { obj := SimplexCategory.mk 0, property := })} (e₀₁ : Edge x₀ x₁) (e₁₂ : Edge x₁ x₂) (e₀₂ : Edge x₀ x₂) :
      Type u_1

      CompStruct e₀₁ e₁₂ e₀₂ is a wrapper around a 2-simplex in a 2-truncated simplicial set with edges e₀₁, e₁₂, e₀₂ in the obvious configuration.

      Instances For

        A 2-truncated quasicategory is a 2-truncated simplicial set with 3 properties: (2, 1)-filling: any path of length 2 in may be filled to a 2-simplex whose spine equals the given path. (3, 1)-filling: given any path f of length 3, 2-simplices σ₃ and σ₀ filling the restricted paths f₀₁₂ and f₁₂₃ respectively, and a 2-simplex σ₂ filling the path formed by f₀₁ and the diagonal of σ₀, there is a 2-simplex σ₁ filling the path formed by the diagonal of σ₃ and f₂₃ and whose diagonal is the diagonal of σ₂. (3, 2)-filling: given any path f of length 3, 2-simplices σ₃ and σ₀ filling the restricted paths f₀₁₂ and f₁₂₃ respectively, and a 2-simplex σ₁ filling the path formed by f₂₃ and the diagonal of σ₃, there is a 2-simplex σ₂ filling the path formed by f₀₁ and the diagonal of σ₀ and whose diagonal is the diagonal of σ₁.

        Instances
          def SSet.horn₂₁.fromEdges {S : SSet} {x₀ x₁ x₂ : ((truncation 2).obj S).obj (Opposite.op { obj := SimplexCategory.mk 0, property := })} (e₀₁ : Truncated.Edge x₀ x₁) (e₁₂ : Truncated.Edge x₁ x₂) :
          (horn 2 1).toSSet S

          Given the data of two consecutive edges e₀₁ and e₁₂, construct a map Λ[2, 1].toSSet ⟶ S which restricts to maps Δ[1] ⟶ S corresponding to the two edges (this is made precise in the lemmas horn_from_edges_restr₀ and horn_from_edges_restr₁).

          Equations
          Instances For
            theorem SSet.horn₂₁.horn_from_edges_restr₀ {S : SSet} {x₀ x₁ x₂ : ((truncation 2).obj S).obj (Opposite.op { obj := SimplexCategory.mk 0, property := })} (e₀₁ : Truncated.Edge x₀ x₁) (e₁₂ : Truncated.Edge x₁ x₂) :

            See horn_from_edges for details.

            theorem SSet.horn₂₁.horn_from_edges_restr₁ {S : SSet} {x₀ x₁ x₂ : ((truncation 2).obj S).obj (Opposite.op { obj := SimplexCategory.mk 0, property := })} (e₀₁ : Truncated.Edge x₀ x₁) (e₁₂ : Truncated.Edge x₁ x₂) :

            See horn_from_edges for details.

            def SSet.horn₂₁.fromHornExtension {S : SSet} {x₀ x₁ x₂ : ((truncation 2).obj S).obj (Opposite.op { obj := SimplexCategory.mk 0, property := })} (e₀₁ : Truncated.Edge x₀ x₁) (e₁₂ : Truncated.Edge x₁ x₂) (g : stdSimplex.obj (SimplexCategory.mk 2) S) (comm : fromEdges e₀₁ e₁₂ = CategoryTheory.CategoryStruct.comp (horn 2 1).ι g) :
            (e₀₂ : Truncated.Edge x₀ x₂) × Truncated.CompStruct e₀₁ e₁₂ e₀₂

            Given a map Δ[2] ⟶ S extending the horn given by horn_from_edges, construct and edge e₀₂ such that e₀₁, e₁₂, e₀₂ bound a 2-simplex of S (this is witnessed by CompStruct e₀₁ e₁₂ e₀₂).

            Equations
            • One or more equations did not get rendered due to their size.
            Instances For
              def SSet.horn₃₁.chooseFace {S : SSet} {x₀ x₁ x₂ x₃ : ((truncation 2).obj S).obj (Opposite.op { obj := SimplexCategory.mk 0, property := })} {e₀₁ : Truncated.Edge x₀ x₁} {e₁₂ : Truncated.Edge x₁ x₂} {e₂₃ : Truncated.Edge x₂ x₃} {e₀₂ : Truncated.Edge x₀ x₂} {e₁₃ : Truncated.Edge x₁ x₃} {e₀₃ : Truncated.Edge x₀ x₃} (f₃ : Truncated.CompStruct e₀₁ e₁₂ e₀₂) (f₀ : Truncated.CompStruct e₁₂ e₂₃ e₁₃) (f₂ : Truncated.CompStruct e₀₁ e₁₃ e₀₃) (a : R) :

              Choose the i-th face from the given faces, where i is represented by a : horn₃₁.R, i.e. a is 0, 2 or 3

              Equations
              Instances For
                def SSet.horn₃₁.chooseFace' {S : SSet} {x₀ x₁ x₂ x₃ : ((truncation 2).obj S).obj (Opposite.op { obj := SimplexCategory.mk 0, property := })} {e₀₁ : Truncated.Edge x₀ x₁} {e₁₂ : Truncated.Edge x₁ x₂} {e₂₃ : Truncated.Edge x₂ x₃} {e₀₂ : Truncated.Edge x₀ x₂} {e₁₃ : Truncated.Edge x₁ x₃} {e₀₃ : Truncated.Edge x₀ x₃} (f₃ : Truncated.CompStruct e₀₁ e₁₂ e₀₂) (f₀ : Truncated.CompStruct e₁₂ e₂₃ e₁₃) (f₂ : Truncated.CompStruct e₀₁ e₁₃ e₀₃) (a : R) :
                Equations
                Instances For
                  def SSet.horn₃₁.multicoforkFromFaces {S : SSet} {x₀ x₁ x₂ x₃ : ((truncation 2).obj S).obj (Opposite.op { obj := SimplexCategory.mk 0, property := })} {e₀₁ : Truncated.Edge x₀ x₁} {e₁₂ : Truncated.Edge x₁ x₂} {e₂₃ : Truncated.Edge x₂ x₃} {e₀₂ : Truncated.Edge x₀ x₂} {e₁₃ : Truncated.Edge x₁ x₃} {e₀₃ : Truncated.Edge x₀ x₃} (f₃ : Truncated.CompStruct e₀₁ e₁₂ e₀₂) (f₀ : Truncated.CompStruct e₁₂ e₂₃ e₁₃) (f₂ : Truncated.CompStruct e₀₁ e₁₃ e₀₃) :
                  Equations
                  Instances For
                    def SSet.horn₃₁.fromFaces {S : SSet} {x₀ x₁ x₂ x₃ : ((truncation 2).obj S).obj (Opposite.op { obj := SimplexCategory.mk 0, property := })} {e₀₁ : Truncated.Edge x₀ x₁} {e₁₂ : Truncated.Edge x₁ x₂} {e₂₃ : Truncated.Edge x₂ x₃} {e₀₂ : Truncated.Edge x₀ x₂} {e₁₃ : Truncated.Edge x₁ x₃} {e₀₃ : Truncated.Edge x₀ x₃} (f₃ : Truncated.CompStruct e₀₁ e₁₂ e₀₂) (f₀ : Truncated.CompStruct e₁₂ e₂₃ e₁₃) (f₂ : Truncated.CompStruct e₀₁ e₁₃ e₀₃) :
                    (horn 3 1).toSSet S

                    Use the fact that Λ[3, 1] is the coequalizer of multicoforkFromFaces allows the construction of a map Λ[3, 1].toSSet ⟶ S.

                    Equations
                    Instances For
                      theorem SSet.horn₃₁.horn_extension_face₀ {S : SSet} {x₀ x₁ x₂ x₃ : ((truncation 2).obj S).obj (Opposite.op { obj := SimplexCategory.mk 0, property := })} {e₀₁ : Truncated.Edge x₀ x₁} {e₁₂ : Truncated.Edge x₁ x₂} {e₂₃ : Truncated.Edge x₂ x₃} {e₀₂ : Truncated.Edge x₀ x₂} {e₁₃ : Truncated.Edge x₁ x₃} {e₀₃ : Truncated.Edge x₀ x₃} (f₃ : Truncated.CompStruct e₀₁ e₁₂ e₀₂) (f₀ : Truncated.CompStruct e₁₂ e₂₃ e₁₃) (f₂ : Truncated.CompStruct e₀₁ e₁₃ e₀₃) {g : stdSimplex.obj (SimplexCategory.mk 3) S} (comm : fromFaces f₃ f₀ f₂ = CategoryTheory.CategoryStruct.comp (horn 3 1).ι g) :
                      theorem SSet.horn₃₁.horn_extension_face₂ {S : SSet} {x₀ x₁ x₂ x₃ : ((truncation 2).obj S).obj (Opposite.op { obj := SimplexCategory.mk 0, property := })} {e₀₁ : Truncated.Edge x₀ x₁} {e₁₂ : Truncated.Edge x₁ x₂} {e₂₃ : Truncated.Edge x₂ x₃} {e₀₂ : Truncated.Edge x₀ x₂} {e₁₃ : Truncated.Edge x₁ x₃} {e₀₃ : Truncated.Edge x₀ x₃} (f₃ : Truncated.CompStruct e₀₁ e₁₂ e₀₂) (f₀ : Truncated.CompStruct e₁₂ e₂₃ e₁₃) (f₂ : Truncated.CompStruct e₀₁ e₁₃ e₀₃) {g : stdSimplex.obj (SimplexCategory.mk 3) S} (comm : fromFaces f₃ f₀ f₂ = CategoryTheory.CategoryStruct.comp (horn 3 1).ι g) :
                      theorem SSet.horn₃₁.horn_extension_face₃ {S : SSet} {x₀ x₁ x₂ x₃ : ((truncation 2).obj S).obj (Opposite.op { obj := SimplexCategory.mk 0, property := })} {e₀₁ : Truncated.Edge x₀ x₁} {e₁₂ : Truncated.Edge x₁ x₂} {e₂₃ : Truncated.Edge x₂ x₃} {e₀₂ : Truncated.Edge x₀ x₂} {e₁₃ : Truncated.Edge x₁ x₃} {e₀₃ : Truncated.Edge x₀ x₃} (f₃ : Truncated.CompStruct e₀₁ e₁₂ e₀₂) (f₀ : Truncated.CompStruct e₁₂ e₂₃ e₁₃) (f₂ : Truncated.CompStruct e₀₁ e₁₃ e₀₃) {g : stdSimplex.obj (SimplexCategory.mk 3) S} (comm : fromFaces f₃ f₀ f₂ = CategoryTheory.CategoryStruct.comp (horn 3 1).ι g) :
                      def SSet.horn₃₁.fromHornExtension {S : SSet} {x₀ x₁ x₂ x₃ : ((truncation 2).obj S).obj (Opposite.op { obj := SimplexCategory.mk 0, property := })} {e₀₁ : Truncated.Edge x₀ x₁} {e₁₂ : Truncated.Edge x₁ x₂} {e₂₃ : Truncated.Edge x₂ x₃} {e₀₂ : Truncated.Edge x₀ x₂} {e₁₃ : Truncated.Edge x₁ x₃} {e₀₃ : Truncated.Edge x₀ x₃} (f₃ : Truncated.CompStruct e₀₁ e₁₂ e₀₂) (f₀ : Truncated.CompStruct e₁₂ e₂₃ e₁₃) (f₂ : Truncated.CompStruct e₀₁ e₁₃ e₀₃) (g : stdSimplex.obj (SimplexCategory.mk 3) S) (comm : fromFaces f₃ f₀ f₂ = CategoryTheory.CategoryStruct.comp (horn 3 1).ι g) :
                      Truncated.CompStruct e₀₂ e₂₃ e₀₃

                      Given a map Δ[3] ⟶ S extending the horn given by fromFaces, obtain a 2-simplex bounded by edges e₀₂, e₂₃ and e₀₃. See also Quasicategory₂.fill31.

                      Equations
                      • One or more equations did not get rendered due to their size.
                      Instances For
                        def SSet.horn₃₂.chooseFace {S : SSet} {x₀ x₁ x₂ x₃ : ((truncation 2).obj S).obj (Opposite.op { obj := SimplexCategory.mk 0, property := })} {e₀₁ : Truncated.Edge x₀ x₁} {e₁₂ : Truncated.Edge x₁ x₂} {e₂₃ : Truncated.Edge x₂ x₃} {e₀₂ : Truncated.Edge x₀ x₂} {e₁₃ : Truncated.Edge x₁ x₃} {e₀₃ : Truncated.Edge x₀ x₃} (f₃ : Truncated.CompStruct e₀₁ e₁₂ e₀₂) (f₀ : Truncated.CompStruct e₁₂ e₂₃ e₁₃) (f₁ : Truncated.CompStruct e₀₂ e₂₃ e₀₃) (a : R) :

                        Choose the i-th face from the given faces, where i is represented by a : horn₃₂.R, i.e. a is 0, 1 or 3

                        Equations
                        Instances For
                          def SSet.horn₃₂.chooseFace' {S : SSet} {x₀ x₁ x₂ x₃ : ((truncation 2).obj S).obj (Opposite.op { obj := SimplexCategory.mk 0, property := })} {e₀₁ : Truncated.Edge x₀ x₁} {e₁₂ : Truncated.Edge x₁ x₂} {e₂₃ : Truncated.Edge x₂ x₃} {e₀₂ : Truncated.Edge x₀ x₂} {e₁₃ : Truncated.Edge x₁ x₃} {e₀₃ : Truncated.Edge x₀ x₃} (f₃ : Truncated.CompStruct e₀₁ e₁₂ e₀₂) (f₀ : Truncated.CompStruct e₁₂ e₂₃ e₁₃) (f₁ : Truncated.CompStruct e₀₂ e₂₃ e₀₃) (a : R) :
                          Equations
                          Instances For
                            def SSet.horn₃₂.multicoforkFromFaces {S : SSet} {x₀ x₁ x₂ x₃ : ((truncation 2).obj S).obj (Opposite.op { obj := SimplexCategory.mk 0, property := })} {e₀₁ : Truncated.Edge x₀ x₁} {e₁₂ : Truncated.Edge x₁ x₂} {e₂₃ : Truncated.Edge x₂ x₃} {e₀₂ : Truncated.Edge x₀ x₂} {e₁₃ : Truncated.Edge x₁ x₃} {e₀₃ : Truncated.Edge x₀ x₃} (f₃ : Truncated.CompStruct e₀₁ e₁₂ e₀₂) (f₀ : Truncated.CompStruct e₁₂ e₂₃ e₁₃) (f₁ : Truncated.CompStruct e₀₂ e₂₃ e₀₃) :
                            Equations
                            Instances For
                              def SSet.horn₃₂.fromFaces {S : SSet} {x₀ x₁ x₂ x₃ : ((truncation 2).obj S).obj (Opposite.op { obj := SimplexCategory.mk 0, property := })} {e₀₁ : Truncated.Edge x₀ x₁} {e₁₂ : Truncated.Edge x₁ x₂} {e₂₃ : Truncated.Edge x₂ x₃} {e₀₂ : Truncated.Edge x₀ x₂} {e₁₃ : Truncated.Edge x₁ x₃} {e₀₃ : Truncated.Edge x₀ x₃} (f₃ : Truncated.CompStruct e₀₁ e₁₂ e₀₂) (f₀ : Truncated.CompStruct e₁₂ e₂₃ e₁₃) (f₁ : Truncated.CompStruct e₀₂ e₂₃ e₀₃) :
                              (horn 3 2).toSSet S

                              Use the fact that Λ[3, 2] is the coequalizer of multicoforkFromFaces allows the construction of a map Λ[3, 2].toSSet ⟶ S.

                              Equations
                              Instances For
                                theorem SSet.horn₃₂.horn_extension_face₀ {S : SSet} {x₀ x₁ x₂ x₃ : ((truncation 2).obj S).obj (Opposite.op { obj := SimplexCategory.mk 0, property := })} {e₀₁ : Truncated.Edge x₀ x₁} {e₁₂ : Truncated.Edge x₁ x₂} {e₂₃ : Truncated.Edge x₂ x₃} {e₀₂ : Truncated.Edge x₀ x₂} {e₁₃ : Truncated.Edge x₁ x₃} {e₀₃ : Truncated.Edge x₀ x₃} (f₃ : Truncated.CompStruct e₀₁ e₁₂ e₀₂) (f₀ : Truncated.CompStruct e₁₂ e₂₃ e₁₃) (f₁ : Truncated.CompStruct e₀₂ e₂₃ e₀₃) {g : stdSimplex.obj (SimplexCategory.mk 3) S} (comm : fromFaces f₃ f₀ f₁ = CategoryTheory.CategoryStruct.comp (horn 3 2).ι g) :
                                theorem SSet.horn₃₂.horn_extension_face₁ {S : SSet} {x₀ x₁ x₂ x₃ : ((truncation 2).obj S).obj (Opposite.op { obj := SimplexCategory.mk 0, property := })} {e₀₁ : Truncated.Edge x₀ x₁} {e₁₂ : Truncated.Edge x₁ x₂} {e₂₃ : Truncated.Edge x₂ x₃} {e₀₂ : Truncated.Edge x₀ x₂} {e₁₃ : Truncated.Edge x₁ x₃} {e₀₃ : Truncated.Edge x₀ x₃} (f₃ : Truncated.CompStruct e₀₁ e₁₂ e₀₂) (f₀ : Truncated.CompStruct e₁₂ e₂₃ e₁₃) (f₁ : Truncated.CompStruct e₀₂ e₂₃ e₀₃) {g : stdSimplex.obj (SimplexCategory.mk 3) S} (comm : fromFaces f₃ f₀ f₁ = CategoryTheory.CategoryStruct.comp (horn 3 2).ι g) :
                                theorem SSet.horn₃₂.horn_extension_face₃ {S : SSet} {x₀ x₁ x₂ x₃ : ((truncation 2).obj S).obj (Opposite.op { obj := SimplexCategory.mk 0, property := })} {e₀₁ : Truncated.Edge x₀ x₁} {e₁₂ : Truncated.Edge x₁ x₂} {e₂₃ : Truncated.Edge x₂ x₃} {e₀₂ : Truncated.Edge x₀ x₂} {e₁₃ : Truncated.Edge x₁ x₃} {e₀₃ : Truncated.Edge x₀ x₃} (f₃ : Truncated.CompStruct e₀₁ e₁₂ e₀₂) (f₀ : Truncated.CompStruct e₁₂ e₂₃ e₁₃) (f₁ : Truncated.CompStruct e₀₂ e₂₃ e₀₃) {g : stdSimplex.obj (SimplexCategory.mk 3) S} (comm : fromFaces f₃ f₀ f₁ = CategoryTheory.CategoryStruct.comp (horn 3 2).ι g) :
                                def SSet.horn₃₂.fromHornExtension {S : SSet} {x₀ x₁ x₂ x₃ : ((truncation 2).obj S).obj (Opposite.op { obj := SimplexCategory.mk 0, property := })} {e₀₁ : Truncated.Edge x₀ x₁} {e₁₂ : Truncated.Edge x₁ x₂} {e₂₃ : Truncated.Edge x₂ x₃} {e₀₂ : Truncated.Edge x₀ x₂} {e₁₃ : Truncated.Edge x₁ x₃} {e₀₃ : Truncated.Edge x₀ x₃} (f₃ : Truncated.CompStruct e₀₁ e₁₂ e₀₂) (f₀ : Truncated.CompStruct e₁₂ e₂₃ e₁₃) (f₁ : Truncated.CompStruct e₀₂ e₂₃ e₀₃) (g : stdSimplex.obj (SimplexCategory.mk 3) S) (comm : fromFaces f₃ f₀ f₁ = CategoryTheory.CategoryStruct.comp (horn 3 2).ι g) :
                                Truncated.CompStruct e₀₁ e₁₃ e₀₃

                                Given a map Δ[3] ⟶ S extending the horn given by fromFaces, obtain a 2-simplex bounded by edges e₀₁, e₁₃ and e₀₃. See also Quasicategory₂.fill32.

                                Equations
                                • One or more equations did not get rendered due to their size.
                                Instances For

                                  The 2-truncation of a quasi-category is a 2-truncated quasi-category.

                                  def SSet.Truncated.Edge.id {A : Truncated 2} (x : A.obj (Opposite.op { obj := SimplexCategory.mk 0, property := })) :
                                  Edge x x
                                  Equations
                                  • One or more equations did not get rendered due to their size.
                                  Instances For
                                    def SSet.Truncated.CompStruct.compId {A : Truncated 2} {x y : A.obj (Opposite.op { obj := SimplexCategory.mk 0, property := })} (e : Edge x y) :
                                    Equations
                                    • One or more equations did not get rendered due to their size.
                                    Instances For
                                      def SSet.Truncated.CompStruct.idComp {A : Truncated 2} {x y : A.obj (Opposite.op { obj := SimplexCategory.mk 0, property := })} (e : Edge x y) :
                                      Equations
                                      • One or more equations did not get rendered due to their size.
                                      Instances For
                                        @[reducible, inline]
                                        abbrev SSet.Truncated.HomotopicL {A : Truncated 2} {x y : A.obj (Opposite.op { obj := SimplexCategory.mk 0, property := })} (f g : Edge x y) :

                                        Two edges f and g are left homotopic if there is a 2-simplex with (0, 1)-edge f, (0, 2)-edge g and (1, 2)-edge id. We use Nonempty to have a Prop valued HomotopicL.

                                        Equations
                                        Instances For
                                          @[reducible, inline]
                                          abbrev SSet.Truncated.HomotopicR {A : Truncated 2} {x y : A.obj (Opposite.op { obj := SimplexCategory.mk 0, property := })} (f g : Edge x y) :

                                          See HomotopicL.

                                          Equations
                                          Instances For

                                            Left homotopy relation is reflexive

                                            Equations
                                            • =
                                            Instances For

                                              Left homotopy relation is symmetric

                                              Equations
                                              • =
                                              Instances For

                                                Left homotopy relation is transitive

                                                Equations
                                                • =
                                                Instances For

                                                  Right homotopy relation is reflexive

                                                  Equations
                                                  • =
                                                  Instances For

                                                    Right homotopy relation is symmetric

                                                    Equations
                                                    • =
                                                    Instances For

                                                      Right homotopy relation is transitive

                                                      Equations
                                                      • =
                                                      Instances For

                                                        The right and left homotopy relations coincide

                                                        theorem SSet.Quasicategory₂.comp_unique {A : Truncated 2} [A.Quasicategory₂] {x y z : A.obj (Opposite.op { obj := SimplexCategory.mk 0, property := })} {f : Truncated.Edge x y} {g : Truncated.Edge y z} {h h' : Truncated.Edge x z} (s : Truncated.CompStruct f g h) (s' : Truncated.CompStruct f g h') :
                                                        theorem SSet.Quasicategory₂.transport_edge₀ {A : Truncated 2} [A.Quasicategory₂] {x y z : A.obj (Opposite.op { obj := SimplexCategory.mk 0, property := })} {f : Truncated.Edge x y} {g g' : Truncated.Edge y z} {h : Truncated.Edge x z} (s : Truncated.CompStruct f g h) (htpy : Truncated.HomotopicL g g') :
                                                        theorem SSet.Quasicategory₂.transport_edge₁ {A : Truncated 2} [A.Quasicategory₂] {x y z : A.obj (Opposite.op { obj := SimplexCategory.mk 0, property := })} {f : Truncated.Edge x y} {g : Truncated.Edge y z} {h h' : Truncated.Edge x z} (s : Truncated.CompStruct f g h) (htpy : Truncated.HomotopicL h h') :
                                                        theorem SSet.Quasicategory₂.transport_edge₂ {A : Truncated 2} [A.Quasicategory₂] {x y z : A.obj (Opposite.op { obj := SimplexCategory.mk 0, property := })} {f f' : Truncated.Edge x y} {g : Truncated.Edge y z} {h : Truncated.Edge x z} (s : Truncated.CompStruct f g h) (htpy : Truncated.HomotopicL f f') :
                                                        theorem SSet.Quasicategory₂.transport_all_edges {A : Truncated 2} [A.Quasicategory₂] {x y z : A.obj (Opposite.op { obj := SimplexCategory.mk 0, property := })} {f f' : Truncated.Edge x y} {g g' : Truncated.Edge y z} {h h' : Truncated.Edge x z} (hf : Truncated.HomotopicL f f') (hg : Truncated.HomotopicL g g') (hh : Truncated.HomotopicL h h') (s : Truncated.CompStruct f g h) :

                                                        The homotopy category of a 2-truncated quasicategory A has as objects the 0-simplices of A

                                                        Equations
                                                        Instances For
                                                          instance SSet.Quasicategory₂.instSetoidEdge {A : Truncated 2} [A.Quasicategory₂] (x₀ x₁ : A.obj (Opposite.op { obj := SimplexCategory.mk 0, property := })) :
                                                          Equations
                                                          def SSet.Quasicategory₂.HEdge {A : Truncated 2} [A.Quasicategory₂] (x₀ x₁ : A.obj (Opposite.op { obj := SimplexCategory.mk 0, property := })) :
                                                          Type u_1

                                                          The morphisms between two vertices x₀, x₁ in HomotopyCategory₂ A are homotopy classes of 1-simplices between x₀ and x₁.

                                                          Equations
                                                          Instances For
                                                            noncomputable def SSet.Quasicategory₂.composeEdges {A : Truncated 2} [A.Quasicategory₂] {x₀ x₁ x₂ : A.obj (Opposite.op { obj := SimplexCategory.mk 0, property := })} (f : Truncated.Edge x₀ x₁) (g : Truncated.Edge x₁ x₂) :
                                                            Truncated.Edge x₀ x₂

                                                            Given two consecutive edges f, g in a 2-truncated quasicategory, nonconstructively choose an edge that is the diagonal of a 2-simplex with spine given by f and g.

                                                            Equations
                                                            Instances For
                                                              noncomputable def SSet.Quasicategory₂.composeEdgesIsComposition {A : Truncated 2} [A.Quasicategory₂] {x₀ x₁ x₂ : A.obj (Opposite.op { obj := SimplexCategory.mk 0, property := })} (f : Truncated.Edge x₀ x₁) (g : Truncated.Edge x₁ x₂) :
                                                              Equations
                                                              Instances For
                                                                theorem SSet.Quasicategory₂.composeEdges_unique {A : Truncated 2} [A.Quasicategory₂] {x₀ x₁ x₂ : A.obj (Opposite.op { obj := SimplexCategory.mk 0, property := })} {f : Truncated.Edge x₀ x₁} {g : Truncated.Edge x₁ x₂} {h : Truncated.Edge x₀ x₂} (s : Truncated.CompStruct f g h) :

                                                                The edge composeEdges f g is the unique edge up to homotopy such that there is a 2-simplex with spine given by f and g.

                                                                theorem SSet.Quasicategory₂.composeEdges_homotopic {A : Truncated 2} [A.Quasicategory₂] {x₀ x₁ x₂ : A.obj (Opposite.op { obj := SimplexCategory.mk 0, property := })} {f f' : Truncated.Edge x₀ x₁} {g g' : Truncated.Edge x₁ x₂} (hf : Truncated.HomotopicL f f') (hg : Truncated.HomotopicL g g') :

                                                                The compositions of homotopic edges are homotopic

                                                                noncomputable def SSet.Quasicategory₂.composeHEdges {A : Truncated 2} [A.Quasicategory₂] {x₀ x₁ x₂ : A.obj (Opposite.op { obj := SimplexCategory.mk 0, property := })} (f : HEdge x₀ x₁) (g : HEdge x₁ x₂) :
                                                                HEdge x₀ x₂

                                                                Composition of morphisms in HomotopyCategory₂ A is given by lifting composeEdges.

                                                                Equations
                                                                Instances For
                                                                  Equations
                                                                  • One or more equations did not get rendered due to their size.

                                                                  The reflexive prefunctor sending edges (in the 1-truncation) of A to their homotopy class.

                                                                  Equations
                                                                  Instances For

                                                                    By the adjunction ReflQuiv.adj, we obtain a functor from the free category on the reflexive quiver underlying A to the homotopy category corresponding to quotientReflPrefunctor₂.

                                                                    Equations
                                                                    • One or more equations did not get rendered due to their size.
                                                                    Instances For
                                                                      def SSet.Quasicategory₂.edgeToHom {A : Truncated 2} {x₀ x₁ : A.obj (Opposite.op { obj := SimplexCategory.mk 0, property := })} (f : Truncated.Edge x₀ x₁) :
                                                                      x₀ x₁

                                                                      An edge from x₀ to x₁ in a 2-truncated simplicial set defines an arrow in the refl quiver OneTruncation₂.{u} A) from x₀ to x₁.

                                                                      Equations
                                                                      Instances For
                                                                        def SSet.Quasicategory₂.edgeToFreeHom {A : Truncated 2} {x₀ x₁ : A.obj (Opposite.op { obj := SimplexCategory.mk 0, property := })} (f : Truncated.Edge x₀ x₁) :
                                                                        { as := x₀ } { as := x₁ }

                                                                        An edge from x₀ to x₁ in a 2-truncated simplicial set defines an arrow in the free category generated from the refl quiver OneTruncation₂.{u} A) from x₀ to x₁.

                                                                        Equations
                                                                        Instances For
                                                                          theorem SSet.Quasicategory₂.homotopic_edges_are_equiv {A : Truncated 2} [A.Quasicategory₂] {x₀ x₁ : A.obj (Opposite.op { obj := SimplexCategory.mk 0, property := })} (f g : Truncated.Edge x₀ x₁) (htpy : Truncated.HomotopicL f g) :
                                                                          Truncated.HoRel₂ { as := x₀ } { as := x₁ } (edgeToFreeHom f) (edgeToFreeHom g)

                                                                          Two (left) homotopic edges f, g are equivalent under the hom-relation HoRel₂ generated by 2-simplices.

                                                                          If a reflexive prefunctor F : FreeRefl (OneTruncation₂ A) ⥤rq C respects the hom-relation HoRel₂, then it can be lifted to HomotopyCategory₂ A.

                                                                          Equations
                                                                          • One or more equations did not get rendered due to their size.
                                                                          Instances For

                                                                            If a functor F : FreeRefl (OneTruncation₂ A) ⥤ C respects the hom-relation HoRel₂, then it can be lifted to HomotopyCategory₂ A (see the weaker statement liftRq₂).

                                                                            Equations
                                                                            • One or more equations did not get rendered due to their size.
                                                                            Instances For

                                                                              Since both HomotopyCategory A and HomotopyCategory₂ A satisfy the same universal property, they are isomorphic.

                                                                              Equations
                                                                              • One or more equations did not get rendered due to their size.
                                                                              Instances For